UNIVERSITETET I OSLO Institutt for Informatikk

Martin Steffen

INF 5110: Compiler construction

Spring 2018

Handout 2(b)

17. 01. 2018

Handout 2(b): Scanning etc.

Issued: 17. 01. 2018

The handout collects definitions in connection with scanning. They are shown in the slides, as well, but collected in this handout for easier reference.

Definition 1 (Alpabet Σ) Finite set of elements called "letters" or "symbols" or "characters".

Definition 2 (Words and languages) Given alphabet Σ , a word over Σ is a finite sequence of letters from Σ . A language over alphabet Σ is a set of finite words over Σ .

Definition 3 (Regular expressions) A regular expression is one of the following

- 1. a basic regular expression of the form **a** (with $a \in \Sigma$), or ϵ , or \varnothing
- 2. an expression of the form $r \mid s$, where r and s are regular expressions.
- 3. an expression of the form rs, where r and s are regular expressions.
- 4. an expression of the form r^* , where r is a regular expression.

Definition 4 (Regular expression) Given an alphabet Σ . The meaning of a regexp r (written $\mathcal{L}(r)$) over Σ is given by equation (1).

$$\mathcal{L}(\varnothing) = \{\}$$
 empty language (1)

$$\mathcal{L}(\epsilon) = \{\epsilon\}$$
 empty word

$$\mathcal{L}(a) = \{a\}$$
 single "letter" from Σ

$$\mathcal{L}(rs) = \{w_1w_2 \mid w_1 \in \mathcal{L}(r), w_2 \in \mathcal{L}(s)\}$$
 concatenation

$$\mathcal{L}(r \mid s) = \mathcal{L}(r) \cup \mathcal{L}(s)$$
 alternative

$$\mathcal{L}(r^*) = \mathcal{L}(r)^*$$
 iteration

Definition 5 (FSA) A FSA \mathcal{A} over an alphabet Σ is a tuple $(\Sigma, Q, I, F, \delta)$

- \bullet Q: finite set of states
- $I \subseteq Q$, $F \subseteq Q$: initial and final states.
- $\delta \subseteq Q \times \Sigma \times Q$ transition relation

Definition 6 (DFA) A deterministic, finite automaton \mathcal{A} (DFA for short) over an alphabet Σ is a tuple $(\Sigma, Q, I, F, \delta)$

Handout 2(b) 17. 01. 2018

- Q: finite set of states
- $I = \{i\} \subseteq Q, F \subseteq Q$: initial and final states.
- $\delta: Q \times \Sigma \to Q$ transition function

Definition 7 (Accepting words and language of an automaton) A word $c_1c_2...c_n$ with $c_i \in \Sigma$ is accepted by automaton \mathcal{A} over Σ , if there exists states $q_0, q_2, ..., q_n$ from Q such that

$$q_0 \xrightarrow{c_1} q_1 \xrightarrow{c_2} q_2 \xrightarrow{c_3} \dots q_{n-1} \xrightarrow{c_n} q_n$$

and were $q_0 \in I$ and $q_n \in F$. The *language* of an FSA \mathcal{A} , written $\mathcal{L}(\mathcal{A})$, is the set of all words that \mathcal{A} accepts.

Definition 8 (NFA (with ϵ **transitions))** A non-deterministic finite-state automaton (NFA for short) \mathcal{A} over an alphabet Σ is a tuple $(\Sigma, Q, I, F, \delta)$, where

- Q: finite set of states
- $I \subseteq Q$, $F \subseteq Q$: initial and final states.
- $\delta: Q \times \Sigma \to 2^Q$ transition function

In case, one uses the alphabet $\Sigma + \{\epsilon\}$, one speaks about an NFA with ϵ -transitions.

Definition 9 (Acceptance with ϵ -transitions) A word w over alphabet Σ is accepted by an NFA with ϵ -transitions, if there exists a word w' which is accepted by the NFA with alphabet $\Sigma + \{\epsilon\}$ according to Definition 7 and where w is w' with all occurrences of ϵ removed.

Definition 10 (ϵ -closure, a-successors) Given a state q, the ϵ -closure of q, written $close_{\epsilon}(a)$, is the set of states reachable via zero, one, or more ϵ -transitions. We write q_a for the set of states, reachable from q with one a-transition. Both definitions are used analogously for sets of states.