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Abstract

This is a collection of exams from earlier years. They are not the originals but translated
to English (but I more or less tried to keep true to the formulations). Additionally, there are
hints for solutions, (made available later) also taken from those earlier exams.

In the solutions as I have written down here, there is often more text than what is
expected when answering an exam, such as explaining what is generally expected in such a
question, about the background,1 or how to approach it. In contrast, in an exam, one is very
much encouraged to keep explanations more to the point of the actual question at hand.

Disclaimer: Care has been taken to keep it error-free here; I do not, however, give
guarantees for 100% correctness, and an error here can not be taken as argument when
defending own errors.

Also: it’s unclear whether throughout the years, exactly the same pensum was required.
The pensum of 2016, 2017, and this semester 2018, corresponds roughly (but not 100%) to
the one from 2015, but I have no overview over earlier semesters. Thus, earlier exams may
cover more/different material or left out some material, which has been added to the pensum
later on. The text here is just a “matter-of-fact” repository of earlier exams (and not all of
them have been included yet). Peruse at your leisure.

1 2005

Exercise 1 (Regular expressions and automata (0%))

(a) Use Thompson’s construction to construct a NFA for the following regular expression

(aa ∣ b)∗(a ∣ cc)∗

(b) Write the following NFA as regular expression.

1start

2

3

4

a

v

a

ε

b

a

b

(c) Turn the NFA from the previous sub-problem into a DFA.

Solution:

(a)

1Especially in the footnotes.
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Exercise 2 (context-free grammars and parsing (0%))

Consider the following grammar G1:

E → S E ∣ num
∣

S → − S ∣ +S ∣ ε

E and S are non-terminals, +, −, and num are terminals (with the usual interpretation).
The start symbol is E (not S).

(a) Describe short how sentences generated by G1 look like, and give one example of a sentence
consisting of 4 terminal symbols

(b) Give a regular expression representing the same sentences as G1.

(c) Give a short argument determining which of the following 5 groups the the grammar belongs
to (more than one may apply):

(i) LR(0)

(ii) SLR(1)

(iii) LALR(1)

(iv) LR(1)

(v) none of the above.

Consider next a different grammar G2:

F → + F ∣ − F ∣ num

Here, F is a non-terminal (and, obviously, the start symbol). The terminals are unchanged:
+, −, and num

(d) Give a LR(0)-DFA for G2, where the grammar has been extended by a new producion
F ′ → F and where F ′ is taken as the start symbol of the extended grammar. Give a
number to each state of your DFA for identification.

(e) Given the DFA thus constructed: which type(s) of grammar is G2, again with a short
explanation. (Cf. question (c) from above for the classification).

(f) Give the parsing table for G2, fitting to the type of grammar

(g) How will the sentence following sentence be parsed

−−9

Give your answer by showing the stack-content and input (as done in the book) for each
of the shift- or reduce-steps done while parsing the sentence.

Solution:

(a)

(b)

3



Collection of older exam questions (+ Hints for solutions) 14. 05. 2018

(c) -5 an be derived as follows

S
/ \

/ \
S E

/ \ / \
- S S E

| | |
e e 5

S
/ \

/ \
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/ \
S E

/ \ |
- S 5

|
e

where e stands fro the empty word. So that means the grammar does not fall in any of the
given categories.

(d)

(e) seems to me the automaton shows it’s LR(0). But check again.

Exercise 3 (Attribute grammars and type checking (0%))

(a) The following is a (fragment of a) grammar for a language with classes.

class → class name superclass {decls }
decls → decls ;decl ∣ decl
decl → variable-decl
decl → method -decl

method -decl → type name (params ) body
type → int ∣ bool ∣ void

superclass → name

4
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Words in italics are meta-symbols, words or symbols in boldface are terminal symbols
(and name represents a name the scanner hands over. You can assume that name has an
attribute name.

Methods with the same name as the class are constructors, and, as a rule, constructors
must have the type void.

The task now is: formulate semantic rules for each production in the following fragment of
an attribute grammar. Start by deciding which attributes you need.

Hint: the solution does not require a symbol table.

productions/grammar rules semantic rules
1 class → class name superclass {decls }
2 decls → decls ;decl
3 decls → decl
4 decl → variable-decl Not to be filled out
5 decl → method -decl
6 method -decl → type name (params ) body
7 type → int
8 type → bool
9 type → void
10 superclass → name

(b) Assume we are dealing with a language with classes and subclasses. All methods are virtual
(such that they can be overwritten). Assume the following class definitions:

1 class A {
2 int i ;
3 void P { . . . AP . . . } ;
4 void Q { . . . AQ . . . } ;
5 }
6

7 class B extends A {
8 int j ;
9 void Q { . . . BQ . . . } ;

10 void R { . . . BR . . . } ;
11 }
12

13 class C1 extends B {
14 void P { . . . C1P . . . } ;
15 void S { . . . C1S . . . } ;
16 }
17

18 class C2 extends B {
19 int k
20 void R { . . . C2R . . . } ;
21 void T { . . . C2T . . . } ;
22 }

Show how objects of classes C1 and C2 are structure (show their layout) and draw the
virtual function table2 for each of the classes. Use the “names” shown in the above method
bodies to indicate elements in the virtual function tables.

(c) We introduce an instanceof operator as in Java. The boolean expression

refExpr instanceof class

is “true” if the object pointed at by refExpr is of a class which is not “null”, and which is
class class or a subclass of class. Otherwise, the value of the expression is “false”.

2name

5
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To implement this operation, we extend the virtual function table with a pointer to class
descriptors; there is one class descriptor for each class in the program. Each class descriptor
contain a variable “super” pointing to the class descriptor of its superclass. Classes without
an explictly given superclass have the specific class Object as superclass. The example
figure below illustrates the concept for an object of class B.

Sketch an algorithm which calculates the value of refExpr instanceof class

(d) To make the test of instanceof more efficient and inspired by the concept of display/context
vector for nested blocks, we instroduce a table “super ” which, for a given class, contains all
superclasses including the class itself. This table uses as index the “subclass-level”, with 0
for Object, with 1 for the programs root class, etc. In our example, class A has level 1,
B has 2, and C1 and C3 both level 3. In our example, the class descriptors which includes
the “super ”-tables look as follows:

Explain how this representation can make the implementation of the instanceof -operator.
To illustrate that, we introduce two more classes:

1 class C11 extends C1 { . . . }
2 class C21 extends C1 { . . . }

Give the class descriptors for those two new classes C11 and C21 and show how the following
tests are done.

1 rC11 = new C11 ( ) ;
2 rC11 i n s t an c e o f C1 ; // (1 )
3 rC11 i n s t an c e o f C2 ; // (2 )

Solution:

6
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2 2006

Exercise 4 (Parameter passing and attribute grammars (0%))

The following is a fragment of a grammar for a language with procedures (uninteresting
parts are omitted for the current problem set). All procedures have one parameter that
this parameter is either “by-value”, “by-reference”.(indicated by they keyword ref), or “by-
value-result” (indicated by the keyword result).

procedure → proc id (param ) stmt
param → type id ∣ ref type id ∣ result type id

call → id ( exp )

exp → id
exp → id [ exp ]

exp → exp aritop exp

The following 2 programs declare a variable i and a procedure change; afterwards, 1 is
assigned to i, the procedure is called with i as argument and finally prints the content of
i. The difference between the first and the second version of the program is the parameter-
passing mode: the first uses call-by-reference, the second call-by-value-result. We assume
standard scoping rules apply.

1 {
2 int i ;
3 proc change ( ref int p) {
4 p = 2 ; i = 0 ;
5 } ;
6 i = 1 ;
7 change ( i ) ;
8 wr i t e ( i ) ;
9 }

1 {
2 int i ;
3 proc change ( result int p) {
4 p = 2 ; i = 0 ;
5 } ;
6 i = 1 ;
7 change ( i ) ;
8 wr i t e ( i ) ;
9 }

(a) Assume that the semantics for “call-by-value-result” is such that the address (location) of
the actual parameter is determined at the time of the procedure call (procedure entry).

What is the output of program 1 and program 2 upon execution?

(b) Assume that the semantics for “call-by-value-result” is such that the address (location) of
the actual parameter is determined a the time of the procedure return (procedure exit).

(c) The easy rule governing procedure calls in this language “by-reference” or “by-value-result”
is as follows: such procedures can be called only where the expression is either a simple
variable (id) or an indexed variable (id [ exp ]).

Fill out the missing entries in the following attribute grammars such that the attribute ok
for call is true the call is done following the given rule and false, otherwise.

The symbol table is set up targeted towards this language rule such that the names of
procedures are associated with a value which indicates whether the given procedure uses

7
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its parameter “by-value”, “by-reference”, or “by-value-result” (with values value, ref , or
result , respectively). A call lookupkind(id.name) gives in which way the procedure with
the name id.name is defined.

It’s not required here to check whether the procedure name id in a call-expression is actually
declared.

productions/grammar rules semantic rules
procedure → proc id (param ) stmt insert(id.name,param .kind)

param → type id

param → ref type id

param → result type id

call → id ( exp ) call .ok =
exp → id

exp1 → id [ exp2 ]

exp1 → exp2 aritop exp3

Solution:

Exercise 5 (Context-free grammars and parsing (0%))

Consider the following grammar G. In the grammar, S and T are nonterminals, # and a
are terminals, and S is the start symbol.

S → TS
S → T
T → # T
T → a

(a) Determine the First- and Follow -sets for S and T . Use $, as usual, to represent the
“end-of-file”.

(b) Forumalate in your own words which sequences of terminal symbols are generated starting
from S.

(c) Is it possible to represent the language of G (consisting of # and a symbols) by a regular
expression. Explain, if the answer is “no”, resp. give a corresponding regular expression if
the answer is “yes”.

(d) Introduce a new start symbol S′ with a production S′ → S. Give the LR(0)-DFA for G
right for that grammar. Give numbers to the states of the DFA.

(e) Give a short argument determining which of the following 5 groups the grammar belongs
to; more than one answer is possible:

(i) LR(1)

(ii) LALR(1)

(iii) SLR(1)

(iv) LR(0)

(v) none of the above

8
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Hint: determine possible conflicts in the constructed DFA and/or if the grammar is unam-
biguous.

(f) Give the parsing table for G, fitting the grammar type.

