Course Script

INF 5110: Compiler con-
struction

INF5110/ spring 2018

Martin Steffen

http://www.ifi.uio.no/~msteffen

-

Contents

I Front end 1

2 Scanning 2
21 Intro 2
2.2 Regular expressions 9
2.3 DFA 22
2.4 TImplementation of DFA 29
25 NFA 31
2.6 From regular expressions to DFAs (Thompson’s construction) . 33
2.7 Determinization o o o 38
2.8 Minimization o o 41

2.9 Scanner implementations and scanner generation tools 45

Part |
Front end

Part I

Front end

Chapter

Scanning
What
allai Ltt? Learning Targets of this Chapter Contents
1. alphabets, lang}lage& 2.1 Intro 2
2. regular CXPreEssIons 2.2 Regular expressions .. 9
3. finite S.tate automata / 93 DFA 99
recognizers 2.4 Implementation of DFA 29
4. connection between the two 95 NFA . 31
CO‘Il(.:ep.tS) 2.6 From regular ex-
5. minimization pressions to DFAs
The material corresponds (Thompson’s con-
roughly to [1, Section 2.1-2.5] struction) 33
or ar large part of [4, Chapter 2.7 Determinization 38
2]. The material is pretty 2.8 Minimization 41
canonical anyway. 2.9 Scanner implemen-
tations and scanner
generation tools 45
2.1 Intro

2.1.1 Scanner section overview
What's a scanner?

o Input: source code.!
o Output: sequential stream of tokens

!The argument of a scanner is often a file name or an input stream or similar.

2 Scanning
2.1 Intro

o reqular expressions to describe various token classes
o (deterministic/non-determinstic) finite-state automata (FSA, DFA, NFA)
o implementation of FSA

o regular expressions - NFA
o« NFA « DFA

2.1.2 What’s a scanner?

« other names: lexical scanner, lexer, tokenizer

A scanner’s functionality

Part of a compiler that takes the source code as input and translates this
stream of characters into a stream of tokens.

More info

o char’s typically language independent.?

o tokens already language-specific.?

o works always “left-to-right”, producing one single token after the other,
as it scans the input?

o it “segments” char stream into “chunks” while at the same time “classi-
fying” those pieces = tokens

2.1.3 Typical responsibilities of a scanner

« segment & classify char stream into tokens
e typically described by “rules” (and regular expressions)
o typical language aspects covered by the scanner
— describing reserved words or key words
— describing format of identifiers (= “strings” representing variables,
classes ...)
— comments (for instance, between // and NEWLINE)
— white space

2Characters are language-independent, but perhaps the encoding (or its interpretation)
may vary, like ASCII, UTF-8, also Windows-vs.-Unix-vs.-Mac newlines etc.

3There are large commonalities across many languages, though.

4No theoretical necessity, but that’s how also humans consume or “scan” a source-code
text. At least those humans trained in e.g. Western languages.

4 2 Scanning
2.1 Intro

* to segment into tokens, a scanner typically “jumps over” white
spaces and afterwards starts to determine a new token
* not only “blank” character, also TAB, NEWLINE, etc.
o lexical rules: often (explicit or implicit) priorities
— ddentifier or keyword? = keyword
— take the longest possible scan that yields a valid token.

2.1.4 “Scanner = regular expressions (+ priorities)”
Rule of thumb

Everything about the source code which is so simple that it can be captured
by reg. expressions belongs into the scanner.

2.1.5 How does scanning roughly work?

[Tl (e Ta e] =T Tal T+ T2]
| 22
Reading “head”
(moves left-to-right)
- " ~
g2 — dn
0 do

Finite control

alindex] = 4 + 2

2.1.6 How does scanning roughly work?

e usual invariant in such pictures (by convention): arrow or head points
to the first character to be read next (and thus after the last character
having been scanned /read last)

o in the scanner program or procedure:

— analogous invariant, the arrow corresponds to a specific variable

2 Scanning
2.1 Intro

— contains/points to the next character to be read
— name of the variable depends on the scanner/scanner tool
e the head in the pic: for illustration, the scanner does not really have a
“reading head”
— remembrance of Turing machines, or
— the old times when perhaps the program data was stored on a tape.®

2.1.7 The bad(?) old times: Fortran

« in the days of the pioneers

e main memory was smaaaaaaaaaall

o compiler technology was not well-developed (or not at all)

o programming was for very few “experts”.

 Fortran was considered very high-level (wow, a language so complex that
you had to compile it ...)

