Chapter 1

Introduction

Course “Compiler Construction”
Martin Steffen
Spring 2018

Chapter 1
Learning Targets of Chapter “Introduction”.

The chapter gives basically an overview over different
phases of a compiler and their tasks.

KBS G
§9 «X‘(

@
e

Chapter 1
Outline of Chapter “Introduction”.

»

SNIVE
STnAS

Introduction

Compiler architecture & phases

Bootstrapping and cross-compilation

Section

Introduction

Chapter 1 “Introduction”
Course “Compiler Construction”
Martin Steffen
Spring 2018

Course info

Course material from: D =

Compiler
Construction

Martin Steffen (msteffen@ifi.uio.no)

Stein Krogdahl (stein@ifi.uio.no) e G

Birger Mgller-Pedersen (birger@ifi.uio.no) Introduction

Compiler
architecture &
phases

= Eyvind Weerstad Axelsen (eyvinda@ifi.uio.no)

Bootstrapping and
cross-compilation

Course’s web-page

http://www.ulio.no/studier/emner/matnat/
ifi/INF5110

= overview over the course, pensum (watch for updates)

= various announcements, beskjeder, etc.

1-5

http://www.uio.no/studier/emner/matnat/ifi/INF5110
http://www.uio.no/studier/emner/matnat/ifi/INF5110

Course material and plan

= Material: based largely on [2] (previously [3] which also
is fine)), but also other sources will play a role. A
classic is “the dragon book” [1], we might use part of
code generation from there

= see also errata list at
http://www.cs.sjsu.edu/~louden/cmptext/
= approx. 3 hours teaching per week

= mandatory assignments (= “obligs")

= 01 published mid-February, deadline mid-March
= 02 published beginning of April, deadline beginning of
May

= group work up-to 3 people recommended. Please inform
us about such planned group collaboration

= slides: see updates on the net
= exam: (if written one) 12th June, 09:00, 4 hours.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-6

http://www.cs.sjsu.edu/~louden/cmptext/

Motivation: What is CC good for?

= not everyone is actually building a full-blown compiler,
but

= fundamental concepts and techniques in CC

= most, if not basically all, software reads,
processes/transforms and outputs “data”

= often involves techniques central to CC

= understanding compilers = deeper understanding of
programming language(s)

= new language (domain specific, graphical, new language

paradigms and constructs. . .)
= CC & their principles will never be "out-of-fashion”.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-7

Section

Compiler architecture & phases

Chapter 1 “Introduction”
Course “Compiler Construction”
Martin Steffen

Spring 2018

Architecture of a typical compiler

Semi Code kildekode

Front End
A

\mermedrle Code

Target Code

Back End

x.ms.lcm. mdlkode

Figure: Structure of a typical compiler

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler

architecture &
phases

Bootstrapping and
cross-compilation

1-9

Anatomy of a compiler

program
beriket
leksi\\/mkens syntaks-tre syntake-tre
NS \
Pre- Scanner | Parser | Checker Code
processor generator

Finne = Sjekker
Makroer = Deleoppi| Strukturi bruk <

\’ Betinget leksemer pmlgram- ?5""'510" A
kompilering | |« mel * lype
Sepuenng = OK? L o siekk

henhald til

Lex/ Yacc/ Attributtgrammatikker
Flex Bison) +
lignende lignende Div. metoder

verktay verktay

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-10

Pre-processor

= either separate program or integrated into compiler

= nowadays: C-style preprocessing mostly seen as “hack”
grafted on top of a compiler.?

= examples (see next slide):

= file inclusion?

= macro definition and expansion
= conditional code/compilation: Note: #if is not the
same as the if-programming-language construct.

3

problem: often messes up the line numbers

1C-preprocessing is still considered sometimes a useful hack,
otherwise it would not be around ... But it does not naturally
encourage elegant and well-structured code, just quick fixes for some
situations.

%the single most primitive way of “composing” programs split into
separate pieces into one program.