(g) Show how the sentence “a#a” is being parsed. Do that, as done in the book, by writing the
stack-contents and input for each shift- or reduce-operation executed during the parsing.
Indicate also the numbers of the states on the stack (as in the book).

Solution:

I cannot really draw the automaton in an email, but here’s how I think
it goes. I have not checked too cearefully, so errors might be in
there. Anyhow, here’s my attempt

----------------
0: S’ -> S

S -> . T S
T -> . # T
T -> . a

----------------

----------------
1: S -> T . S

S -> . T S
S -> . T
T -> . # T
T -> . a

----------------

-------------------
2: S -> T S .
-------------------

-----------------
3: S -> T.

T -> T . S
S -> . T S
S -> . T
T -> . # T
T -> . a

-----------------

9
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------------------
4: T -> # . T

T -> . # T
T -> . a

------------------

------------------
5: T -> a.
----------------

----------------
6: S -> T . S
- S -> . T S

S -> . T
T -> . # T
T -> . a

----------------

============= EDGES ========================

[0] --T--> [1]
[0] --S--> [2]
[0] --#--> [4]
[0] --a--> [5]

[1] --S--> [2]
[1] --T--> [3]
[1] --#--> [4]
[1] --a--> [5]

[2] : no outgoing edges

[3] --a--> [5]
[3] --#--> [4]
[3] --S--> [2]
[3] --T--> [6]

[4] --#--> [4]
[4] --a--> [5]

[5]: no outgoing edge

[6] --S--> [2]

10
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[6] --T--> [3]
[6] --#--> [4]
[6] --a--> [5]
------------------------------------------

Now, Follow-sets (the first-sets are not so important)

Follows

S’ $
S $
T $ , #

----------------------

Now for the conflicts. Suspicious are stats only 3.

The other 2 states with complete items are harmless.

So we have to look at the follow sets., but S has not # in its follow
set. Therefore it’s fine for SLR.

Exercise 6 (Classes and virtual tables (0%))

(a) Assume a language with classes and subclasses. All methods are virtual, such that they
can be redefined in subclasses.

The class Graph, together with classes Node and Edge, defines graphs, which consist of
Node-objects which are connected via Edge-objected. An instance of class Graph represents
graphs. All nodes of the graph are assumed to be reachable from a node represented by
the attribute startNode, which contains a references to a Node-object.

Parts of the class definitions irrelevant for the problem are indicated by “...”.
1 class Node { . . . }
2 class Edge { . . . }
3

4 class Graph {
5 Node startNode ;
6 void connect (Node n1 , n2 ) {
7 . . . // connects two Nodes by c r ea t i ng an Edge−o b j e c t . . .
8 } ;
9 }

The following classes define subclasses (City and Road) of Node and Edge, respectively. Fur-
thermore given is a subclass RoadAndCityGraph of Graph, and a subclass TravelingSalesmanGraph

11
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of RoadAndCityGraph. The method display will draw the graph with startNode as start-
ing point.

1 class City extends Node {
2 St r ing name ;
3 . . .
4 }
5

6 class Road extends Edge {
7 St r ing name ;
8 int d i s t anc e ;
9 . . .

10 }
11

12

13 class RoadAndCityGraph extends Graph {
14 St r ing country ;
15 void connect (Node n1 , n2 ) {
16 . . . // connects to c i t y o b j e c t s t r e a t e s as Nodes ,
17 // by c r ea t ing a Road o b j e c t
18 } ;
19 void d i sp l ay ( ) {
20 . . . // d i s p l a y Roads and City with names
21 }
22 }
23

24 class TravelingSalesmanGraph extends RoadAndCityGraph {
25 void d i sp l ay ( ) {
26 . . . // d i s p l a y c i t i e s with names and roads
27 // with name and d i s t ance
28 } ;
29 }

Show how objects of the classes Graph, RoadAndCityGraph, and TravelingSalesmanGraph
are structured (show their layout) and draw the virtual table for each of the objects. Use
names of the form ⟨classname⟩ ∶∶ ⟨methodname⟩ to indicate which definition is associated
with each object.

(b) Assume that classes Node and Edge are defines as inner classes of Graph and furthermore
that inner classes can be redefined in subclasses in the same way that virtual methods
can. One may well speak of virtual classes then. Redefined classes automatically become
subclasses for the corresponding virtual classes. For example, class RoadAndCityGraph is
a subclass of class Node in Graph.

1 class Node { . . . }
2 class Edge { . . . }
3

4 class Graph {
5 Node startNode ;
6 void connect (Node n1 , n2 ) {
7 . . . // connects two Nodes by c r ea t i ng an Edge−o b j e c t . . .
8 } ;
9 }

10

11

12

13 class RoadAndCityGraph extends Graph {
14 class City {
15 St r ing name ;
16 . . .
17 }
18

19 class Road {
20 St r ing name ;
21 int d i s t anc e ;
22 . . .
23 }
24

25 St r ing country ;

12
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26 void connect (Node n1 , n2 ) {
27 . . . // connects to c i t y o b j e c t s t r e a t e s as Nodes ,
28 // by c r ea t ing a Road o b j e c t
29 } ;
30 void d i sp l ay ( ) {
31 . . . // d i s p l a y Roads and City with names
32 }
33 }
34

35

36

37

38

39

40 class TravelingSalesmanGraph extends RoadAndCityGraph {
41 void d i sp l ay ( ) {
42 . . . // d i s p l a y c i t i e s with names and roads
43 // with name and d i s t ance
44 } ;
45 }

In the same way as the virtual table for virtual methods is used when calling a virtual
method, we now also make use of an additional virtual table for the instantiation of objects
from virtual classes. For instance, the method connect of class Graph contains code to
generate a new Edge-object. If this method therefore is called on a RoadAndCityGraph-
object, it is supposed to generate an Edge-object as it is defined in class RoadAndCityGraph.

Show how such a virtual table for virtual classes can look like. Don’t include in the
representation the virtual table from subproblem (a).

Explain how this new virtual table is used when executing new Edge() in method connect
in the class Graph.

3 2007

Exercise 7 (Code generation (-%))

(a) Given is the program from Listing 1. The code is basically three-address code, except that
we also allow ourselves in the code two-armed conditionals and a while-construct (with
the conventional meaning). The input and output instructions in the first two lines resp.
the last two lines are considered as standard three-address instructions, with the obvious
meaning of “inputting” a value into the mentioned variable resp. “outputting” its value.
We assume that no variable is live at the end of the code.

Listing 1: 3-address code example
1 a := input
2 b := input
3 d := a + b
4 c := a ∗ b // <− looky here
5 i f ( b < 5) {
6 while (b < 0 ) {
7 a := b + 2
8 b := b + 1
9 }

10 d := 2 ∗ b
11 } else {
12 d := b ∗ 3
13 a := d − b
14 }
15 output a
16 output b

13
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Which variables are live immediately at the end of line 4. Give a short explanation of your
answer.

Solution: One way to answer that problem is to draw the control-flow graph (just for the
overview) and go through the steps of the live-ness algo. But actually, the program in simple
enough so one might even more easily just look at the program and figure out by “carefully
thinking” which of the variables at the specific line are live and which are not. Note: it’s not
required to give the values for the inLive and outLive points throughout the CFG. Other exam
questions do require the full construction (partition the intermediate code, show the CFG, and
show the liveness result for all positions in the graph), but here one is allowed to simply give the
result (it’s easy enough).

But even more central is, to simply list the variables for which the info is needed (a, b, c, d).
Since the task does not require to formally use the algorithm to derive the answer or even give
the CFG, we simply give the liveness status straight:

a: That’s a tricky one. But it’s live! In the else-branch, the first thing to happen to a is that
it’s assigned to (“defined”). So in that branch, it is dead. In the true-branch, it’s assigned
to also, but it’s inside the while-loop. If it so happens that the while-loop is not executed
at all, then obviously the assignment to a will not happen. Which means, the first thing
to happen to a is the output-statement in line 15. That most definitely counts as “use”
of a. It is important to realize that it does not matter whether the while-loop actually
is executed or not (we are technically dealing with static liveness). We are conceptually
operating on the CFG, where there are 2 possiblities: the while-loop is entered, or not.
Since statically we don’t know what actually happens, we have to take both options into
account. Therefore, as said, a is live.

b: The variable is immediately live as it is used in the next line.

c: There variable is never “used”. It’s only mentioned in live 4, where it’s assigned to (“defined”)
but afterwards never even mentioned (and not before either). So, being a “write-only”
variable, it’s completely useless, and more specifically dead after line 4.

d: This variable is more interesting again. Like b, it’s assigned to in both branches of the
conditional, but unlike b, it’s not assigned-to (in the false-branch) inside the while-loop. So,
unavoidably, in both cases, d is overwritten before it’s used again in the output statement
in line 16. Therefore, d is dead.

4 2009

Exercise 8 (Code generation (%))

Consider the following program in 3-address intermediate code.

Listing 2: 3-address code example
1 a := input
2 b := input
3 t1 := a + b // l i n e 3
4 t2 := a ∗ 2
5 c := t1 + t2
6 i f a < c goto 8
7 t2 := a + b
8 b := 25 // l i n e 8
9 c := b + c

10 d := a − b
11 i f t2 = 0 goto 17
12 d := a + b
13 t1 := b − c

14
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14 c := d − t1
15 i f c < d goto 3
16 c := a + b
17 output c // l i n e 17
18 output d

(a) Indicate where new basic blocks start. For each basic block, give the line number such that
the instruction in the line is the first one of that block.

(b) Give names B1, B2, . . . for the program’s basic blocks in the order the blocks appear in the
given listing. Draw the control flow graph making use of those names. Don’t put in the
code into the nodes of the flow graph, the labels Bi are good enough.

(c) The developer who is responsible for generating the intermediate TA-code assures that
temporary variables in the generated code are dead at the end of each basic block as well
as dead at the beginning of the program, even if the same temporary variable may well be
used in different basic blocks.

Formulate a general rule to check locally in a basic block whether or not the above claim
is honored or violated in a given program.

Assume that all variables are dead after the last instruction.

(d) Use the rule formulated in the previous sub-problem on the TA-code given, to check if the
condition is met or not. The remporary variables are called t1, t2 etc. in the code.

(e) Draw the control flow graph of the problem and find the values for inLive and outLive for
each basic block. Consider the temporaries as ordinary variables.

Point out how one can answer the previous Question 4.d directly after having solved the
current sub-problem.