2.1.8 (Slightly weird) lexical ascpects of Fortran

Lexical aspects = those dealt with a scanner

e whitespace without “meaning”:
I F(X 2. EQ. 0) TH E Nvs. IF (X2. EQ.0) THEN
e no reserved words!
IF (IF.EQ.0) THEN THEN=1.0
o general obscurity tolerated:
D0O99T=1,10 vs. DO99I=1.10

SVery deep down, if one still has a magnetic disk (as opposed to SSD) the secondary storage
still has “magnetic heads”, only that one typically does not parse directly char by char
from disk. ..

6There was no computer science as profession or university curriculum.

2 Scanning
2.1 Intro

DO 99 I=1,10

99 CONTINUE

2.1.9 Fortran scanning: remarks

 Fortran (of course) has evolved from the pioneer days ...

¢ no keywords: nowadays mostly seen as bad idea”

» treatment of white-space as in Fortran: not done anymore: THEN and TH
EN are different things in all languages

o however:® both considered “the same”:

Ifthen

li if_b_then._..
1

Ifthen2

Rest

e since concepts/tools (and much memory) were missing, Fortran scanner
and parser (and compiler) were
— quite simplistic
— syntax: designed to “help” the lexer (and other phases)

2.1.10 A scanner classifies

o “good” classification: depends also on later phases, may not be clear till
later

"It’s mostly a question of language pragmatics. The lexers/parsers would have no problems
using while as variable, but humans tend to have.

8Sometimes, the part of a lexer / parser which removes whitespace (and comments) is
considered as separate and then called screener. Not very common, though.

2 Scanning
2.1 Intro
Rule of thumb

Things being treated equal in the syntactic analysis (= parser, i.e., subsequent
phase) should be put into the same category.

+ terminology not 100% uniform, but most would agree:

Lexemes and tokens

Lexemes are the “chunks” (pieces) the scanner produces from segmenting the
input source code (and typically dropping whitespace). Tokens are the result
of classifying those lexemes.

e token = token name x token value

2.1.11 A scanner classifies & does a bit more

« token data structure in OO settings
— token themselves defined by classes (i.e., as instance of a class repre-
senting a specific token)
— token values: as attribute (instance variable) in its values
« often: scanner does slightly more than just classification
— store names in some table and store a corresponding index as attribute
— store text constants in some table, and store corresponding index as
attribute
— even: calculate numeric constants and store value as attribute

2.1.12 One possible classification

name/identifier abcl23

integer constant 42

real number constant 3.14E3

text constant, string literal "this is a text constant"
arithmetic op’s + - %/

boolean/logical op’s and or not (alternatively /\ \/)
relational symbols <= < >= > = == |=

all other tokens: {y)y 11,5 = . et

every one it its own group

« this classification: not the only possible (and not necessarily complete)
e note: overlap:

— " . " is here a token, but also part of real number constant

— "<" is part of "<="

2 Scanning
2.1 Intro

2.1.13 One way to represent tokens in C

typedef struct {
TokenType tokenval;
char x stringval;
int numval;

} TokenRecord;

If one only wants to store one attribute:

typedef struct {
Tokentype tokenval;
union
{ char % stringvalj;
int numval
} attribute;
| } TokenRecord;

2.1.14 How to define lexical analysis and implement a
scanner?

« even for complex languages: lexical analysis (in principle) not hard to do
e “manual” implementation straightforwardly possible
o specification (e.g., of different token classes) may be given in “prosa”
o however: there are straightforward formalisms and efficient, rock-solid
tools available:
— easier to specify unambigously
— easier to communicate the lexical definitions to others
— easier to change and maintain
» often called parser generators typically not just generate a scanner, but
code for the next phase (parser), as well.

Prosa specification

A precise prosa specification is not so easy to achieve as one might think. For
ASCII source code or input, things are basically under control. But what if
dealing with unicode? Checking “legality” of user input to avoid SQL injections
or format string attacks is largely done by lexical analysis/scanning. If you
“specify” in English: “ Backlash is a control character and forbidden as user
input 7, which characters (besides char 92 in ASCII) in Chinese Unicode
represents actually other versions of backslash?

2 Scanning
2.2 Regular expressions

Parser generator

The most famous pair of lexer+parser is called “compiler compiler” (lex/yacc
= “yet another compiler compiler”) since it generates (or “compiles”) an im-
portant part of the front end of a compiler, the lexer+parser. Those kind of
tools are seldomly called compiler compilers any longer.

