
Course Script
INF 5110: Compiler con-
struction
INF5110/ spring 2018

Martin Steffen

http://www.ifi.uio.no/~msteffen

ii Contents

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Compiler architecture & phases 3
1.3 Bootstrapping and cross-compilation 11

4 References 15

1 Introduction 1

1
Introduction
Chapter

What
is it

about?Learning Targets of this Chapter
The chapter gives basically an
overview over different phases
of a compiler and their tasks.

Contents

1.1 Introduction 1
1.2 Compiler architecture

& phases 3
1.3 Bootstrapping and

cross-compilation 11

1.1 Introduction

Course info

Sources

Different from previous semesters, one “official” recommended book the course
is based upon is [2] (in previous years it was mostly [3]. We will not be able
to cover the whole book (neither the full [3] book). In addition the slides will
draw on other sources, as well. Especially in the first chapters (the front-end),
the material is so “standard” and established, that it almost does not matter,
which book to take.

Course material from:

• Martin Steffen (msteffen@ifi.uio.no)
• Stein Krogdahl (stein@ifi.uio.no)
• Birger Møller-Pedersen (birger@ifi.uio.no)
• Eyvind Wærstad Axelsen (eyvinda@ifi.uio.no)

2 1 Introduction
1.2 Compiler architecture & phases

Course’s web-page

http://www.uio.no/studier/emner/matnat/ifi/INF5110

• overview over the course, pensum (watch for updates)
• various announcements, beskjeder, etc.

Course material and plan

• Material: based largely on [2] (previously [3] which also is fine)), but also
other sources will play a role. A classic is “the dragon book” [?], we
might use part of code generation from there

• see also errata list at http://www.cs.sjsu.edu/~louden/cmptext/
• approx. 3 hours teaching per week
• mandatory assignments (= “obligs”)

– O1 published mid-February, deadline mid-March
– O2 published beginning of April, deadline beginning of May

• group work up-to 3 people recommended. Please inform us about such
planned group collaboration

• slides: see updates on the net
• exam: (if written one) 12th June, 09:00, 4 hours.

Motivation: What is CC good for?

• not everyone is actually building a full-blown compiler, but
– fundamental concepts and techniques in CC
– most, if not basically all, software reads, processes/transforms and
outputs “data”

⇒ often involves techniques central to CC
– understanding compilers ⇒ deeper understanding of programming
language(s)

– new language (domain specific, graphical, new language paradigms
and constructs. . .)

⇒ CC & their principles will never be “out-of-fashion”.

http://www.uio.no/studier/emner/matnat/ifi/INF5110
http://www.cs.sjsu.edu/~louden/cmptext/

1 Introduction
1.2 Compiler architecture & phases 3

Figure 1.1: Structure of a typical compiler

1.2 Compiler architecture & phases

Architecture of a typical compiler

Anatomy of a compiler

4 1 Introduction
1.2 Compiler architecture & phases

Pre-processor

• either separate program or integrated into compiler
• nowadays: C-style preprocessing mostly seen as “hack” grafted on top of

a compiler.1
• examples (see next slide):

– file inclusion2
– macro definition and expansion3
– conditional code/compilation: Note: #if is not the same as the if-
programming-language construct.

• problem: often messes up the line numbers

C-style preprocessor examples

#include <fi lename>

Listing 1.1: file inclusion

#varde f #a = 5 ; #c = #a+1
. . .

#i f (#a < #b)
. .

#else
. . .

#endif

Listing 1.2: Conditional compilation

Also languages like TEX, LATEXetc. support conditional complication (e.g.,
if<condition> ... else ... fi in TEX). These slides and this
script makes quite some use of it: some text shows up only in the handout-
version, etc.

C-style preprocessor: macros

1C-preprocessing is still considered sometimes a useful hack, otherwise it would not be
around . . . But it does not naturally encourage elegant and well-structured code, just
quick fixes for some situations.