Are there instructions which can be omitted (thus optmizing the code)? Are there variables
which are potentially uninitialized the first time they are used.

Solution:

(a) The basic blocks are indicated as comments in the code. The line numbers shift therefore,
of course.3 The first line indicates a basic block, targets of (conditional) jumps indicated
basica blocks, and lines after (conditional) jumps indicate basic blocks.

Listing 3: 3-address code example: basic blocks added
1 // −−−−−−−−−−−− B1 −−−−−−−−−−−−−−

2 a := input
3 b := input
4 // −−−−−−−−−−−− B2 −−−−−−−−−−−

5 t1 := a + b // l i n e 3
6 t2 := a ∗ 2
7 c := t1 + t2
8 i f a < c goto 8
9 −−−−−−−−−−−−− B3 −−−−−−−−−−−−−−−−−

10 t2 := a + b
11 −−−−−−−−−−−− B4 −−−−−−−−−−−−−−−

12 b := 25 // l i n e 8
13 c := b + c
14 d := a − b
15 i f t2 = 0 goto 17
16 −−−−−−−−− B5 −−−−−−−−−−−−−−−−−−−

17 d := a + b

3Note that Louden favors a 3AIC, where one uses symbolic labels not actual line numbers. That’s a better
way of dealing with the issue of (conditional) jumps in intermediate code, anyway. The same applies to assembly
code.
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18 t1 := b − c
19 c := d − t1
20 i f c < d goto 3
21 −−−−−−−−−− B6 −−−−−−−−−−−−−−−−−−

22 c := a + b
23 −−−−−−−−−−− B7 −−−−−−−−−−−−−−−−−−−−−

24 output c // l i n e 17
25 output d
26 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(b) For the CFG. see below iin e)

(c) A possible rule could be

All temporaries which are used in a given basic block must be assigned to (“de-
fined”) in the same before the (first) use.

Another way of saying it is:

No temporary variable must have a “next-use” at the beginning of a basic block.

(d) sanitary check: In block B4, the temporary t2 violates the formulated rule.

(e) Liveness:
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5 2010

Exercise 9 (Code generation (–%))

(a) Arne has looked into the code generation algo at the end of the notat (from [Aho et al., 1986,
Chapter 9]). He surmises that for the following 3AIC

1 t1 := a − b
2 t2 := b − c

the code generation algorithm will produce the machine instructions below. He assumes
two registers, both empty at the start.

Listing 4: 2AC
1 MOV a , R0
2 MOV b , R1
3 SUB R1 , R0
4 SUB c , R1

Ellen disagrees. Who is right? Explain your answer.

Solution: Arne is wrong. The code is not as it is generated. The code as such makes
“semantical” sense, it’s just not code that is being generated according to the code generation
from [Aho et al., 1986]. How can we easily see that? What makes the code generation a bit weird
is that the machine code is a two-address code and that it uses the two operands in some peculiar
way, in particular, it determines first a location where the result should go. The preference is
strongly that the result is supposed to end up in a register. Even if the registers are all “full” still
the code will put the result in a register (but of course saving the content back to main memory).
The circumstances when or how that happens are not fully given in the book. However, as long
as there are free registers, a register is taken for the result. The second step is: is the first operand
(by happenstance) already in that register. Well, as the exercise states: we have 2 registers, both
are empty. Therefore 1) the result will end up in a register, say R0, and 2), we have to move
the first operand into that register. So the first line of the code is still fine. It’s the second line
where the shown code deviates from the presented code generator: The “second” step is always
the execution of the operation itself (of course, if the first step is missing, the “second” step is
actually the first).

So: an “easy” way to see that the code generation in the book won’t generate the code
of Listing 4 is: the code generator always translates the prototypical 3AIC assignment with a
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binary operator (the one we discussed in the lecture) into 1 or to 2AC assinments: either just
“OP...” or MOV followed by “OP”. Therefore, independent from whether the above sequence makes
semantically sense or not: the code generator won’t generate it.

It’s not part of the question, but here’s the code which would be generated

Listing 5: 2AC (bonus)
1 // t1 i s not in a r e g i s t e r , so we choose one (R0) and then
2 MOV a , R0 // load f i r s t operand to that r e g i s t e r .
3 // This r e g i s t e r i s a l s o which conta in s the r e s u l t
4 SUB b , R0 // do the sub s t r a c t i on .
5 MOV b , R1 // the second l i n e i s t r an s l a t ed ana logous ly .
6 SUB c , R1 // a i s not l i v e a f t e r the f i r s t 3AIC code , we could
7 // reuse R0 t h e r e f o r e !

6 2011

Exercise 10 (CFGs and Parsing (25%))

Given are the following 3 separate grammars:

A → bAc ∣ ε (1)
A → bAb ∣ b (2)
A → bAb ∣ c (3)

Symbol A is the start symbol and the (only) non-terminal, and b and c are terminals.

(a) For all three grammars:

(i) Calculate the First- and Follow -sets of A.
(ii) After extending the grammar with a new start symbol and production A′ → A, draw

the LR(0)-DFA.
(iii) Which of the 3 grammars is SLR, if any? Do the same for LR(0).

(b) For each of the 3 grammars: is the grammar LR(1)? It’s possible to determine and explain
that without referring to the LR(1)-DFA, but it’s ok to draw the LR(1) first and use it for
the answer.

(c) Which of the languages generated by the grammars is regular? In case of a “yes”, give a
regular expression capturing the language of the respective grammar. In case of a “no”
answer: give a short explanation.

(d) Draw a parsing table for grammar (1) and take care that it’s free from conflicts. Give a
step-by-step LR-analysis of the sentence “bbcc” in the same way as done in [Louden, 1997,
page 213, Table 5.8]

Solution:

(a)

(i) The First and Follow sets are as follows:

Nr. First(A) Follow(A)
1) {b, ε} {c,$}
2) {b} {$,b}
3) {b,c} {$,b}
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(ii) We give directly the DFAs, not going through the NFA’s as intermediate step. In
the direct construction (which may be faster than the indirect way over the NFAs),
the core is to build the closure correctly. States containing complete items are shown
shaded slightly in red. This is not part of the task, just done for illustration, as in the
slides of the lecture.

A′ → .A

A→ .bAc

A→ .

start

0

A′ → A.

1

A→ b.Ac

A→ .bAc

A→ .

2

A→ bA.c

3
A→ bAc.

4

A

b

A c

b

Figure 1: DFA for A→ bAc ∣ ε

A′ → .A

A→ .bAb

A→ .b

start

0

A′ → A.

1

A→ b.Ab

A→ b.

A→ .bAb

A→ .b

2

A→ bA.b

3
A→ bAb.

4

A

b

A

b

b

Figure 2: DFA for A→ bAb ∣ b

(iii) A classification of the different grammars is given in overview in Table 1 (covering
also other subproblems). To determine whether the grammar is LR(0), resp. SLR, or
not: For each of the DFA’s, one has to look for conflicts.

i. For LR(0): this question is to be answered without looking into the follow-sets. Of
course, when by looking into the follow-sets and finding out that an LR(0)-DFA is
no SLR, then it’s clear that it’s also not LR(0). Anyhow, the third automaton has
no LR(0)-conflicts: in each state it is either a shift possible or else a reduce, but
not both at the same time. Reduce-steps are doable in states containing complete
items (here marked reddish). It’s immediate that in the automaton for G3, there
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A′ → .A

A→ .bAb

A→ .c

start

0

A′ → A.

1

A→ b.Ab

A→ .bAc

A→ .c

2

A→ bA.b

3
A→ bAb.

4
A→ c.

5

A

b

A c

c

c

b

Figure 3: DFA for A→ bAb ∣ c

grammar regular LR(0) SLR(1) LR(1)
G1 no no yes [yes]
G2 yes [no] no no
G3 no yes [yes] [yes]

Table 1: Classification (overview)

are no outgoing edges in the states containing a complete item (= states where a
reduce is possibe). Thus, there is no shift-reduce conflict and thus the grammar
is LR(0). It’s equally trivial to see that this criterion is violated in the first two
automata, they do have shift-reduce conflicts.

ii. For SLR: For G3, the answer follows from the fact that the grammar is LR(0)
already. For the others, we need to look at the follow sets, especially for the
“suspicious” states, where there’s an LR(0)-conflict. This time we need to consult
the follow sets to see if or if not they disambiguate the situation.
In G1, we need to check states 0 and 2 specifically (the other states either contain
no complete item or contain only one complete item and no non-complete items).
In both cases, we have to check for shift/reduce conflicts (that there is no reduce-
reduce conflict, is clear; there is only one complete item in each state). For both
states, we need to check the terminal b. Since it’s not contained in the Follow -set
of A, the grammar G1 is SLR.
For G2, state 2 is suspicious. In this case, the relevant terminal b is contained in
the follow-set of A, hence G2 is not SLR.

(b) Concerning LR(1): G1 and G3 are immediately clear, as they are already SLR.

Remains G2. This grammar is not LR(1). The grammar is unambiguous, so we have to
do it another way: When parsing a string of b’s of arbitrary length, there will be a point
“in the middle” where the parser needs to decide, that, from now on, it’s the second half
(in the first half, the parser may push onto the stack, in the second half it may pop off the
from the stack, until it’s empty). There is no way that the parser can know, by looking at
the next intput(s), when the time to switch from pushing to popping has come (as there
are only b’s on the input unlike in the other 2 grammars where a c demarcated when it’s
time to parse “the second half” of b’s).

(c) The question about regularity is about the respective languages, not the grammars. The
lecture did not cover technical background to formally prove that a given language is not
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regular.4 What is covered in the lecture is the general fact that regular languages are a strict
subset of context-free language (and those in turn a a strict subset of the context-sensitive
ones . . . ). This general relationship between language is the Chomsky-hierarchy.

The question here is to informally know where the border between regular languages and
context-free languages lies, and to argue (if that’s the case) why a given language is not
regular. If the given language is regular, the straighforward and expected answer is to give
the regular expression which represents the language.

