
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Examination in INF5110 — Kompilatortteknikk

Day of examination: 7. June 2017

Examination hours: 09.00 – 13:00

This problem set consists of 12 pages.

Appendices: 3 pages

Permitted aids: All written and printed

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

• You should read the whole problem set before you start, getting an
overview can help to make wise use of the time.

• Besides writing in a readable manner, draw requested figures in a clear
way.

• Give concise and clear explanations!

• You may answer Problem 4, 5, and part of Problem 6b by filling in the
pages in the appendix and hand them in together with the rest of the
answers (in the “white version”).

Good luck!

(Continued on page 2.)

Examination in INF5110, 7. June 2017 Page 2

Problem 1 Compiler front-end phases (weight 8%)

The front-end of a compiler contains typically the following phases: the
lexical phase (= scanner), the syntactic phase (= parser), and the semantic
analysis phase. The phases check and process elements of the language
being compiled in particular ways. For each of the following “language
rules”, specify which of the three mentioned phases is best suited to check
compliance. If a check can (reasonably) be done in more than one phase,
shortly give arguments for trade-offs involved.

(i) A function has to be called with the correct number of arguments.

(ii) Underscore characters “_” are allowed in the middle of identifiers, but
not at the beginning or the end (i.e. “my_id” is legal but “_id” is not).

(iii) Every variable must be declared before it is used.

(iv) Assignment statements must end with a semicolon “;”.

(Continued on page 3.)

Examination in INF5110, 7. June 2017 Page 3

Problem 2 Regular expressions (weight 12%)

Remote file identifers look, in the most general, as follows:

user@hostname:filename

More precisely: The parts of the identifiers are made up of words, which are
sequences of one or more letters and digits. The user part contains a single
word. A hostname consists of one or more words separated by periods (as in
www.uio.no). A filename consists of one or more words separated by slash
characters (“/”) with an optional leading and/or trailing slash. The “user@”
part is optional and may be omitted. The entire “user@hostname:” may
also be omitted, including the trailing colon “:”. The “user@” part may not
appear unless the “hostname:” part is also present.

Now: specify the form of remote file identifiers using regular expressions.
Feel free to make use of the more “user-friendly” versions of the regular
expressions.

(Continued on page 4.)

Examination in INF5110, 7. June 2017 Page 4

Problem 3 Top-down parsing (weight 24%)

Consider the following context-free grammar:

S → ABA
A → Bc ∣ dA ∣ ε
B → eA

(1)

3a First- and follow set (weight 10%)

Give the first- and follow-set for the non-terminals of the grammar.

3b LL(1)-parsing (weight 14%)

Give the LL(1) parsing table for the grammar. Is the grammar LL(1)?

(Continued on page 5.)

Examination in INF5110, 7. June 2017 Page 5

Problem 4 Bottom-up parsing (weight 20%)

start

0

1S

2

3

B

4A

5 6

7B

B

z

x

A

y

y

A

z

x

B

Figure 1: LR(0)-DFA (items missing inside states)

4a LR(0)-DFA (weight 14%)

Assume a context-free grammar with non-terminals S (the start symbol), A,
and B, and terminals x, y, and z. Consider the LR(0)-DFA in Figure 1.
Shown are all states and transitions, with the start state 0. Furthermore
indicated are states, which contain a complete item, i.e., an item with the
“.”-marker at the very end: For states containing such a complete item, the
corresponding non-terminal on the left-hand side of the complete item is
indicated, as well. For instance, the state numbered 1 is assumed to contain
a complete item with S as left-hand side of the production, i.e., an item of
the form

S → <right-hand-side> .

Correspondingly for states 2,4, and 7.

Now, fill in the missing information, i.e., the items that form the states 0
– 7, so that the filled-out DFA is the result of the standard LR(0)-DFA
construction of the grammar (by filling out the items correctly, you implictly
reconstruct the grammar, as well).

The automaton is reproduced in the attachment, which you can use for your
solution. It’s advisable to make a sketch first on a separate sheet, to copy it
in (readably) afterwards.

4b Classification (weight 6%)

For the grammar from problem 4a: is it LR(0), LR(1), SLR(1), LALR(1)?

(Continued on page 6.)

Examination in INF5110, 7. June 2017 Page 6

Problem 5 Attribute grammars (weight 16%)

Consider the following grammar.

program → prog stmt-seq
stmt-seq → stmt stmt-seq
stmt-seq → stmt

stmt → do var = const upto const begin stmt-seq end
stmt → assign

It describes a (very simple) language, which allows to iterate through
sequences of statements, ultimately assignments. The terminals are given
in boldface, the non-terminals in italics. A do-loop is specified by the range
of the loop variable, given by integer constants, representing the loop’s lower
and upper bound. No production for assignments is given (as irrelevant for
the task). Thus, assignments, represented by assign, are treated here as
terminals.

A sample program is given in Listing 1 (i is the token value for var, similarly
for 1 and 42).