2the single most primitive way of “composing” programs split into separate pieces into one
program.

3Compare also to the \newcommand-mechanism in LATEX or the analogous \def-command
in the more primitive TEX-language.

1 Introduction
1.2 Compiler architecture & phases 5

#macrodef hentdata (#1,#2)
−−− #1−−−−
#2−−−(#1)−−−

#enddef

. . .
#hentdata (kar i , per)

Listing 1.3: Macros

−−− kar i −−−−
per −−−(ka r i)−−−

Note: the code is not really C, it’s used to illustrate macros similar to what
can be done in C. For real C, see https://gcc.gnu.org/onlinedocs/
cpp/Macros.html. Comditional compilation is done with

#if, #ifdef, #ifndef, #else, #elif. and #endif. Definitions are done
with #define.

Scanner (lexer . . .)

• input: “the program text” (= string, char stream, or similar)
• task

– divide and classify into tokens, and
– remove blanks, newlines, comments ..

• theory: finite state automata, regular languages

Scanner: illustration

a [index] ␣=␣4␣+␣2

lexeme token class value
a identifier "a" 2
[left bracket
index identifier "index" 21
] right bracket
= assignment
4 number "4" 4
+ plus sign
2 number "2" 2

0
1
2 "a"

⋮

21 "index"
22

⋮

https://gcc.gnu.org/onlinedocs/cpp/Macros.html
https://gcc.gnu.org/onlinedocs/cpp/Macros.html

6 1 Introduction
1.2 Compiler architecture & phases

Parser

a[index] = 4 + 2: parse tree/syntax tree

expr

assign-expr

expr

subscript expr

expr

identifier
a

[expr

identifier
index

]

= expr

additive expr

expr

number
4

+ expr

number
2

a[index] = 4 + 2: abstract syntax tree

assign-expr

subscript expr

identifier
a

identifier
index

additive expr

number
2

number
4

1 Introduction
1.2 Compiler architecture & phases 7

The trees here are mainly for illustration. It’s not meant as “this is how the
abstract syntax tree looks like” for the example. In general, abstract syntax
tree is less verbose that the parse three which is sometimes also called concrete
syntax tree. The parse tree(s) for a given word are fixed by the grammar. The
abstract syntax tree is a bit a matter of design (but of course, the grammar is
also a matter of design, but once the grammar is fixed the parse trees are fixed
as well). What is typical in the illustrative example is: an abstract syntax tree
would not bother to add nodes representing brackets (or parentheses etc), so
those are omitted. In general, ASTs are more compact, ommitting superfluous
information (without omitting relevant information).

(One typical) Result of semantic analysis

• one standard, general outcome of semantic analysis: “annotated” or “dec-
orated” AST

• additional info (non context-free):
– bindings for declarations
– (static) type information

assign-expr

additive-expr

number

2

number

4

subscript-expr

identifier

index

identifier

a :array of int :int

:array of int :int

:int :int

:int :int

:int :int

: ?

• here: identifiers looked up wrt. declaration
• 4, 2: due to their form, basic types.

Optimization at source-code level

assign-expr

subscript expr

identifier
a

identifier
index

number
6

8 1 Introduction
1.2 Compiler architecture & phases

1

t = 4+2;
a[index] = t;

2

t = 6;
a[index] = t;

3

a[index] = 6;

The lecture will not dive too much into optimizations. The ones illustrated
here are known as constant folding and constant propagation. Optimizations
can be done (and actually are done) at various phases on the compiler. What
is also typical is, that there are many different optimizations building upon
each other. First, optmization A is done, then, taking the result, optimization
B is done etc. Sometimes even doing A again, and then B again etc.