(i) The first grammar G1 produces the language where there is a number of b’s followed
by the equal number of c. In more formulaic notation:

L(G1) = {bncn ∣ n ≥ 0}

As a general intuitive explanation of what regular languages (or finite-state automata)
cannot do is: they can produce “many” symbols, but they cannot (arbitrarly) count
how many and remember the number. Of course, the language containing

“15 as followed by 15 bs”

is fine, because the number is fixed (one just needs enough states, approximately
15+15=30 states). The language of G1 is different, first bn needs to be produced
(or scanned), and, after seeing the first c, the automaton must have “remembered ”
the number n. Since the number depends on the word and can be arbitrarily large,
this cannot be done by a finite-state automaton.5 Note also: it’s characteristic
for CF languages that they capture such “nested balancing” structures (“each b to
the left is matched by one c”). Many examples on the lecture dealt with various
nestings of parentheses and other syntactic structures. Indeed, nested parenthetic
structures or nesting of “structures” in general is almost synonymous with the syntactic
structure of programming languages: blocks can be nested and each “begin-block”
must have a matching “end-block”, each opening “(” must have one maching “)” . . . .
Of course, the language of “simple parenthesis” from the lecture exactly corresponds
to the language here (just with different symbols).
There “nesting” or “parenthetic” structures in strings of terminal symbols are the
aspects which are done by the parser, and which cannot be done by the lexer.
Finally: it should be noted that an argument based only on the form of the grammar
is not good. It has been mentioned that left-linear grammars generate regular lan-
guages (analogously for right-linear grammars, but not for grammars which contains a
mixture of left-linear and right-linear productions). Now, grammar G1 is neither left-
linear nor right-linear. But, as mentioned, the question here is about the generated
language not the form of the grammar.6

(ii) This grammar is neither left-linear nor right-linear. However, that does not answer
the question, we have to look at the language (as discussed). The language L(G2)

4The most relevant result in that context is known as the pumping lemma (for regular languages). As said,
this lemma is not part of the pensum.

5We have not formally introduced push-down automata, which are automata with a stack, they were shortly
mentioned on connection with the Chomsky-hierarchy. Pushdown automata can use the additional unbounded
stack memory exactly for that. Note also: the parsing process for the various classes done in the lecture —LR(0),
SLR . . .— did use a stack explicitly in the case of bottom-up parsing. For top-down parsing, the recursive
procedures underlying the recursive descent parsing approach of course implicitly contain a stack was well.

6That is kind of question different from questions like “is the grammar left-linear” or “is the grammar SLR”. Of
course one may also ask “is the following language SLR” . . . , but that’s a different from and harder than asking
analgously about a grammar. As a final remark: it also means: if one has determined that the language of a
grammar happens to be regular, that fact cannot be use to short-cut the question whether the grammar is LR(0)
etc.
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consists of an odd-numbered amount of b’s, in short:

L(G2) = {b2n+1 ∣ n ≥ 0} .

That’s rather easy to capture by a regular expression (or a FSA), for instance as
follows:

b(bb)∗ .

(iii) The language here can be characterized as follows

L(G3) = {bncbn ∣ n ≥ 0}

and is not regular for the same reasons as the language of G1.

(d) The parsing table is given as follows.

state input goto
b c $ A

0 s ∶ 2 r ∶ (A→ ε) 1
1 accept
2 s ∶ 2 r ∶ (A→ ε) r ∶ (A→ ε) 3
3 s ∶ 4
4 r ∶ (A→ bAc) r ∶ (A→ bAc)

Table 2: SLR(1) parsing table for G1

stage parsing stack input action
1 $0 bbcc$ shift: 2
2 $0b2 bcc$ shift: 2
3 $0b2b2 cc$ reduce: A→ ε
4 $0b2b2A3 cc$ shift: 4
5 $0b2b2A3c4 c$ reduce: A→ bAc
6 $0b2A3 c$ shift: 4
7 $0b2A3c4 $ reduce: A→ bAc
8 $0A1 $ accept

Table 3: Parser run (reduction) for G1 and input bbcc

Exercise 11 (Classes and virtual tables (20%))

Assume we are dealing with an OO language where a virtual method in a class can be
redefined (“overriding”) in subclasses of that class. A virtual method is declared via the
virtual modified, where a redefinition is declared with the modifier redef. Methods
without virtual modifier are “ordinary” methods and cannot be redefined. Note that it’s
not completely as in Java. In Java, all methods are virtual, whereas here, that’s only the
case for methods with virtual modifier.7 Consider the following classed, defined in that
assumed language

7At that point it’s unclear if redef-methods may be redefined again.
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1 class A {
2 virtual void m ( int x , y ) { . . . }
3 void p ( ) { . . . }
4 virtual void q ( ) { . . . }
5 }
6

7 class B extends A {
8 redef void m ( int x , y ) { . . . }
9 void r ( ) { . . . }

10 }
11

12 class C extends A {
13 redef void q ( ) { . . . }
14 }
15

16 class D extends B {
17 redef void m ( int x , y ) { . . . }
18 }
19

20 class E extend B {
21 redef void q ( ) { . . . }
22 }
23

24 class F extends C {
25 redef void m( int x , y ) { . . . }
26 }

(a) We assume first that the class for a given object determines, in the standard way, which
version of a virtual method is being called.

Do the virtual tables for the all the classes A, B, . . . , F. For each element in the table, use
the notation A::m to indicate which method actually is meant. The indices in this tables
are supposed to start with 0.

(b) For the rest of this problem, we assume the following semantics: A refined virtual methods,
say m, first executes the correspoidng virtual or redefined method (i.e., m) in the closest
superclass containing such a method, before executing its own body. This in turn may leads
to the situation that redefined or virtual methods m in further superclasses are executed.

One can implement that by setting in the right call as first statement in the body of
redefined methods. However: the semantics of parameter passing here is assumed to be a
little by specific in that the straightforward way won’t work. The parameters handed over
in the original call should go directly as parameters to the method which is being executed
first, i.e., the one which are marked virtual in the program. When that is finished
executing, the values which are contained in that versions parameters be transferred a
actual parameters for the next deeply nested redefined method, etc. As a consequence, the
stack of the call must be set-up first, and that the actual parameterrs must handed over
to the first virtual method which is supposed to be executed.

As example: asume m is called with m(1,2) on a D-object. In that case the stack is being
set up and the actual parameter go into the activation recode corresponding to A::m, and
the execution can start executing A::m. Upon exit of A::m: the values of x and y will be
handed over as actual parameters to the version of m which is supposed to be executed
next.

In order to implement this new semantics, we need to extend the virtual tables in such a
way that for each index, a list of methods is available. This list will, consequently, give the
sequence of methods which will be called.

Draw these new virtual tables for classes D and F. The tables for B and C are given in Table
4. To indicate methods, use the same notation as before.
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Figure 4: Extended virtual tables for B and C

Solution:

(a) The virtual tables are shown in Table 5.

Figure 5: Virtual tables for the given class hierarchy

(b)

Exercise 12 (Attribute grammars (30%))

The following is a fragment of a grammar for a language with classes. A class cannot have
superclass; instead it must implement one or more interfaces.

class → class name implements interfaces {decls }
decls → decls ; decl ∣ decl
decl → variable-decl ∣ method -decl

method -decl → type name (params ) body
type → int ∣ bool ∣ void

interfaces → interfaces , interface ∣ interface
interface → name
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Figure 6: Extended virtual tables for D and F

The words in italics are non-terminals, those in bold-face are terminals, and name rep-
resent names handed over by the scanner. That terminal name has an attribute “name”
(a string).

A special feature of this language is that class methods with the same name as the interfaces
the class implements are constructors for the class. A class can thus contain more than
one method with the same name as one of the implemented interfaces, also with different
parameter. The latter, though, is not the topic of the problem here.

The generation of new objects is of the form

new⟨classname⟩ .⟨interface − name⟩(⟨actual − parameters⟩)

since different classes can implement the same interface.

One requirement of this language is that constructor need to be specified with the type void,
and that’s the requirement which you are requested to check using semantical rules. Thus:
give semantical rules in the following fragment of an attribute grammar. In the definition,
you can use functions and set etc you need, but you need to define them properly.

Answer with question using the corresponding attachement.
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Solution:
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Exercise 13 (Code generation & P-code (25%))

(a) This sub-task is to design a “verifier” for programs in P-code, i.e., for sequences of P-code
instructions.

(i) List a many possible “properties” that the verifier can or should check or test in P-
code programs. Explain in which sense a P-code program is correct given the list of
properties being checked for.

(ii) Sketch which data structures

(b)
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lda v “load address” Determine the address of variable v and push it on top
of the stack. An address is an integer number, as well.

ldv v “load value” Fetch the value of variable v and push it on top of the
stack

ldc k “load constant” Push the constant value k on top of the stack
add “addition” calculate the sum of the stack’s top two elements, re-

move (“pop”) both from the stack and push the result
onto the top of the stack.

sto “store”
jmp L “jump” goto the designated label
jge L “jump on greater-or-equal” similar conditional jumps (“greater-than”, “less-than”

. . . ) exist.
lab L “label” label to be used as targets for (conditional) jumps.

Table 4: P-code instructions

(c) We want to translate the P-code to machine code for a platform where all operations,
including comparisons, must be done between values which reside in registers and that
register-memory transfers must be done with dedicated LOAD and STORE operations. During
the translation, we have a stack of descriptors.

Consider the P-instruction
ldv b

where b is a variable whose value resides in the home position. This instruction therefore
pushes the value of b onto the top of the stack. When translating that to machine code, a
question there is what is better: 1) doing a LOAD instruction so that the value of b ends up
in register or alternatively 2) push a descriptor onto the stack marking that b resides in its
home position.

Discuss the two alternatives under different assumptions and side conditions. These may
include the whether the user-level source language assures an order of evaluation of com-
pound expressions. Other factors you think relevant can be discussed as well.

(d) Again we translate our P-code to machine code and, as in the previous sub-problem, we
assume we translate again one block at a time, in isolation, and that consequently all
registers have to be “emptied” at the end of a basic block in a controlled manner.

The question is to find out which data descriptors in the stack are needed and if other
kinds of descriptors are needed.

We assume that we can search through all the descriptors of the elements on the stack
each time this information is needed. In that way, we avoid having to add another layer of
descriptor(s).

With your descriptor design: describe how to find information needed during code gener-
ation and, if your design contains additional descriptor, how to make use of them.

Solution:

(a) !!!!