3Compare also to the \newcommand-mechanism in BTEX or the
analogous \def-command in the more primitive TEX-language.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-11

C-style preprocessor examples

INF5110 —
Compiler
Construction

#include <filename>
l

. . . . Targets & Outline
Listing 1: file inclusion

Introduction

Compiler
#vardef #a = 5; #c = #a+1 architecture &
phases
#if (#a < #b) Bootstrapping and
cross-compilation
#else
#endif

Listing 2: Conditional compilation

1-12

C-style preprocessor: macros

#macrodef hentdata(#1,#2)
— 1o
#2-—-(#1)-—-
#enddef

#hentdata (kari, per)
|

Listing 3: Macros

——— kari—-————
per———(kari)-—-—

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-13

Scanner (lexer ...)

= input: “the program text” (= string, char stream, or
similar)
= task
= divide and classify into tokens, and
= remove blanks, newlines, comments ..

= theory: finite state automata, regular languages

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-14

Scanner: illustration

alindex] =u4,+02

lexeme ‘ token class value

a identifier g

[left bracket

index | identifier "index"
] right bracket

= assignment

4 number maqn

+ plus sign

2 number nan

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-15

Scanner: illustration

alindex] =u4,+02

lexeme ‘ token class value 0

a identifier 2 1

[left bracket 2 | "a"
index | identifier 21

] right bracket

= assignment 21 | "index"
4 number 4 22

+ plus sign

2 number 2

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-15

Parser

expression

parserings-tre

(syntaks-tre) |

expression

resultat av parsering ‘

subscript-expression

~——
ST~
expression [expression 1
alindex] = 4 + 2 ideneifiar idantifier
2 index

assign-expression

_— e

subscript-expression additive-expression

identifier identifier numbaer
a index 4

numbar
2

assign-pxpression

‘\\

exprossion

additive-expression

T T

exprestion + expression
Aumber number
F z
abstrakt
syntaks-tre
"syntaktisk
sukker"
fiernet

INF5110 -

Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-16

al[index] = 4 + 2: parse tree/syntax
tree

INF5110 —
Compiler

Construction
expr

Targets & Outline

aSSIgn_eXpr Introduction
/I\ Compiler
expr = expr Zﬁﬁ;““C&
| | Bootstrapping and
. . cross-compilation
subscript expr additive expr
/\ /I\
expr [expr] expr + expr
I I I I
identifier identifier number number
a index 4 2

1-17

a[index] = 4 + 2: abstract syntax tree

assign-expr

/\

subscript expr additive expr
/\ /\

identifier identifier number number
a index 2 4

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-18

(One typical) Result of semantic analysis

= one standard, general outcome of semantic analysis:
“annotated” or “decorated” AST
= additional info (non context-free):

= bindings for declarations
= (static) type information

assign—expr
/\
subscript—expr additive—expr

idcntiﬁcr idcntiﬁcr numbcr numbcr

= here: identifiers looked up wrt. declaration
= 4, 2: due to their form, basic types.

Optimization at source-code level

INF5110 —
Compiler
Construction

assign-expr
/\ Targets & Outline
- number [—
subscript expr ntroduction
— 6 Compiler
. . . . architecture &
identifier identifier phases
a index Bootstrapping and

cross-compilation

1-20

Code generation & optimization

MOV RO, index ;; value of index -> RO

MUL RO, 2 B double value of RO

MOV R1, &a B address of a -> R1

ADD R1, RO - add RO to RI1

MOV x*R1, 6 B const 6 —> address in Rl
MOV RO, index ;; value of index -> RO
SHL RO ;. double value in RO

MOV &a[RO], 6 ;7 const 6 —> address a+RO

many optimizations possible

potentially difficult to automatize*, based on a formal

description of language and machine

platform dependent

*Not that one has much of a choice. Difficult or not, no one wants

to optimize generated machine code by hand

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-21

Anatomy of a compiler (2)

AVAVAVAN

/

(ByteCode)

fortolkning
—a

— Just-In-
Time
compiler

Virtual
Machine

e
/ <

I

prog rel

)

call p

goto start+30

‘Assamblar

Linker/
Loader

a 7
1 -
.‘\ \(@/

start) ——
\
\
Ay
A\

N goto start+10

call m

call p
goto start+30

call m

goto start+10

)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-22

Misc. notions

= front-end vs. back-end, analysis vs. synthesis
= separate compilation
= how to handle errors?