2.2 Regular expressions

2.2.1 General concept: How to generate a scanner?

1. regular expressions to describe language’s lexical aspects
« like whitespaces, comments, keywords, format of identifiers etc.
o often: more “user friendly” variants of reg-exprs are supported to
specify that phase
classify the lexemes to tokens
translate the reg-expressions = NFA.
turn the NFA into a deterministic FSA (= DFA)
the DFA can straightforwardly be implementated

Ol WD

Above steps are done automatically by a “lexer generator”

o lexer generators help also in other user-friendly ways of specifying the
lexer: defining priorities, assuring that the longest possible token is given
back, repeat the processs to generate a sequence of tokens?

« Step 2 is actually not covered by the classical Reg-expr = DFA = NFA

results, it’s something extra.

2.2.2 Use of regular expressions

« regular languages: fundamental class of “languages”

» regular expressions: standard way to describe regular languages

o origin of regular expressions: one starting point is Kleene [3] but there
had been earlier works outside “computer science”

e not just used in compilers

 often used for flexible “ searching ”: simple form of pattern matching

e e.g. input to search engine interfaces

« also supported by many editors and text processing or scripting languages
(starting from classical ones like awk or sed)

 but also tools like grep or £ind (or general “globbing” in shells)

9Maybe even prepare useful error messages if scanning (not scanner generation) fails.

10 2 Scanning
2.2 Regular expressions

find . —name "x.tex"

o often extended regular expressions, for user-friendliness, not theoretical
expressiveness

Remarks

Kleene was a famous mathematician and influence on theoretical computer
science. Funnily enough, regular languages came up in the context of neu-
ro/brain science. See the following for the origin of the terminology. Perhaps
in the early years, people liked to draw connections between between biology
and machines and used metaphors like “electronic brain” etc.

2.2.3 Alphabets and languages

Definition 2.2.1 (Alphabet X). Finite set of elements called “letters” or “sym-
bols” or “characters”.

Definition 2.2.2 (Words and languages over X). Given alphabet ¥, a word
over X is a finite sequence of letters from . A language over alphabet ¥ is
a set of finite words over X.

e in this lecture: we avoid terminology “symbols” for now, as later we deal
with e.g. symbol tables, where symbols means something slighly different
(at least: at a different level).

« Sometimes X left “implicit” (as assumed to be understood from the con-
text)

« practical examples of alphabets: ASCII, Norwegian letters (capital and
non-capitals) etc.

Remark: Symbols in a symbol table

In a certain way, symbols in a symbol table can be seen similar to symbols in
the way we are handled by automata or regular expressions now. They are
simply “atomic” (not further dividable) members of what one calls an alphabet.
On the other hand, in practical terms inside a compiler, the symbols here in
the scanner chapter live on a different level compared to symbols encountered
in later sections, for instance when discussing symbol tables). Typically here,
they are characters, i.e., the alphabet is a so-called character set, like for
instance, ASCII. The lexer, as stated, segments and classifies the sequence
of characters and hands over the result of that process to the parser. The
results is a sequence of tokens, which is what the parser has to deal with

http://stackoverflow.com/questions/975465/why-are-regular-expressions-called-regular-expressions

2 Scanning 11
2.2 Regular expressions

later. It’s on that parser-level, that the pieces (notably the identifiers) can be
treated as atomic pieces of some language, and what is known as the symbol
table typcially operates on symbols at that level, not at the level of individual
characters.

2.2.4 Languages

« note: X is finite, and words are of finite length
 languages: in general infinite sets of words
« simple examples: Assume ¥ = {a, b}
e words as finite “sequences” of letters
— ¢ the empty word (= empty sequence)
— ab means “ first a then b ”
« sample languages over X are
. {} (also written as @) the empty set
. {a,b,ab}: language with 3 finite words
{e} ($2)
. {€,a,aa,aaa,...}: infinite languages, all words using only a ’s.
. {€,a,ab,aba,abab, ...}: alternating a’s and b’s
. {ab, bbab, aaaaa, bbabbabab, aabb, . . .}: 77777

A~ W N

S Ot

Remarks

Remark 1 (Words and strings). In terms of a real implementation: often,
the letters are of type character (like type char or char32 ...) words then
are “sequences” (say arrays) of characters, which may or may not be identical
to elements of type string, depending on the language for implementing the
compiler. In a more conceptual part like here we do not write words in “string
notation” (like “ab”), since we are dealing abstractly with sequences of letters,
which, as said, may not actually be strings in the implementation. Also in the
more conceptual parts, it’s often good enough when handling alphabets with 2
letters, only, like 2 = {a,b} (with one letter, it gets unrealistically trivial and
results may not carry over to the many-letter alphabets). After all, computers
are using 2 bits only, as well