(i)

(ii)

(iii)

(b)
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(c) (i) If the language definition specifies that the evaluation order is fixed from left-to-right,
one should generate a LOAD instruction to get the value into the registers. If the
language definition leaves the order open, it may be better not to load the variable
but a corresponding descriptor into the stack. Remember that the stack is not a run-
time stack, it’s a data structure the code generator uses to perform it’s task. Insofar
that the code generator goes through the intermediate code (here P-code) of the basic
block instruction by instruction, it does some form of “static simulation” of the P-code
execution, including doing a form of simulation of the stack (in the simulation however,
operating with descriptors). In that sense, it’s a kind of “simulation” of a stack at run-
time, but it’s not what we call the stack of ARs of a typical, stack-allocated run-time
environment.

(ii) the situation leaves room for many optimizations. One situation discusses is that if
the expression contains a function call (or method call etc). I would not subsume
that in this tasks, since would not really consider that the expression then is part of
one basic block. The call would lead to the situation that the basic block is split into
(at least) two sub-blocks: before the call and after. It’s not part of the lecture how
the blocks and edges are done (i.e. how the CFG is done) in the presence of function
calls. One proposed solution ignores that and treats a function call as being “inside”
the basic block. The problem with function calls is that they can change values (the
may have side effects). If there are side effects, the order of evaluation matters, if
there are no side effects, the order does not matter. In therefore the expression is
side-effect free there’s no need to load the value directly, as it effectively does not
matter when it’s loaded. Therefore one may be better off simply using the descriptor
stack marking where the variable is being found in memory.

(d) In any case we need the following

• if the argument is a constant (and which)

• if the value of the argument is a program variable (and which)

• if the value resides in a register (and in which)

Not everything possible will be recorded on the stack. Note that we don’t record on the
stack what is the content of the registers (only indirectly by saying whether or not a value
can be found in this-and-that register).

It should be noted that the descriptors stack is not really good enough to keep track of
all the information the code generator wants to keep an eye on. At least if it wants to
keep a level of overview over registers and variables comparable to the code generator from
the lecture. The reason why the stack itself is not good for that, no matter how much
info we plan to store into the stack entries, is simply that poping arguments off the stack
means, forgetting all information stored for the corresponding operand. The stack may
easily become empty during the expression evaluation in the middle of a basic block, after
which the code generator would not know where variables are etc.

Thus, one needs additionally store such information, independent from the stack. Bascially,
one would need, besides the stack, register descripters and address descriptors in the same
way the code-generator from the lecture for 3AIC uses.

7 2012

Exercise 14 (Context-free grammars and parsing (25%))
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Consider the following grammar G1:

S → a ∣ S#S ∣ S@S

Here, S is the start symbol and the only non-terminal. The symbols a, #, and @ (and the
end-of-input symbol $) are terminals.

(a) Give a concrete argument why the grammar is ambiguous.

(b) Assume that

• the operator # has low precedence and is right-assosicative

• the operaotr @ has high precedence and is left-associative

Give a new grammar G2 which describes the same language as G1 and follows the rules
just given. You may introduce new non-terminals, and it’s not required to give arguments
that G2 is unambiguous beyond pointing out similarities of corresponding unambiguous
grammars from the pensum.

(c) We look at the grammars G1 and G2, as well as the following grammar G3 (where the
latter contains + as new terminal symbol)

S → a ∣ S#S ∣ S@S ∣ +S +

Which of the languages L(G1), L(G2), and L(G3), are regular and which not. Explain
and give a regular expression for those which languages which happen to be regular.

(d) Give the LR(0)-DFAs for the ambiguous grammar G1 (using a S′ in the usual way).

(e) Give the First and Follow -sets of S in G1 (making the usual use of the symbol $). Indicate
which states from the DFA of the previous sub-problem have

(i) conflicts which cannot be resolved with LR(0)-criteria, but can be solved via SLR(1)-
criteria. Explain.

(ii) Conflicts which cannot be resolved by SLR(1)-criteria. Explain.

(f) For the “conflict”- states of the automaton from point (ii) of the previous sub-problem:
explain how you would solve them “manually” in order to obtain the precendeces and
associativities as given in sub-problem (b)

(g) Give the SLR(1)-parsing table for L(G1), using the answers from subproblems (d) and (f).
The table thus should have have maximally one action per slot and the resulting syntax
analysis should follow the rule from sub-problem (b).

Solution:

(a) “Concrete” means: give one sentence that has two different derivation trees (and give them).
Well, we have two binary operations (and the grammar does not specify any precedence
(like that @ has a higher priority/precedence/binding power than #). That’s the root of
ambiguity. Two different trees for the same word are:
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S

S

a

# S

S

a

@ S

a

S

S

S

a

# S

a

@ S

a

(b) Here’s two possible solutions:

S → T#S ∣ T
T → T @F ∣ F
F → a

S → T#S ∣ T
T → T @a ∣ a

They are built according to the principles as in the lecture, see also [Louden, 1997, Section
3.4.2].

(c) G1 and G2 are the same language (provided the first subproblem was solved correctly . . . ).
They are regular and a corresponding regular expression is:

a((# ∣ @)a)∗

For G3, the +-signs are treated in the form that the number of + “generated” left of the S
equals the number of + right of S. That’s prototypical for non-regular languages. See also
the corresponding explanations in the exam from 2011. Of course the language here does
not just contains +’s but also #’s or @’s but the basic fact that a finite-state automaton
cannot count symbols unboundedly and remember the number applies also here (for the
+’s), thus a FSA cannot recognize L(G3) and the language is therefore not regular.

(d) The LR(0)-DFA is given in Figure 7

Figure 7: LR(0)-DFA

(e) The correspondings sets for S are as follows:

First(S) = {a} and Follow(S) = {#,@,$}]
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(i) There is one LR(0) conflict in state 1, which can be solved with the SLR(1)-criterion
(taking the follow-sets into account). The state accepts for $, and shifts for # and
@.

(ii) There are additional LR(0) conflicts in both 5 and 6

As a side remark: as the grammar is not ambiguous, there have to be conflicts which are
not solvable via SRL(1) (and of course also not via LR(0))

(f) We have to look at the 2 states which have SLR(1) conflicts

(i) state 5: In this state, the string
S@S

is on top of the stack.8 The options now are #, @ or $; only the first two situation
constitute a conflicts, as found out in the previous sub-problem, and those we have
to disambiguate.
In case of an #: In this case, we reduce. As mentioned, @ binds stronger than # (has
higher precendence), and a @-binary expression it is currently on top of the stack,
choosing a reduce step in this situation realizes that higher precedence. Remember
that a reduce-step conceptually builds up one new node in the parse-tree which is
growing in a bottom-up manner.
In case of a @: Now it’s a question not of precedence but of associativity. The @-
symbol is specified to be left-associative. Therefore, we need to reduce also in this
case.
The last case of $ also results in a reduce, but that was already clear.

(ii) For state 6: in this case,
S#S

is on top of the stack. With analogous argumentation than for state 5, we have to
shift for # (in contrast to @, the # is right-associative)! For @, we need to shift,
because this time, the next symbol (i.e., @) has a higher precedence compared to that
of the symbol on the stack (i.e. #).

(g) The table looks as follows:

Exercise 15 (Run-time environments (25%))

In this task we are given a Java-like language where methods can have locally defined
methods. Furthermore it is possible to declare variables and methods at the othermost
program level. That is supposed workd as usual in languages with static scoping.

The following is a program in this language.
8That can be seen by following the paths from the initial state 0 to that state 5. Note that there is not only

one path, but many (actually infinitely many). All of them however, leave the indicated word on top of the stack.
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1 {
2 class C {
3 void m1 ( ) {
4 void f ( ) {} ;
5

6 f ( ) ;
7 }
8 void m2 ( ) {
9 int i ;

10 void g ( ) {
11 int j ;
12 j = i ;
13 } ;
14 i = 1 ;
15 rC .m1( ) ;
16 } ;
17 } ;
18

19 C rc ;
20 void main ( ) {
21 rc = new C{} ; rC .m2{} ;
22 }
23 }

Draw the call stack in the situation where the activation record for f is on top of the stack
for the first time. Draw the stack including variables, access-lonks, and control-links, but
without access-links for methods which are directly declared in a class (one can assume
for this that the access-link point to the C-object, but this is not important for the task at
hand).

Solution:

(a)

vars of main

(no access link)

control link

return addr.

n:1

n:2

access link

control link

return addr.

access link

control link
fp

return addr.
sp

...

calls m → p → r → q
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8 2013

Exercise 16 (CFG and parsing (35%))

Consider the following 2 grammars G1 and G2:

S → (S ) ∣ ε

S → (S ) ∣ a

S is the only non-terminal and thus also the start symbol. The symbols (, ), and a are
terminals (together with $, which has the usual meaning).

(a) Which of the languages L(G1) and L(G2) are regular? For those which are regular, give a
regular expression representing the language.

(b) Next we look at a slighty more complex grammar G3:

A → (S ) ∣ (B ]

B → S ∣ (B
S → (S ) ∣ ε

Now, A, B, and S are non-terminals with A as start symbol. The symbols (, ), and ], are
terminals (together with $, which has the usual meaning).

Give 4 sentences of the language L(G3) such that they, in the best possible manner, cover
the different “kinds” of sentences from the language L(G3). Describe additionally in words
the sentences from L(G3)

(c) For G3, determine the first and follow-sets for A, B, and S. Make use of ε as in the book.
Just give the result, no need for explanation.

(d) Draw the LR(0)-DFA for grammar G3, after having introduced a new start symbol A′,
as usual. Hint: there are approximately 10 states, and 2 of them contain 6 items. Be
precise not to forget any elements in the closures when building the state, and combine
equal states.

(e) Put numbers on the states, starting from 0. Consider all states and discuss shortly those
states which have (at least) one LR(0)-conflict. Which one of those have also and SLR(1)-
conflict. Is G3 an SLR(1)-grammar?

(f) Draw parts of the parsing table for G3 according to the SLR(1)-format, namely those 2
lines which correspond to the states of the automaton which contain 6 items. If G3 is not
SLR(1), give all alternatives in the slots where there is an SLR(1)-conflict. Take care not
to forget any of the “symbols” needed in the header-line of the table.

Solution:

(a) Both langagues are not regular. For both, the reason is that the language captures “well-
balanced” parenthethic structures or nesting (here, actual parentheses). An FSA cannot
parse (or generate) such structures, as it only has finite memory. For more and deeper
explanations, see exercise 10 from 2011.