Code generation & optimization

MOV␣␣R0 , ␣ index ␣ ; ; ␣␣ value ␣ o f ␣ index ␣−>␣R0
MUL␣␣R0 , ␣2␣␣␣␣␣ ; ; ␣␣double ␣ value ␣ o f ␣R0
MOV␣␣R1 , ␣&a␣␣␣␣ ; ; ␣␣ address ␣ o f ␣a␣−>␣R1
ADD␣␣R1 , ␣R0␣␣␣␣ ; ; ␣␣add␣R0␣ to ␣R1
MOV␣∗R1 , ␣6␣␣␣␣␣ ; ; ␣␣ const ␣6␣−>␣address ␣ in ␣R1

MOV␣R0 , ␣ index ␣␣␣␣␣␣ ; ; ␣ va lue ␣ o f ␣ index ␣−>␣R0
SHL␣R0␣␣␣␣␣␣␣␣␣␣␣␣␣ ; ; ␣ double ␣ value ␣ in ␣R0
MOV␣&a [R0] , ␣6␣␣␣␣␣␣ ; ; ␣ const ␣6␣−>␣address ␣a+R0

• many optimizations possible
• potentially difficult to automatize4, based on a formal description of lan-

guage and machine
• platform dependent

4Not that one has much of a choice. Difficult or not, no one wants to optimize generated
machine code by hand

1 Introduction
1.2 Compiler architecture & phases 9

For now it’s not too important what the code snippets do. It should be said,
though, that it’s not a priori always clear in which way a transformation such
as the one shown is an improvement. One transformation most probably is
an improvement, that’s the “shift left” for doubling. Another one is that the
program is shorter. Program size is something that one might like to “optmize”
in itself. Also: ultimately each machine operation needs to be loaded to the
processor (and that costs time in itself). Note, however, that it’s generally not
the case that “one assmbler line costs one unit of time”. Especially, the last
line in the second program could costs more than other simpler operations. In
general, operations on registers are quite faster anyway than those referring
to main memory. In order to make a meaningful statement of the effect of a
program transformation, one would need to have a “cost model” taking register
access vs. memory access and other aspects into account.

Anatomy of a compiler (2)

Misc. notions

• front-end vs. back-end, analysis vs. synthesis
• separate compilation
• how to handle errors?
• “data” handling and management at run-time (static, stack, heap), garbage

collection?
• language can be compiled in one pass?

– E.g. C and Pascal: declarations must precede use
– no longer too crucial, enough memory available

10 1 Introduction
1.2 Compiler architecture & phases

• compiler assisting tools and infrastructure, e.g.
– debuggers
– profiling
– project management, editors
– build support
– . . .

Compiler vs. interpeter

Compilation

• classical: source ⇒ machine code for given machine
• different “forms” of machine code (for 1 machine):

– executable ⇔ relocatable ⇔ textual assembler code

full interpretation

• directly executed from program code/syntax tree
• often for command languages, interacting with OS etc.
• speed typically 10–100 slower than compilation

compilation to intermediate code which is interpreted

• used in e.g. Java, Smalltalk,
• intermediate code: designed for efficient execution (byte code in Java)
• executed on a simple interpreter (JVM in Java)
• typically 3–30 times slower than direct compilation
• in Java: byte-code ⇒ machine code in a just-in time manner (JIT)

More recent compiler technologies

• Memory has become cheap (thus comparatively large)
– keep whole program in main memory, while compiling

• OO has become rather popular
– special challenges & optimizations

• Java
– “compiler” generates byte code
– part of the program can be dynamically loaded during run-time

• concurrency, multi-core
• graphical languages (UML, etc), “meta-models” besides grammars

1 Introduction
1.3 Bootstrapping and cross-compilation 11

1.3 Bootstrapping and cross-compilation

Compiling from source to target on host

“tombstone diagrams” (or T-diagrams). . . .