Finite and infinite words

There are important applications dealing with infinite words, as well, or also
even infinite alphabets. For traditional scanners, one mostly is happy with
finite ¥ ’s and especially sees no use in scanning infinite “words”. Of course,
some charactersets, while not actually infinite, are large (like Unicode or UTF-
8)

12 2 Scanning
2.2 Regular expressions

Sample alphabets

Often we operate for illustration on alphabets of size 2, like {a,b}. One-letter
alphabets are uninteresting, let alone O-letter alphabets. 3 letter alphabets
may not add much as far as “theoretical” questions are concerned. That may
be compared with the fact that computers ultimately operate in words over
two different “bits” .

2.2.5 How to describe languages

» language mostly here in the abstract sense just defined.

o the “dot-dot-dot” (...) is not a good way to describe to a computer (and
to many humans) what is meant (what was meant in the last example?)

« enumerating explicitly all allowed words for an infinite language does not
work either

Needed

A finite way of describing infinite languages (which is hopefully efficiently
implementable & easily readable)

Is it apriori to be expected that all infinite languages can even be captured in
a finite manner?

e small metaphor

2727272727 ... 3.1415926 . .. (2.1)

Remarks

Remark 2 (Programming languages as “languages”). Well, Java etc., seen
syntactically as all possible strings that can be compiled to well-formed byte-
code, also is a language in the sense we are currently discussing, namely a a
set of words over unicode. But when speaking of the “Java-language” or other
programming languages, one typically has also other aspects in mind (like what
a program does when it is executed), which is not covered by thinking of Java
as an infinite set of strings.

Remark 3 (Rational and irrational numbes). The illustration on the slides
with the two numbers is partly meant as that: an illustration drawn from a field
you may know. The first number from equation (2.1) is a rational number. [t

corresponds to the fraction
30

= (2.2)

2 Scanning 13
2.2 Regular expressions

That fraction is actually an acceptable finite representation for the “endless”
notation 2.72727272... using “...”7 As one may remember, it may pass as a
decent definition of rational numbers that they are exactly those which can
be represented finitely as fractions of two integers, like the one from equation
(2.2). We may also remember that it is characteristic for the “endless” nota-
tion as the one from equation (2.1), that for rational numbers, it’s periodic.
Some may have learnt the notation

272 (2.3)

for finitely representing numbers with a periodic digit expansion (which are
exactly the rationals). The second number, of course, is w, one of the most
famous numbers which do not belong to the rationals, but to the “rest” of
the reals which are not rational (and hence called irrational). Thus it’s one
example of a “number” which cannot represented by a fraction, resp. in the
periodic way as in (2.3).

Well, fractions may not work out for m (and other irrationals), but still, one
may ask, whether m can otherwise be represented finitely. That, however, de-
pends on what actually one accepts as a “finite representation” If one accepts
a finite description that describes how to construct ever closer approrimations
to w, then there is a finite representation of w. That construction basically is
very old (Archimedes), it corresponds to the limits one learns in analysis, and
there are computer algorithms, that spit out digits of m as long as you want (of
course they can spit them out all only if you had infinite time). But the code
of the algo who does that is finite.

The bottom line is: it’s possible to describe infinite “constructions” in a finite
manner, but what exactly can be captured depends on what precisely is allowed
in the description formalism. If only fractions of natural numbers are allowed,
one can describe the rationals but not more.

A final word on the analogy to regular languages. The set of rationals (in, let’s
say, decimal notation) can be seen as language over the alphabet {0,1,...,9 .},
i.e., the decimals and the “decimal point” It’s however, a language containing
infinite words, such as 2.727272727.... The syntaz 2.72 is a finite expression
but denotes the mentioned infinite word (which is a decimal representation of
a rational number). Thus, coming back to the regular languages resp. regular
expressions, 2.72 is similar to the Kleene-star, but not the same. If we write
2.(72)*, we mean the language of finite words

{2,2.72,2.727272, ...} .

In the same way as one may conveniently define rational number (when rep-
resented in the alphabet of the decimals) as those which can be written using
periodic expressions (using for instance overline), regular languages over an
alphabet are simply those sets of finite words that can be written by regular

14 2 Scanning
2.2 Regular expressions

expressions (see later). Actually, there are deeper connections between regular
languages and rational numbers, but it’s not the topic of compiler construc-
tions. Suffice to say that it’s not a coincidence that regular languages are also
called rational languages (but not in this course).