(b) Possible sentences (= sequences of terminals) are, for instance
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( )

( ( ( ( ( ( ) ) ) ) ) )

( ( ( ( ( ) ]

( ]

It’s hard to pinpoint what exactly is the best possble selection of sentences, but one should
avoid having two examples of the “same pattern” (like having ( ( ) ) and ( ( ( ) ) ) as illus-
tration). Furthermore, “extremal cases” may capture the spirit of the grammar (like having
( ) and ( ]) and making sure that one covers all (or enough different) productions.

A possible rendering in words could be

The sentences start with one or more (’s. Say the number is n ≥ 1. The sentence
then is finished by the same number n of )’s, or else finished by a number of )’s
which is strickly smaller than n (possibly 0) followed by one ].

(c) The standard use of ε is to indicate in the First-set, that the corresponding symbol is
nullable.9

non-term. First Follow

A ( $
B ε, ( ]

S ε, ( ), ]

(d) The LR(0)-DFA looks as follows:

9Technically, in order to do the “closure” algorithm of iteratively calculating the first-set of a non-terminal, it’s
necessary, that the output to a call to First no only gives the set of first terminal symbols, but also information
whether or not the symbol is nullable (note that ε is not a terminal symbol . . . ). Indicating nullability is done
conventionally by adding ε to the result of First . Even if this task here does not require to actually do the
First-algo step-by-step, still a correct answer must indicate nullability with ε.
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(e) States with LR(0)-conflicts are the following four states: 2, 3, 6, 9. Those are among
the states containing a complete item (actually, the same complete item in all 4 cases).
That indicates that a reduce step is possible, but those states also allow shift-step(s). This
means: those states have LR(0)-conflicts.

To check if they also suffer from SLR(1)-conflicts, we need to consult the follow sets, to be
precise, the follow-sets of S (which consists of ) and ]) for states 2 and 3, and the follow-set
for B for the other 2 states.

• for states 2 and 3: shift is done there with (, but reduction using production S → ε is
done only for ] and ), so there’s no confusion possible here. Therefore the states have
no SLR(1)-conflict

• for states 6 and 9: A shift is doable (only) for ), but one can only reduce for ], thus
also those states are ok, SLR(1)-wise.

(f) The parsing table for the states 2 and 3 looks as follows:

Exercise 17 (Code generation and analysis (25%))

(a) We partition a method in a program into basic blocks and draw the flow graph for the
method. At the end we figure out which variable is live at the beginning and at the end
of each basic block (for example useing the “iteration”-method). Answer the following
questions:

(i) How can one find TA-instructions (om noen) which are guaranteed not to have any
influence when executing the program?

(ii) How can one determine whether there is a variable (optionally which ones) that are
read (“used”) before that have been given a value in the program?

(b) Take a look at the following control-flow graph

B0

B1

B2 B3

B4

B5
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Knut opines that the graph contains the following loops (where loop is understood as
defined in connection with code generation and control-flow graphs)

B1,B2,B4,B5

B1,B3,B4,B5

B1,B2,B3,B4,B5

Astrid disagrees. Who is right? Give an explanation. If Astrid got it right, give the correct
loops of the graph.

(c) The following TA-instractions are contained in block B2 of the previous subproblem:
1 . . .
2 k = j + x
3 k = k ∗ k
4 . . .

To save execution time, we wonder whether it is possible to move this code out of the
smallest loop L what B2 is part of. So:

(i) What do you have to check in the different basic blocks before you can do such a move
safely, and in exact which blocks must such checks be done?

(ii) concretely: such an intended move will include that we add at one place outside L
the following lines

1 . . .
2 k ’ = j + x // k ’ : new va r i ab l e
3 k ’ = k ’ ∗ k ’
4 . . .

In addition, will we replace the original sequence (in B2) with the assignment k = k’.
Now: where outside loop L is it appropriate to move the (adapted) sequence to, which
gives the value for k’?

(d) We now do code-generation (and making use of the procedure getreg) to produce code
of the same kind as in the notat (from [Aho et al., 1986, Chapter 9]). The intermediate
code, for which machine code is to be generated, is a basic block containing the following
3 TA-instructions:

1 e = a − b
2 f = a − c
3 d = f − e

All variables here are ordinary program variables and we assume all of them are live at
the end of the block. Different from the situation in the notat, we assume there is only 1
register R0. You may assume that the analysis which gives the next-use information, has
been done before the code generation starts.

What is the generated sequence of machine instructions? Which machine instruction orig-
inates from which TA-instruction. You are not required to give formally the descriptors,
but write in the comments to the right of the code what the corresponding content of the
descriptors are.

Solution:

(a) (i) Take as TA-instruction in a block B an assignment to a variable x. This instruction
can be removed if the following condition both hold
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i. the variable is not used later in the block.
ii. x is not contained in outLive(B).

(ii) If there is a variable in inLiveB0 where B0 is the initial block, then that variable is
potentially used before it obtains a value, in one or another execution of the program.

Remark: the answers here are the “expected ones” given the pensum and the formulation of
this problem which states that the control-flow graph plus liveness-information for variables
is available. Generally speaking, there are other situations, where instructions can safely
be be removed from a program (it’s only that the course did not cover it). “Dead-code”
would be an an example (i.e., instructions where the control-flow is garanteed never to
execute). Note that this is slightly different from the answer given above: there it’s about
assignment which are (possibly) executed, but have no effect whether they are executed
or not. Dead code is about statements guaranteed not to be executed, dead variables (i.e.,
non-live variables) is about variables which are not used.

For the second question (“initialized variables”): intuitively, one could think of situations
where a variable is “declared” but not given a value. That might happen in a high-level
language which allows to do that and does not specify that in such a situation (“declare-
without-define”) the variable should obtain a well-defined default value.

However, the problem here does not speak about a high-level programming language,
but about TAIC. In this course (and elsewhere), the TAIC, while not yet being outright
machine code (working on registers etc), is rather restricted already and does not feature
variable declarations! Variable declarations may well be part of the (perhaps high-level)
source language, and the TAIC may well have access to the symbol-table which reflects
the scoping rules of the source language. But on the level of TAIC, there are no variable
declarations or lexical scopes in the program texts. So answers using those concepts don’t
capture what is asked here.

(b) Astrid is right. According to the definition of loops from the lecture, neither {B1,B2,B4,B5}
or {B1,B3,B4,B5} are loops. For example, the first set of nodes has two entry points: B1

can entered via B0 (which is not in the “loop”-set), and B4, which has B3 as predecessor
outside the given set.

Analogously for the second set {B1,B2}.
The third given set is a loop, and there is another one, namely the singleton set {B3}.

(c) Trivial things first: to move it out of the loop means to move it before the loop (not
afterwards), obviously. The canonical place thus is immediately before the loop we are
moving out of. As we are dealing with loops in the specific sense discussed (as opposed to
general cycles in a graph), there is exactly one well-defined entry point to the loop, and
that is exactly where the code needs to be moved to. More precisely, it need to be moved
immediately before that node. In our example, the entry node of the “big” loop is B1 and
the predecessor outside of the loop is B0. To place the code, one simply introduces a new
block, say B6, placed between B0 and the loop’s entry node B1. In particular, the code
cannot be placed inside B1 (at the beginning, say)10 and the arc back from B5 still has B1

as successor, and not the new node.

(d) With one register, there’s a lot of register-memory traffic
10One reason is: in that case it’s still part of the loop, which is something we wanted to “optimize”. There is a

different way of seeing it. If we think that we are not moving code around in a control-flow graph, but actually
moving lines in a sequence of TA-instructions (and the control-flow graph is implict in the code). In that view,
placing the lines directly before the beginning of block B1 simply does not put them inside B1, simply by the
way the control-flow graph blocks are defined. That placement may well, however, “glue” the new code directly
at the end of B0 without “creating” a new node. Those are rather fine points, introducing a new node in the way
described right in front of B1 is acceptable.
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1 //−−−−−−−−−−−−−−−−−−−−−− e = a − b
2 MOV a R0
3 SUB b R0 // e ∈ r0 , ‘ ‘ a l l ’ ’ reg ’ s f u l l
4 // −−−−−−−−−−−−−−−−−−−−− f = a − c
5 MOV R0 e // f has a next−use , so , c l e a r
6 // the only r e g i s t e r r0
7 MOV a R0 //
8 SUB c R0 // f ∈ r0
9 // −−−−−−−−−−−−−−−−−−−−− d = f − e

10 MOV R0 f
11 SUB e R0 // f i s l i v e a f t e r the block
12 // and must t h e r e f o r e be saved
13 // f be f o r e the SUB s tep i s a l r eady
14 // in the r i g h t p lace ( in r0 )
15 // afterwards , d i s in r0
16 //−−−−−−−−−−−−−−−−−−−−−− end−of −bas i c b lock
17 MOV R0 d // save value f o r d back to main memory
18 // a l l other v a r i a b l e s are a l r eady up−to
19 // data in t h e i r re sp . ‘ ‘ home po s i t i on s ’ ’
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9 2016

Exercise 18 (Regular expressions and scanning (1%))

(i) Let Σ be a non-empty finite alphabet, otherwise left unspecified. Consider the following
language:

L = {ww ∣ w ∈ Σ∗},

in other words: all strings repeating a word over Σ two times in a row. Is the language
regular or not? If the language is regular, give a regular expression capturing the language.
If not, give a short argument, explaining why not. Are there special cases where the answer
would be different from the general case?

(ii) Is the following automaton minimal? Give a short explanation. You may make use of the
minimization algorithm or, alternatively, give a short explanation clarifying the situation.

0start 4

2

1

3

a

c

b

a, c

b

a, b c

b
a, c

a, b, c

(iii) The task here is to specify a regular expression for “C-style” comments. To notationally
(but not conceptually) ease the task, we make the following simplifications compared to
the normal situation for C comments:

The alphabet for our special version of the “C-language” consists of the following 3 symbols

Σ = {z, o, /}

• Arbitrary alphanumerical symbols are represented by z, o, and / (“slash”).

• Comments here are not delimited by /* .... */ as in C, but by /o ... o/. This is
simply done to avoid confusion with the regular-expression star-operator when doing
a handwritten solution.

So, comments are delimited by “/o” and “o/”.

More precisely: a comment starts with the two symbols “/o” and ends with the
first subsequent “o/”. For the task, the delimitors slash-o and o-slash are part of
the comment. Comments cannot be nested.

Note:

• It is allowed that “o” and “/”, and also “/o” occur inside a comment.
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• “/o/” is not a comment, but “/oo/” and “/o/o/” are.