= “data” handling and management at run-time (static,
stack, heap), garbage collection?
= language can be compiled in one pass?
= E.g. C and Pascal: declarations must precede use
= no longer too crucial, enough memory available
= compiler assisting tools and infrastructure, e.g.
= debuggers
= profiling
= project management, editors
= build support

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-23

Compilation

classical: source = machine code for given machine
different “forms” of machine code (for 1 machine):
executable < relocatable < textual assembler code

full interpretation

directly executed from program code/syntax tree
often for command languages, interacting with OS etc.

speed typically 10-100 slower than compilation

compilation to intermediate code which is interpreted

used in e.g. Java, Smalltalk,

intermediate code: designed for efficient execution (byte
code in Java)

Targets & Outline

Introduction

Bootstrapping and
cross-compilation

1-24

More recent compiler technologies

= Memory has become cheap (thus comparatively large)
= keep whole program in main memory, while compiling
= OO has become rather popular
= special challenges & optimizations
= Java

= “compiler” generates byte code
= part of the program can be dynamically loaded during
run-time

= concurrency, multi-core

= graphical languages (UML, etc), “meta-models” besides
grammars

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-25

Section

Bootstrapping and
compilation

Chapter 1 “Introduction”
Course “Compiler Construction”
Martin Steffen

Spring 2018

Cross-

Compiling from source to target on host

“tombstone diagrams” (or T-diagrams). ...

Compiler for language A Existing Compiler Running compiler
written in language B far language B for language A

oversetter fra oversetter til

skrevet i
(eller: kan
utfores pd)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-27

Two ways to compose “T-diagrams”

INF5110 —
Compiler
Construction

C

Targets & Outline
Introduction
Compiler

architecture &
phases

Bootstrapping and
cross-compilation
Intel maskinkode

Vanlig C-kompilator som
gar pd M-maskin

1-28

Using an “old” language and its compiler
for write a compiler for a “new” one

Compiler for language A Existing Compiler Running compiler
written in language B far language B for language A

‘#

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-29

Pulling oneself up on one’s own bootstraps

bootstrap (verb, trans.): to promote or develop . ..
with little or no assistance
— Merriam-Webster

Lage en kompilator som er skrevet i eget sprak, gar fort og lager god kode

Steg 1 S T
Skrevet i en S
begrenset del

Lager god H-kode
av A /
\. - men sakte

Compiler written in its own Running but inefficient
language A compiler

"Quick and dirty” compiler written in
machine language

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &
phases

Bootstrapping and
cross-compilation

http://www.merriam-webster.com/dictionary/bootstrap

Bootstrapping 2

Lager god H-kode

Steg 2
/ - og fort
S ———

A H1
1 i
ITH !
|

Compiler written in its own Final version of the
language A compiler

Running but inefficient compiler
(from the first step)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-31

Porting & cross compilation

INF5110 —
= Har: A kompilator som oversetter til H-maskinkode Compiler

. . . Construction
= Onsker: A-kompilator som oversetter til K-maskin kode

Steg 1: Skriv kompilator slik at den produserer K-kode

(f.eks. vha ny back-end) Targets & Outline
Introduction
P jﬂ gar pd H-maskin, Compiler
= e d K-kode i
il produserer architecture &
R / ! / (kryss-kompilator) phases
Compiler solrce code Cross compiler

retargeted o K Bootstrapping and

Original compiler cross-compilation

Steg 2: Oversetter den nye A Kl . - A K

: - !
kompilatoren til K-kode. AlA K ! K
Gjores pd en H-maskin vha i
krysskompilatoren A

Compiler source code Retargeted compiler
retargeted to K
2001415 Cross compiler

1-32

References |

*Bibliography

[1] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques, and Tools.

2
3]

Addison-Wesley.
Cooper, K. D. and Torczon, L. (2004). Engineering a Compiler. Elsevier.
Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &
phases

Bootstrapping and
cross-compilation

	Introduction
	Targets & Outline

	*