Listing 1: Sample program
1 prog
2 do i = 1 upto 42
3 begin
4 assign
5 assign
6 end
7 assign

Write an attribute grammar that determines for each assignment

how many times the assigmment will be executed

when running the program. Assume that the terminals representing
constants have an attribute val denoting their constant integer value. The
result should be found in an attribute for the assign-symbol, say iterated

or i for short. You may make use of that attribute for other symbols of the
grammar, as well, as needed for your solution.

Assume that for each loop the lower bound const0 is smaller or equal the
upper bound const1 (no need to check that in your solution). Make sure
you calculate the required attribute value exactly (not more or less correct,
plus/minus one).

(Continued on page 7.)

Examination in INF5110, 7. June 2017 Page 7

productions/grammar rules semantic rules

0 program → prog stmt-seq

1 stmt-seq0 → stmt stmt-seq1

2 stmt-seq → stmt

3 stmt → do var =

const0 upto const1

begin stmt-seq end

4 stmt → assign

Give your answer by filling out the given table. You may use the
corresponding form in the appendix (by tearing it out and deliver it with
the “white sheets”).

(Continued on page 8.)

Examination in INF5110, 7. June 2017 Page 8

Problem 6 Code generation (weight 20%)

6a Code generation and optmimization (weight 8%)

Consider the following transformation on three-address code, illustrated on
the following example.

Listing 2: Before
1 i f t == 0
2 then
3 x = y + z ;
4 <r e s t of then−branch>
5 else
6 x = y + z ;
7 <r e s t of else −branch>
8 endif

Listing 3: After
1 x = y + z ;
2 i f t == 0
3 then
4 <r e s t of then−branch>
5 else
6 <r e s t of else −branch>
7 endif

The idea is to move “common instructions” (like the assignment x = y + z in
the example) before the conditional, so long it does not change the semantics
of the code. The three address code in this sub-problem supports two-armed
conditionals (if-then-else), not the if-goto constract as in the lecture and in
sub-task 6b.

Assume code generation as covered in the “notat” which covers parts of
Chapter 9 of the old “dragon book” (Compilers: Principles, Techniques,
and Tools, A. V. Aho, R. Sethi, and J. D. Ullman, 1986). Assume further
that the code generator has access to local liveness information, i.e., liveness
information per basic block, but no global liveness information is available.

Under these assumptions, what are potential effects of the code transforma-
tion on the qualitity of the generated code? Discuss this question referring
to the cost model of the notat/lecture.

Note: neither exact sequences of possibly generated two-address code nor
detailed calculations of costs are expected/needed as answer, just a short
discussion of the influence of the transformation on factors of the cost model.

6b Global analysis (weight 12%)

Consider the program from Listing 4 in three address code. We do not
distinguish here between temporaries and standard variables.

(i) Indicate the basic blocks in giving start and end line for each block
(numbering the blocks like B0, B1, etc.) You can also use the
code repeated in the appendix, drawing clearly visible horizontal lines
indicating the boundaries of the blocks and give the Bi-numbers of the
blocks.

(ii) Draw the control flow graph of the program using B0, B1 from the

(Continued on page 9.)

Examination in INF5110, 7. June 2017 Page 9

previous question to identify the nodes of the graph.

(iii) Does the control-flow graph contain a loop? Use the notion of loops
for control-flow graphs from the lecture.

(iv) Give the inLive and outLive information for each block (best in the
form of a table).

Listing 4: Three-address code
1 x = input
2 y = input
3 label L1
4 b = x + y
5 z = b∗z
6 label L2
7 x = a + 1
8 i f_false x goto L3
9 x = y + x

10 if_true z goto L5
11 goto L1
12 label L3
13 z = b ∗ 2
14 goto L2
15 label L5
16 output x

(Continued on page 10.)

Examination in INF5110, 7. June 2017 Page 10

Appendix: DFA for Problem 4

Candidate nr.:

Date: .

start

0

1S

2

3

B

4A

5 6

7B

B

z

x

A

y

y

A

z

x

B

(Continued on page 11.)

Examination in INF5110, 7. June 2017 Page 11

Appendix: Form for Problem 5

Candidate nr.:

Date: .

productions/gram
m
ar

rules
sem

antic
rules

0
program

→
p
ro

g
stm

t-seq

1
stm

t-seq
0
→

stm
t
stm

t-seq
1

2
stm

t-seq
→

stm
t

3
stm

t
→

d
o
v
a
r
=

co
n
st

0
u
p
to

co
n
st

1

b
e
g
in

stm
t-seq

e
n
d

4
stm

t
→

a
ssig

n

(Continued on page 12.)

Examination in INF5110, 7. June 2017 Page 12

Appendix: The code for Problem 6b

Candidate nr.:

Date: .

1 x = input
2 y = input
3 label L1
4 b = x + y
5 z = b∗z
6 label L2
7 x = a + 1
8 i f_false x goto L3
9 x = y + x

10 if_true z goto L5
11 goto L1
12 label L3
13 z = b ∗ 2
14 goto L2
15 label L5
16 output x