Give a single regular expression that matches the comments specified as above.

Solution:

(i) The special cases would be whether Σ has 2 or more symbols, or less. Left out is the case
of Σ = ∅; in that case one might give the answer L = {ε}, but that’s too “specialistic” and
some books explicitly define alphabets as non-empty, as anyhow irrelevant.

(i) Σ = {a, b} as an example for 2 or more symbols: That language is not regular. It
would involve “counting” and in particular remembering the order in which way the
a’s and b’s in the first half or a word ww in L are arranged, something which is not
doable with finite memory.

(ii) Σ = {a}: The language represents words with an even number of a, which certainly
can be represented by a regular expression:

(aa)∗

(ii) The automaton is not minimal. One can identify 1 and 3. That’s the short answer (without
goint through the split-algo).

(iii) As usual, there is not one single possible solution. Here are a few, all start and end the same,
of course. Only the middle part, the comment string itself, can be differently represented.

/ o (o∗z ∣ /)∗o+ / (4)
/ o /

∗(o∗z /
∗)∗o+ / (5)

/ o (o∗z /
∗)∗/∗o+ / (6)

(7)

The basic thing to avoid is to have a o immediately followed by a /, therefore we need a z
in between. A more fine point is that there does not need to be a z at all, but still there
may be a sequence of o′s.

Exercise 19 (Context-free languages and parsing (%))

(i) Consider the following context-free grammar:

S → AB
A → Sy ∣ x
B → yS ∣ y

In the grammar, x and y are terminals, S, A, and B are non-terminals, with S as start
symbol. After extending the grammar with a new non-terminal S′ as new start-symbol
and the corresponding production, do the following steps:

(i) give the First- and Follow -sets of the non-terminals.

(ii) give the DFA of LR(0)-items (numbering the states for later reference).

(iii) Is the grammar SLR(1) or not? Explain. In case the grammar is not SLR(1), identify
corresponding conflicts in terms of in which state(s) they occur and what conflicting
reactions occur under which input.
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(ii) Answer the following two questions, where you should try to keep the required examples
simple. Note: it’s not required to find the simplest possible examples, but please try not
to use more than 3 non-terminals or more than 4 terminals (not counting $).

(i) Give an example of a context-free grammar which is LL(1) but not LR(0).
(ii) Give an example of a context-free grammar which is LR(0) but not LL(1).

Give a short explanation in each case, justifying why the chosen example does or does not
belong to LL(1) resp. LR(0). It is not required to give parsing tables as justification.

(iii) The following two grammars are SLR(1) (no proof or argument required for that), both
representing the language a∗:

grammar G1: S → A
A → Aa ∣ ε

grammar G2: S → A
A → aA ∣ ε

The task here is to compare the memory efficiency of the SLR(1) bottom-up parsers for the
2 grammars. When parsing an as input, what is the maximal stack size during the parser
run. Use “big-O” notation, for instance using O(1) for constant stack memory usage, O(n)
for stack-size linear in the size of the input string etc.).

You may use a small example runs as illustration of your argument. It’s not required to
give the SLR(1)-parsing table.

Solution:

(i) The task is completely standard.

(i) The sets are given in Table 5 and the DFA is given in Figure 8.

Table 5: First- and follow-sets

non-term. First Follow

S′ x $
S x $,y
A x y
B y $,y

(ii) The grammar is not SLR(1). That can be seen in state 7: Since FollowB contains y
(a terminal which follows the “parser position .” in one item), there’s a shift-reduce
conflict on symbol y. Another “suspicious” state is 1, but this one is no conflict (as
can be seen from the follow-set of S′).
With the grammar changed with the additional production: state 6 is now also a state
containing an complete item. That makes the state suspicious as well. The complete
item is for a production with the left-hand side B. The follow of B does not contain
x, so that one is fine, as well.

(ii) Unlike the previous one, this is about grammars not languages. It’s best answered by
remembering which features don’t work for certain classes of grammars and quickly check
if a simple example can be covered by the other class. Of course the grammars need to be
unambiguous. So the task is to find a simple case of unambigous grammars building in the
problematic productions for both LL(1) and LR(0).
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S′ → .S

S → .AB

A→ .Sy

A→ .x

start

0

S → AB.

5
A→ Sy.

4

S′ → S.

A→ S.y

1

S → A.B

B → .yS

B → .y

2

A→ x.

3

B → y.S

B → y.

S → .AB

A→ .Sy

A→ .x

6

A→ S.y

B → yS.

7

S

A
x

y

B

yA

S

x

y

Figure 8: LR(0)-DFA

(i) Problematic for LR(0) are ε-productions. For those, a reduction-step is possible, and
we need a state (resp. a corrsponding non-terminal) which allows also a shift. The
following grammar is the simplest for that:

A→ ε ∣ a (8)

For LL(1) parsing, ε-productions are unproblematic.11 Note that the language is
finite (i.e., not just regular, but basically trivial and it consists of only one symbol).
It might sound unusual to use “recursive descent” in that situation, basically, there
are only two cases to check: whether the next “symbol” is $ or the next symbol is a
followed by $. Still: technically, the grammar is not LL(1).
Alternatively, the following is a plausible simple solution, as well:

A→ ε ∣ aA (9)

The grammar is right-recursive (which is fine for LL(1)) but the ε-production makes
it non LR(0), as above.
Of course the left-recursive alternative

A→ ε ∣ Aa (10)

for the same language would not be LL(1).
11Factually, transformations covered in the lecture to massage non-LL(1)-grammars in an equivalent represen-

tation which might become LL(1) (like left-factorization) routinely added ε productions.
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(ii) For the reverse-directions: LL(1)-parsers cannot deal with common left factors.

A→ ab ∣ ac (11)

Consequently, the grammar is not LL(1). It’s LR(0) though: There is no reason for
any conflict, as one can easily check. For reference, the corresponding LR(0)-DFA is
given in Figure 9.

A′ → .A

A→ .ab

A→ .ac

start A′ → A.

A→ a.b

A→ a.c

A→ ab.

A→ ac.

A

a

b

c

Figure 9: LR(0)-DFA

Remark: As mentioned, left-recursion is problematic for LL(1), as well. Thus, one
might be tempted to use (10) as an example. It’s certainly not LL(1) but unfortu-
nately, the grammar is also not LR(1) (still containing an ε-production).
Additional remark: Even if we replaced the ε with a terminal b yielding

A→ b ∣ Aa (12)

the grammar won’t be LR(1):

A′ → .A

A→ .b

A→ .Aa

start
A′ → A.

A→ A.a
A→ Aa.

A→ b.

A

b

a

Figure 10: LR(0)-DFA (“ba∗”)

(iii) The one on the left is O(1), the one on the right is O(n). One possible answer would of
course be make the LR(0)-automaton again (which is simple enought) and take it from
there. If one draws the automaton, one of them has a loop labelled a and the other not.
The one with the loop (which is the consequence of the right-recursion A→ aA) obviously
shifts all the a’s, and that leads to O(n)
It’s not required here to give the full automaton here. Shorter answers along the lines “left-
recursive rules doent not require to build up a stack, unlike right-recursive” are acceptable
as correct as well, perhaps making use of the two different parse trees and how bottom-up
LR-parsers treat them:
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A A
/ \ / \

A a a A
/ \ / \

A a a A
/ \

.. ...
A A

/ \ / \
e a a e

To build the right-hand tree bottom-up, one needs to remember a lot of a’s before one
start’s building the first finished tree, for the tree on the left, one can start right-away (all
parsers work from left-to-right).

Exercise 20 (Attribute grammars (%))

The lectures presented how to extract from three-address intermediate code a flow graph.
The task here uses a different approach! Instead of taking three-address intermediate code
as starting point, we use the abstract syntax and extract control flow information directly
from there. We use attribute grammars for that.

We are dealing with a simple language, whose syntax is given by the grammar below. The
form of non-terminals assign and cond are left undefined.

productions remarks
program → begin stmt end begin and end carry a label

stmt → stmt ; stmt
∣ while cond do stmt cond carries a label
∣ if cond then stmt else stmt cond carries a label
∣ assign assign carries a label

Contrary to the flow graphs presented in the lecture for three-address code, our “abstract
flow graphs” consider each assignment and each condition as a separate node for the graph.

The task now is: add semantic actions to the grammar to calculate a control-flow infor-
mation from a syntax tree. Labels are used to identify and represent nodes of our version
of flow graphs.

Starting point: attribute label given We shall assume that the non-terminals assign
and cond as well as the terminals begin and end all carry an an attribute label,
containing a label value for indentification. These label values are already filled in. So
you can make use of, for instance assign .label but you are not supposed to set the
value. All label values are different.

Attributes first and lasts for stmt: Non-terminal stmt shall carry attributes first
(containing a label) and lasts (containing sets of labels). They are supposed to
contain the label of the condition/assignment executed first, respectively the labels of
those executed last.

Attribute succ: Assume an attribute succ (containing a set of labels), intended to rep-
resent the successor nodes in terms of the control flow. In that way, they correspond
to edges in the abstract flow graph.
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For illustration: The left-hand side below contains a piece of concrete syntax where (for
illustration) we have marked pieces with appropriate labels. A corresponding abstract flow
graph is shown on the right-hand side. Note that after the evaluation of the attribute
grammar, the succ-attributes indicate the succssor-nodes.

beginl0

x ∶= 9l1;
while (x > 8)l2

do { if (y = 0)l3
then x ∶= 5l4
else x ∶= 6l5

} ;
x ∶= 0l6
endl7

begin

stmt

cond

cond

stmt stmt

stmt

end

l0l1l2l3l4l5l6l7

So: Give your answer in a filled out table of the following form. The semantic rules for the
production program → begin stmt end are filled in already, making use of the notation
{. . .} to represent sets.

productions/grammar rules semantic rules
0 program → begin stmt end stmt .succ = {end.label}

begin.succ = {stmt .first}

1 stmt → assign

2 stmt0 → stmt1 ; stmt2

3 stmt0 → if cond
then stmt1
else stmt2

4 stmt0 → while cond
then stmt1

Solution: The best way to attack (or present) the problem is to first do the two attributes
first and lasts, and only afterwards, the successor. The first- and lasts-attributes are also
easier, insofar they are synthesized, and for most people, purely synthesized attributes seem more
natural. Therefore I start with those. The first- and lasts-attributes can be seen as auxiliary
attributes used to enabling a more or less straightforward definition of the succ-attributes.