2.2.6 Regular expressions

Definition 2.2.3 (Regular expressions). A regular expression is one of the
following

1. a basic regular expression of the form a (with a € X), or €, or @

2. an expression of the form r | s, where r and s are regular expressions.
3. an expression of the form r s, where r and s are regular expressions.
4. an expression of the form 7*, where r is a regular expression.

Precedence (from high to low): #, concatenation, |

Regular expressions

In [1], @ is not part of the regular expressions. For completeness sake it’s
included here even if it does not play a practically important role.

In other textbooks, also the notation + instead of | for “alternative” or “choice”
is a known convention. The | seems more popular in texts concentrating on
grammars. Later, we will encounter context-free grammars (which can be un-
derstood as a generalization of regular expressions) and the |-symbol is consis-
tent with the notation of alternatives in the definition of rules or productions
in such grammars. One motivation for using + elsewhere is that one might
wish to express “parallel” composition of languages, and a conventional sym-
bol for parallel is |. We will not encounter parallel composition of languages
in this course. Also, regular expressions using lot of parentheses and | seems
slightly less readable for humans than using +.

Regular expressions are a language in itself, so they have a syntax and a
semantics. One could write a lexer (and parser) to parse a regular language.
Obviously, tools like parser generators do have such a lexer/parser, because
their input language are regular expression (and context free grammars, besides
syntax to describe further things). One can see regular languages as a domain-
specific language for tools like (f)lex (and other purposes).

2 Scanning
2.2.7 A “grammatical” definition

Later introduced as (notation for) context-free grammars:

r|r
rr
,’f.*

2% 3 3 303
N R R
Q

2.2.8 Same again
Notational conventions
Later, for CF grammars, we use capital letters to denote “variables” of the

grammars (then called non-terminals). If we like to be consistent with that
convention, the definition looks as follows:

Grammar
R - a (2.5)
R - €
R - @
R - R|R
R - RR
R - R*

2.2.9 Symbols, meta-symbols, meta-meta-symbols ...

e regexprs: notation or “language” to describe “languages” over a given
alphabet ¥ (i.e. subsets of ¥*)
» language being described < language used to describe the language
= language < meta-language
e here:
— regular expressions: notation to describe regular languages
— English resp. context-free notation:'® notation to describe regular
expression

10To be careful, we will (later) distinguish between context-free languages on the one hand
and notations to denote context-free languages on the other, in the same manner that
we now don’t want to confuse regular languages as concept from particular notations
(specifically, regular expressions) to write them down.

16 2 Scanning
2.2 Regular expressions

o for now: carefully use notational convention for precision

2.2.10 Notational conventions

« notational conventions by typographic means (i.e., different fonts etc.)
o you need good eyes, but: difference between
—a and a
— € and €
— @ and @
— | and | (especially hard to see :-))
o later (when gotten used to it) we may take a more “relaxed” attitude
toward it, assuming things are clear, as do many textbooks
o Note: in compiler implementations, the distinction between language and
meta-language etc. is very real (even if not done by typographic means

)

Remarks

Remark 4 (Regular expression syntax). Later there will be a number of ex-
amples using reqular expressions. There is a slight “ambiguity” about the way
reqular expressions are described (in this slides, and elsewhere). It may remain
unnoticed (so it’s unclear if one should point it out). On the other had, the
lecture is, among other things, about scanning and parsing of syntax, therefore
it may be a good idea to reflect on the syntax of reqular expressions themselves.

In the examples shown later, we will use reqular expressions using parentheses,
like for instance in b(ab)*. One question is: are the parentheses (and)
part of the definition of reqular expressions or not? That depends a bit. In
the presentation here typically one would not care, one tells the readers that
parentheses will be used for disambiguation, and leaves it at that (in the same
way one would not tell the reader it’s fine to use “space” between different
expressions (like a | b is the same expression as a | b). Another way of
saying that is that textbooks, intended for human readers, give the definition of
reqular expressions as abstract syntax as opposed to concrete syntax. Those 2
concepts will play a prominent role later in the grammar and parsing sections
and may be more clear then. Anyway, it’s thereby assumed that the reader can
interpret parentheses as grouping mechanism, as is common elsewhere as well
and they are left out from the definition not to clutter it.