Two ways to compose “T-diagrams”

12 1 Introduction
1.3 Bootstrapping and cross-compilation

Using an “old” language and its compiler for write a
compiler for a “new” one

Pulling oneself up on one’s own bootstraps

bootstrap (verb, trans.): to promote or develop . . . with little or no
assistance

— Merriam-Webster

http://www.merriam-webster.com/dictionary/bootstrap

1 Introduction
1.3 Bootstrapping and cross-compilation 13

Explanation

There is no magic here. The first thing is: the “Q&D” compiler in the diagram
is said do be in machine code. If we want to run that compiler as executable
(as opposed to being interpreted, which is ok too), of course we need machine
code, but it does not mean that we have to write that Q&D compiler in
machine code. Of course we can use the approach explained before that we
use an existing language with an existing compiler to create that machine-code
version of the Q&D compiler.

Furthermore: when talking about efficiency of a compiler, we mean here ex-
actly that here: it’s the compilation process itself which is inefficent! As far
as efficency goes, one the one hand the compilation process can be efficient
or not, and on the other the generated code can be (on average and given
competen programmers) be efficent not. Both aspects are not independent,
though: to generate very efficient code, a compiler might use many and ag-
gressive optimizations. Those may produce efficient code but cost time to do.
In the first stage, we don’t care how long it takes to compile, and also not
how efficient is the code it produces! Note the that code that it produces is a
compiler, it’s actually a second version of “same” compiler, namely for the new
language A to H and on H. We don’t care how efficient the generated code,
i.e., the compiler is, because we use it just in the next step, to generate the
final version of compiler (or perhaps one step further to the final compiler).

Bootstrapping 2

14 1 Introduction
1.3 Bootstrapping and cross-compilation

Porting & cross compilation

Explanation

The situation is that K is a new “platform” and we want to get a compiler for
our new language A for K (assuming we have one already for the old platform
H). It means that not only we want to compile onto K, but also, of course,
that it has to run on K. These are two requirements: (1) a compiler to K and
(2) a compiler to run on K. That leads to two stages.

In a first stage, we “rewrite” our compiler for A, targeted towards H, to the
new platform K. If structured properly, it will “only” require to port or re-
target the so-called back-end from the old platform to the new platform. If we
have done that, we can use our executable compiler on H to generate code for
the new platform K. That’s known as cross-compilation: use platform H to
generate code for platform K.

But now, that we have a (so-called cross-)compiler from A to K, running on
the old platform H, we use it to compile the retargeted compiler again!

4 References 15

4
References
Chapter

16 Bibliography
Bibliography

Bibliography
[] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles,
Techniques, and Tools. Addison-Wesley.

[2] Cooper, K. D. and Torczon, L. (2004). Engineering a Compiler. Elsevier.

[3] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS
Publishing.

Index
Index 17

Index
abstract syntax tree, 1, 9
Algol 60, 4
alphabet, 4
ambiguity, 12

non-essential, 17
ambiguous grammar, 12
associativity, 13
AST, 1

Backus-Naur form, 4
BNF, 4, 5

extended, 20

CFG, 4
Chomsky hierarchy, 24
concrete syntax tree, 1
conditional, 10
conditionals, 10
context-free grammar, 4

dangling else, 18
derivation

left-most, 6
leftmost, 7
right-most, 7, 8

derivation (given a grammar), 6
derivation tree, 1

EBNF, 5, 20, 21

grammar, 1, 3
ambiguous, 12
context-free, 4

language
of a grammar, 6

leftmost derivation, 7
lexeme, 3

meta-language, 9
microsyntax

vs. syntax, 4

non-terminals, 4

parse tree, 1, 8, 9
parsing, 4
precedence

Java, 16
precedence cascade, 14
precendence, 13
production (of a grammar), 4

right-most derivation, 7

scannner, 3
sentence, 4
sentential form, 4
syntactic sugar, 20
syntax, 4
syntax tree

abstract, 1
concrete, 1

terminal symbol, 3
terminals, 4
token, 3
type checking, 4

	Contents
	Introduction
	Introduction
	Compiler architecture & phases
	Bootstrapping and cross-compilation

	References

