
Chapter 1
Introduction

Course “Compiler Construction”
Martin Steffen
Spring 2018



Chapter 1
Learning Targets of Chapter “Introduction”.

The chapter gives basically an overview over different
phases of a compiler and their tasks.



Chapter 1
Outline of Chapter “Introduction”.

Introduction

Compiler architecture & phases

Bootstrapping and cross-compilation



Section
Introduction

Chapter 1 “Introduction”
Course “Compiler Construction”
Martin Steffen
Spring 2018



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-5

Course info

Course material from:

• Martin Steffen (msteffen@ifi.uio.no)
• Stein Krogdahl (stein@ifi.uio.no)
• Birger Møller-Pedersen (birger@ifi.uio.no)
• Eyvind Wærstad Axelsen (eyvinda@ifi.uio.no)

Course’s web-page
http://www.uio.no/studier/emner/matnat/
ifi/INF5110

• overview over the course, pensum (watch for updates)
• various announcements, beskjeder, etc.

http://www.uio.no/studier/emner/matnat/ifi/INF5110
http://www.uio.no/studier/emner/matnat/ifi/INF5110


INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-6

Course material and plan

• Material: based largely on [2] (previously [3] which also
is fine)), but also other sources will play a role. A
classic is “the dragon book” [1], we might use part of
code generation from there

• see also errata list at
http://www.cs.sjsu.edu/~louden/cmptext/

• approx. 3 hours teaching per week
• mandatory assignments (= “obligs”)

• O1 published mid-February, deadline mid-March
• O2 published beginning of April, deadline beginning of

May
• group work up-to 3 people recommended. Please inform

us about such planned group collaboration
• slides: see updates on the net
• exam: (if written one) 12th June, 09:00, 4 hours.

http://www.cs.sjsu.edu/~louden/cmptext/


INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-7

Motivation: What is CC good for?

• not everyone is actually building a full-blown compiler,
but

• fundamental concepts and techniques in CC
• most, if not basically all, software reads,

processes/transforms and outputs “data”
⇒ often involves techniques central to CC
• understanding compilers ⇒ deeper understanding of

programming language(s)
• new language (domain specific, graphical, new language

paradigms and constructs. . . )
⇒ CC & their principles will never be “out-of-fashion”.



Section
Compiler architecture & phases

Chapter 1 “Introduction”
Course “Compiler Construction”
Martin Steffen
Spring 2018



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-9

Architecture of a typical compiler

Figure: Structure of a typical compiler



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-10

Anatomy of a compiler



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-11

Pre-processor

• either separate program or integrated into compiler
• nowadays: C-style preprocessing mostly seen as “hack”

grafted on top of a compiler.1
• examples (see next slide):

• file inclusion2
• macro definition and expansion3
• conditional code/compilation: Note: #if is not the

same as the if-programming-language construct.
• problem: often messes up the line numbers

1C-preprocessing is still considered sometimes a useful hack,
otherwise it would not be around . . . But it does not naturally
encourage elegant and well-structured code, just quick fixes for some
situations.

2the single most primitive way of “composing” programs split into
separate pieces into one program.

3Compare also to the \newcommand-mechanism in LATEX or the
analogous \def-command in the more primitive TEX-language.



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-12

C-style preprocessor examples

#inc l u d e <f i l e name>

Listing 1: file inclusion

#v a r d e f #a = 5 ; #c = #a+1
. . .
#i f (#a < #b)

. .
#e l s e

. . .
#end i f

Listing 2: Conditional compilation



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-13

C-style preprocessor: macros

#macrodef hentdata (#1,#2)
−−− #1−−−−
#2−−−(#1)−−−

#endde f

. . .
#hentdata ( k a r i , pe r )

Listing 3: Macros

−−− ka r i −−−−
per −−−( k a r i )−−−



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-14

Scanner (lexer . . . )

• input: “the program text” ( = string, char stream, or
similar)

• task
• divide and classify into tokens, and
• remove blanks, newlines, comments ..

