INF 5110: Compiler construction
Spring 2018

Handout 4

15. 16. 2018

Handout 4: Parsing

Issued: 15. 1. 2018

For reference, to follow the slides, the handout includes some grammars we repeteadly used for illustration. These are various versions of the context-free grammar for expressions. The first version is the "obvious" one. Also some definitions are added.

Some definitions

Definition 1 (First set) Given a grammar G and a non-terminal A. The first-set of A, written First $_{G}(A)$ is defined as

$$
\begin{equation*}
\operatorname{First}_{G}(A)=\left\{a \mid A \Rightarrow_{G}^{*} a \alpha, \quad a \in \Sigma_{T}\right\}+\left\{\epsilon \mid A \Rightarrow_{G}^{*} \epsilon\right\} \tag{1}
\end{equation*}
$$

Definition 2 (Nullable) Given a grammar G. A non-terminal $A \in \Sigma_{N}$ is nullable, if $A \Rightarrow^{*} \epsilon$.
Definition 3 (First set of a symbol) Given a grammar G and grammar symbol X. The first-set of X, written $\operatorname{First}(X)$, is defined as follows:

1. If $X \in \Sigma_{T}+\{\boldsymbol{\epsilon}\}$, then $\operatorname{First}(X)=\{X\}$.
2. If $X \in \Sigma_{N}$: For each production

$$
X \rightarrow X_{1} X_{2} \ldots X_{n}
$$

(a) $\operatorname{First}(X)$ contains $\operatorname{First}\left(X_{1}\right) \backslash\{\boldsymbol{\epsilon}\}$
(b) If, for some $i<n$, all $\operatorname{First}\left(X_{1}\right), \ldots, \operatorname{First}\left(X_{i}\right)$ contain $\boldsymbol{\epsilon}$, then $\operatorname{First}(X)$ contains $\operatorname{First}\left(X_{i+1}\right) \backslash\{\boldsymbol{\epsilon}\}$.
(c) If all First $\left(X_{1}\right), \ldots, \operatorname{First}\left(X_{n}\right)$ contain $\boldsymbol{\epsilon}$, then First (X) contains $\{\boldsymbol{\epsilon}\}$.

Definition 4 (First set of a word) Given a grammar G and word α. The first-set of

$$
\alpha=X_{1} \ldots X_{n}
$$

written First (α) is defined inductively as follows:

1. $\operatorname{First}(\alpha)$ contains $\operatorname{First}\left(X_{1}\right) \backslash\{\boldsymbol{\epsilon}\}$
2. for each $i=2, \ldots n$, if $\operatorname{First}\left(X_{k}\right)$ contains $\boldsymbol{\epsilon}$ for all $k=1, \ldots, i-1$, then First (α) contains $\operatorname{First}\left(X_{i}\right) \backslash\{\boldsymbol{\epsilon}\}$
3. If all $\operatorname{First}\left(X_{1}\right), \ldots, \operatorname{First}\left(X_{n}\right)$ contain $\boldsymbol{\epsilon}$, then First (X) contains $\{\boldsymbol{\epsilon}\}$.

Definition 5 (Follow set) Given a grammar G with start symbol S, and a non-terminal A. The follow-set of A, written Follow $_{G}(A)$, is

$$
\begin{equation*}
\text { Follow }_{G}(A)=\left\{a \mid S \$ \Rightarrow_{G}^{*} \alpha_{1} A a \alpha_{2}, \quad a \in \Sigma_{T}+\{\$\}\right\} . \tag{2}
\end{equation*}
$$

Definition 6 (Follow set of a non-terminal) Given a grammar G and nonterminal A. The Follow-set of A, written $\operatorname{Follow}(A)$ is defined as follows:

1. If A is the start symbol, then $\operatorname{Follow}(A)$ contains $\$$.
2. If there is a production $B \rightarrow \alpha A \beta$, then $\operatorname{Follow}(A)$ contains $\operatorname{First}(\beta) \backslash\{\epsilon\}$.
3. If there is a production $B \rightarrow \alpha A \beta$ such that $\boldsymbol{\epsilon} \in \operatorname{First}(\beta)$, then $\operatorname{Follow}(A)$ contains Follow(B).