A good starting point is to fix, what are the actual attributes and for which nodes. In the
text it is stated that stmt carries first and lasts (which is therefore required). It does not
state that other terminals or non-terminals carry that; and they don’t.

It is on the text not explicitly specified, which grammar symbols are supposed to carry succ

as attribute. Indiractly in the graphical representation, it’s indicated that cond and stmt carry
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symbol attributes
stmt first,lasts,succ
assign (label), [first,lasts],succ
cond (label), [first,lasts],succ
begin (label),succ
end (label)
program first,lasts

Table 6: Overview over attributes

that. What is not depicted in the picture are assign-non-terminals, 12 one has to figure out that
also those are supposed to carry succ as attributes. Actually, in the concrete illustration, in the
example code, the statements and the assignments are somehow “identical” in that thet “state-
ments” are actually “assignments’ (via the production stmt → assign). One has to understand
that also assign better carries an (inherited) attribute succ. If a otherwise correct solution stops
determining the successors at stmt without inheriting it in a last step down to assign, is perhaps
also acceptable, at least not too big an error. For cond , the graphics indicates that succ is a
required attribute and the same for the “concrete syntax” code example.

An overview over the attributes and to which symbols they belong are shown in Table 6. The
types of the attributes (one label resp. a set of labels) are given by the task and not repeated
in the table. The attributes which are already given, namely label, are shown in parentheses.
The ones in [brackets] are not actually needed, but they would not hurt either. The end-node
should better not carry a succ-attribute (unlike begin), as there is no meaningful value to fill in.
Practically, a realimplementation would leave a nil-pointer, but for the declarative framework of
attribute grammars (where there are a priori no such notions as pointers), an attribute for wich
there is not real definition is not adequate. Conceptually, the whole purpose of the labelled end
node is to provide a successor label for those last statements of the “real” program (a “sentinel
node”), to avoid having “nil-pointers” there. Therefore it’s counter-productive to let end have
an undefined/nil-pointer itself. One could accept a solution which adds succ to end and leave it
undefined, even if it’s not 100% kosher. Besides the already labelled symbols, no other grammar
symbol should carry a label. It conceptually does not make sense; besides there’s no mechanism
to add new labels (and the text states all labels are supposed to be different).

Intuitively, the fact that the first and the last nodes/labels are synthesized may be seen
from two facts: first the leaves of the syntax tree (assignments plus the special begin and end-
nodes) are labelled already and thus in principle a statement which is an assignment carries the
first- and lasts-information already (in the form of the label). Thus, the information can be
propagated only “upwards” in the form of synthesized attributes. Secondly, the already filled in
slot for the production for program makes it into a synthesized attribute. Of course, the pure
fact that program .first is synthesized does not logically imply that first is synthesized for
other grammar symbols, but is intended as inspiration.13

A final word on why first and last nodes are synthesized. We argued that that leaves of the
tree, the “base cases”, carry that information already filled in. What makes it a bit strange is
that cond carries a label as well despite the fact that cond nodes in a syntax tree are not leaves.
Here one has to understand the role of first and lasts. In principle cond is not supposed to

12Actually, since it’s a fragment of a grammar, where assign and cond are left unspecified, those actually can
be seen as playing the role of terminals.

13In the lecture, there had been examples where attributes of the same name had been synthesized for one
symbol/node class, but inherited for another (for instance for types). Here, it’s simpler. Of course, one could in
general always avoid that situation by simply using two different attribute names. On the other hand, that may
be confusing as well, as really it’s a “type” which is synthesized a one symbol but inherited at another.
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productions/grammar rules semantic rules
0 program → begin stmt end [program .first = begin.label]

[program .lasts = {end.label}]
1 stmt → assign stmt .first = assign .label

stmt .lasts = {assign .label}
2 stmt0 → stmt1 ; stmt2 stmt0 .first = stmt1 .first

stmt0 .lasts = stmt2 .lasts

3 stmt0 → if cond
then stmt1
else stmt2

stmt0 .first = cond .label
stmt0 .lasts = stmt1 .lasts ∪ stmt2 .lasts

4 stmt0 → while cond
then stmt1

stmt0 .first = cond .label
stmt0 .lasts = {cond .label}

Figure 11: AGrammar for first and lasts

carry those attributes resp it’s not necessary/required (that’s why it’s in brackets in the table).
But one can can come up with a reasonable solution where assign and cond also carry the
attributes first and lasts. For assign, it’s pretty obvious how to define that, for cond , the
only meaningful definition is that the firsts and lasts of cond corresponds to the firsts and lasts
of the statement it belongs to (stmt0 in the grammar). It’s omitted in the given solution.

Attributes first and lasts So, let’s start then with Figure 11. Clearly, the semantics rules
are all bottom-up. It’s basically a recursive definition of the first “node” and the set of last
“nodes”, represented by the labels.

One could accept if the non-terminal program were not labelled insofar the task/table may
seem to imply that for that production it’s done already and that it’s not really needed for the
succ-label anyway. Note also that the definition does not refer to succ at all; as said, the first-
and lasts-attributes are independent from the definition of the successor.

Attribute succ Now, given the labels for the first and the last nodes, the rules for succ are
shown in Table 12. Now the perspective changes: it’s no longer strictly synthesized, That can
already be seen in the slot for program which has been filled out already. The core intuition
is: the statement representing the program as such (i.e., the stmt mentioned in the filled-out
production for program) has its successor filled out by the corresponding semantic rule (the slot
for rule 0). Now, this information has to be pushed down the syntax tree.

Exercise 21 (Code generation (%))

In this problem we look at code generation as discussed in the lecture, i.e., as covered by
the “notat” which had been made available and which covers parts of Chapter 9 of the old
“dragon book” (Compilers: Principles, Techniques, and Tools, A. V. Aho, R. Sethi, and J.
D. Ullman, 1986 ).

(i) Register descriptors indicate, for each register, which variables have their value in this
register.
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productions/grammar rules semantic rules
0 program → begin stmt end stmt .succ = {end.label}

begin.succ = {stmt .first}
1 stmt → assign assign .succ = stmt .succ

2 stmt0 → stmt1 ; stmt2 stmt1 .succ = {stmt2 .first}
stmt2 .succ = stmt0 .succ

3 stmt0 → if cond
then stmt1
else stmt2

cond .succ = stmt1 .first ∪ stmt2 .first
stmt1 .succ = stmt0 .succ
stmt2 .succ = stmt0 .succ

4 stmt0 → while cond
then stmt1

cond .succ = {stmt1 .first}
stmt1 .succ = {cond .label}

Figure 12: AGrammar for succ

(i) A single register can contain the values of more than one variable. Give a short
explanation/example of how a situation like that can occur. You can keep it really
short.

To get more efficient (i.e., faster) executable code, we want to consider transformations of
three-address intermediate code, but we restrict ourselves to transformations local to basic
blocks. We again assume the code generation as done in the “notat”

So assume a basic block consisting of three-address instructions. Those look typically as
follows x ∶= y op z, where x, y, and z are ordinary variables or temporaries. But constants
are allowed as well (for instance, as in x ∶= 6), to allow examples with not to many variables.

We consider as the only allowed optmization to interchange lines of three-address instruc-
tions.

(ii) Describe a concrete situation where such an interchange makes the generated
code faster without of course changing the semantics.

Concrete means, lines of three-address code. Use one register only (called R). Make all
assumptions explicit (“at the beginning of my example, R is empty/R contains . . . ”). Explain
why the interchange leads to a speed-up, referring to the cost-model of the notat/lecture.

Solution:

(a) Register descriptors:

(i) The answer should simply be x:=y where x and y are different variables (resp. have
different home positions), or an explanation to that effect. It’s not required to give
the machine code, an argument suffices. If one does not mention that x and y are
different, it’s accepted as ok as well.
We have not looked at the concrete code generation procedure for the x := y. But, it
was discussed in the lecture, it’s fairly obvious, and it is explicitly mentioned in the
notat. It should be immediate.

(b) Local optimization: It should be fairly easy to figure out one example covering at least
the spirit. To get a speed-up, we need to avoid register-memory traffic. One can different
points of the code generator to illustrate the speed-up.

For a correct answer, one should give
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• original 3AC program plus clear indication of what is swapped
• the generated machine codes resp. the generated machine code from the original and

explain what changes and why
• mention how that affects the costs in the cost model. Exact calculation of the given

“program” is not needed, but reference to the cost model is.

The code generation has some fine points (like liveness etc). For a full answer, let’s not
insist on that.

One example: “purging” a/the register In the cost model (and in general) register-
memory traffic costs. Especially it costs more than operations on registers. The idea of
an example is therefore: before the swap, the only register is being used for one step of
the code, after the swap, it cannot be used for that step, as it’s being used for something
else. That requires that the value has to be stored back to the home position and reloaded
later. That makes the program “more costly”.The example from Listing 6 and 7 makes use
of that.

Listing 6: Reuse of a register for y
1 // i n i t i a l l y , R empty
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 y := x + 1 // use R f o r the r e s u l t :
4 // Load x 1
5 // R −> y ( not up−to date )
6 z := y + 1 // re −use R ( conta in ing y ) : 0 Reg−Mem move 0
7 // f o r l oad ing i t . So , (2 ) o f code−gen omits
8 // the MOV
9 // however : y needs to be saved ( which

10 // i s r equ i r ed by get −reg , case (3 )
11 // Store y ( because i t ’ s assumed to be l i v e ) 1
12 // R −> z ( not up−to date )
13 a := t1 + t2 // Store R z ( save z ) 1
14 // load t1 1
15 // load t2 1
16 // R −> A ( not up−to date )
17 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

18 // end o f b lock : save a 1

Listing 7: Reuse of register no longer possible
1 // i n i t i a l l y , R empty
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 y := x + 1 // use R f o r the r e s u l t :
4 // Load x : 1
5 // R |−> y ( not up−to date )
6 a := t1 + t2 // Store R −> y ( get −reg −(3) 1
7 // Load t1 1
8 // Load t2 1
9 // R |−> a ( not up−to date )

10 z := y + 1 // Store a ( no reuse ) 1
11 // Load y 1
12 // r e s u l t : R <− z ( not up−to date )
13

14 // end o f b lock : s t o r e z 1
15 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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