• theory: finite state automata, regular languages



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-15

Scanner: illustration

a [ i nd e x ] ␣=␣4␣+␣2

lexeme token class value
a identifier "a"
[ left bracket
index identifier "index"
] right bracket
= assignment
4 number "4"
+ plus sign
2 number "2"



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-15

Scanner: illustration

a [ i nd e x ] ␣=␣4␣+␣2

lexeme token class value
a identifier 2
[ left bracket
index identifier 21
] right bracket
= assignment
4 number 4
+ plus sign
2 number 2

0
1
2 "a"

⋮

21 "index"
22

⋮



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-16

Parser



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-17

a[index] = 4 + 2: parse tree/syntax
tree

expr

assign-expr

expr

subscript expr

expr

identifier
a

[ expr

identifier
index

]

= expr

additive expr

expr

number
4

+ expr

number
2



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-18

a[index] = 4 + 2: abstract syntax tree

assign-expr

subscript expr

identifier
a

identifier
index

additive expr

number
2

number
4



(One typical) Result of semantic analysis
• one standard, general outcome of semantic analysis:

“annotated” or “decorated” AST
• additional info (non context-free):

• bindings for declarations
• (static) type information

assign-expr

additive-expr

number

2

number

4

subscript-expr

identifier

index

identifier

a :array of int :int

:array of int :int

:int :int

:int :int

:int :int

: ?

• here: identifiers looked up wrt. declaration
• 4, 2: due to their form, basic types.



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-20

Optimization at source-code level

assign-expr

subscript expr

identifier
a

identifier
index

number
6

t = 4+2;
a[index] = t;

t = 6;
a[index] = t; a[index] = 6;



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-21

Code generation & optimization

MOV R0 , i ndex ; ; v a l u e o f i nd e x −> R0
MUL R0 , 2 ; ; doub l e v a l u e o f R0
MOV R1 , &a ; ; a dd r e s s o f a −> R1
ADD R1 , R0 ; ; add R0 to R1
MOV ∗R1 , 6 ; ; c on s t 6 −> add r e s s i n R1

MOV R0 , i ndex ; ; v a l u e o f i nd e x −> R0
SHL R0 ; ; doub l e v a l u e i n R0
MOV &a [ R0 ] , 6 ; ; c on s t 6 −> add r e s s a+R0

• many optimizations possible
• potentially difficult to automatize4, based on a formal

description of language and machine
• platform dependent

4Not that one has much of a choice. Difficult or not, no one wants
to optimize generated machine code by hand . . . .



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-22

Anatomy of a compiler (2)



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-23

Misc. notions

• front-end vs. back-end, analysis vs. synthesis
• separate compilation
• how to handle errors?
• “data” handling and management at run-time (static,

stack, heap), garbage collection?
• language can be compiled in one pass?

• E.g. C and Pascal: declarations must precede use
• no longer too crucial, enough memory available

• compiler assisting tools and infrastructure, e.g.
• debuggers
• profiling
• project management, editors
• build support
• . . .



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-24

Compiler vs. interpeter
Compilation

• classical: source ⇒ machine code for given machine
• different “forms” of machine code (for 1 machine):

• executable ⇔ relocatable ⇔ textual assembler code

full interpretation

• directly executed from program code/syntax tree
• often for command languages, interacting with OS etc.
• speed typically 10–100 slower than compilation

compilation to intermediate code which is interpreted

• used in e.g. Java, Smalltalk, . . . .
• intermediate code: designed for efficient execution (byte

code in Java)
• executed on a simple interpreter (JVM in Java)
• typically 3–30 times slower than direct compilation
• in Java: byte-code ⇒ machine code in a just-in time

manner (JIT)



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-25

More recent compiler technologies

• Memory has become cheap (thus comparatively large)
• keep whole program in main memory, while compiling

• OO has become rather popular
• special challenges & optimizations

• Java
• “compiler” generates byte code
• part of the program can be dynamically loaded during

run-time
• concurrency, multi-core
• graphical languages (UML, etc), “meta-models” besides

grammars



Section
Bootstrapping and cross-
compilation

Chapter 1 “Introduction”
Course “Compiler Construction”
Martin Steffen
Spring 2018



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-27

Compiling from source to target on host

“tombstone diagrams” (or T-diagrams). . . .



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-28

Two ways to compose “T-diagrams”



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-29

Using an “old” language and its compiler
for write a compiler for a “new” one



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-30

Pulling oneself up on one’s own bootstraps
bootstrap (verb, trans.): to promote or develop . . .
with little or no assistance
— Merriam-Webster

http://www.merriam-webster.com/dictionary/bootstrap


INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-31

Bootstrapping 2



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-32

Porting & cross compilation



INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-33

References I

*Bibliography

[1] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques, and Tools.
Addison-Wesley.

[2] Cooper, K. D. and Torczon, L. (2004). Engineering a Compiler. Elsevier.

[3] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.


	Introduction
	Targets & Outline

	*