Lemma 7 (LL(1) (without nullable symbols)) A reduced context-free grammar without nullable non-terminals is an LL(1)-grammar iff for all non-terminals A and for all pairs of productions $A \rightarrow \alpha_{1}$ and $A \rightarrow \alpha_{2}$ with $\alpha_{1} \neq \alpha_{2}$:

$$
\operatorname{First}_{1}\left(\alpha_{1}\right) \cap \operatorname{First}_{1}\left(\alpha_{2}\right)=\varnothing .
$$

Definition 8 (Handle) Assume $S \Rightarrow_{r}^{*} \alpha A w \Rightarrow_{r} \alpha \beta w$. A production $A \rightarrow \beta$ at position k following α is a handle of $\alpha \beta w$. We write $\langle A \rightarrow \beta, k\rangle$ for such a handle.

Some grammars

$$
\begin{align*}
\exp & \rightarrow \exp \text { op exp }|(\exp)| \text { number } \tag{3}\\
o p & \rightarrow+|-| *
\end{align*}
$$

The second version is the slightly less obvious one, used to take care of precedences (like multiplication over addition). The fact that in this grammar we don't just stipulate "multiplication binds stronger than addition and substraction" on top of the obvious grammar rules, but encode that in the productions without resorting to addition conditions on top of the grammar, makes the grammar slightly less readable.

$$
\begin{align*}
\text { exp } & \rightarrow \text { exp addop term } \mid \text { term } \tag{4}\\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { term mulop factor } \mid \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\text { exp }) \mid \text { number }
\end{align*}
$$

Grammars to illustrate bottom-up

The following 2 (artificiald) grammar (and the parse-tree) is used to illustrate the bottom-up parsing process.

Simplistic addition expressions

$$
\begin{aligned}
E^{\prime} & \rightarrow E \\
E & \rightarrow E+\text { number } \mid \text { number }
\end{aligned}
$$

Artificial grammar

$$
\left.\begin{aligned}
S^{\prime} & \rightarrow S \\
S & \rightarrow A B \mathbf{t}_{\mathbf{7}} \mid \ldots \\
A & \rightarrow \mathbf{t}_{\mathbf{4}} \mathbf{t}_{\mathbf{5}} \mid \mathbf{t}_{\mathbf{1}} B \\
B & \rightarrow \mathbf{t}_{\mathbf{2}} \mathbf{t}_{\mathbf{3}}
\end{aligned} \mathbf{A}_{\mathbf{6}} \right\rvert\, \ldots
$$

Grammars to illustrate $\mathrm{LR}(0)$ construction
Another example used in the lecture is the "simplistic additions" (see before).

Parentheses

$$
\begin{aligned}
S^{\prime} & \rightarrow S \\
S & \rightarrow(S) S \mid \epsilon
\end{aligned}
$$

$$
\begin{aligned}
& S^{\prime} \rightarrow \\
& S^{\prime} \rightarrow \\
& S . \\
& S \rightarrow \\
& S \rightarrow(S) S \\
& S \rightarrow \\
& S \rightarrow(S) S \\
& S \rightarrow(S) . S \\
& S \rightarrow \\
& S .
\end{aligned}
$$

Simplistic addition

$$
\begin{array}{ll}
E^{\prime} & \rightarrow . E \\
E^{\prime} & \rightarrow E . \\
E & \rightarrow . E+\text { number } \\
E & \rightarrow E .+ \text { number } \\
E & \rightarrow E+\text { number } \\
E & \rightarrow E+\text { number. } \\
E & \rightarrow \text {.number } \\
E & \rightarrow \text { number. }
\end{array}
$$