Of course, computers and programs (i.e., in particular scanners or lexers),
are not as good as humans to be educated in “commonly understood” conven-
tions (such as “paretheses are not really part of the reqular expressions but can
be added for disambiguation” Abstract syntax corresponds to describing the

2 Scanning 17
2.2 Regular expressions

output of a parser (which are abstract syntax trees). In that view, reqular ex-
pressions (as all notation represented by abstract syntax) denote trees. Since
trees in texts are more difficult (and space-consuming) to write, one simply
use the usual linear notation like the b(ab)* from above, with parentheses and
“conventions” like precedences, to disambiguate the expression. Note that a
tree representation represents the grouping of sub-expressions in its structure,
so for grouping purposes, parentheses are not needed in abstract syntazx.

Of course, if one wants to implement a lexer or to use one of the available
ones, one has to deal with the particular concrete syntax of the particular
scanner. There, of course, characters like (" and ')" (or tokens like LPAREN
or RPAREN) might occur.

Using concepts which will be discussed in more depth later, one may say:
whether paretheses are considered as part of the syntax of reqular expressions
or not depends on the fact whether the definition is wished to be understood as
describing concrete syntax trees or /abstract syntax trees!

See also Remark 5 later, which discusses further “ambiguities” in this context.

2.2.11 Same again once more

R - al|e| o basic reg. expr. (2.6)
| RIR| RR | R* | (R) compound reg. expr.

Note:

« symbol |: as symbol of regular expressions

e symbol |: meta-symbol of the CF grammar notation

 the meta-notation used here for CF grammars will be the subject of later
chapters

2.2.12 Semantics (meaning) of regular expressions

Definition 2.2.4 (Regular expression). Given an alphabet 3. The meaning
of a regexp r (written £(r)) over X is given by equation (2.7).

L(z) = {} empty language (2.7)
L(e) = {e} empty word
L(a) = {a} single “letter” from X
L(r|s) = L(r)uL(s) alternative
L(r*) = L(r)* iteration

« conventional precedences: *, concatenation, |.

18 2 Scanning
2.2 Regular expressions

« Note: left of “=": reg-expr syntaz, right of “=

11

2.2.13 Examples

In the following:

e Y ={a,b,c}.
o we don’t bother to “boldface” the syntax

7

words with exactly one b
words with max. one b

words of the form a™ba”,
i.e., equal number of a’s
before and after 1 b

(ale)b(a]c)
((ale)) | ((a]c)*balc)*)
(ale) (ble) (afc)*

2.2.14 Another regexpr example

words that do not contain two b’s in a row.

Remarks

(b (a]c))
((ale) (b (a]e))*)”

((ale)[(b(alc)))”
(a|c]|ba]be)*

(alclbalbe)* (b]e€)
(notb | b notb)*(b| €)

not quite there yet
better, but still not there
(simplify)

(simplifiy even more)

potential b at the end
where notb 2 a | ¢

: semantics/meaning/math

Remark 5 (Regular expressions, disambiguation, and associativity). Note
that in the equations in the example, we silently allowed ourselves some “slop-
pyness” (at least for the nitpicking mind). The slight ambiguity depends on
how we exactly interpret definitions of reqular expressions. Remember also
Remark 4 on page 17, discussing the (non-)status of parentheses in regular
expressions. If we think of Definition 2.2.3 on page 14 as describing abstract
syntax and a concrete reqular expression as representing an abstract syntax

Sometimes confusingly “the same” notation.

2 Scanning 19
2.2 Regular expressions

tree, then the constructor | for alternatives is a binary constructor. Thus, the
reqular expression

alcl|balbe (2.8)

which occurs in the previous example is ambiguous. What is meant would be
one of the following

al(c|(ba]be)) (2.9)
(a]c)]| (ba|be) (2.10)
((ale)]ba)]be, (2.11)

corresponding to 3 different trees, where occurences of | are inner nodes with
two children each, i.e., sub-trees representing subexpressions. In textbooks, one
generally does not want to be bothered by writing all the parentheses. There
are typically two ways to disambiguate the situation. One is to state (in the
text) that the operator, in this case |, associates to the left (alternatively it
associates to the right). That would mean that the “sloppy” expression without
parentheses is meant to represent either (2.9) or (2.11), but not (2.10). If one
really wants (2.10), one needs to indicate that using parentheses. Another way
of finding an excuse for the sloppyness is to realize that it (in the context of
reqular expressions) does not matter, which of the three trees (2.9) — (2.11)
is actually meant. This is specific for the setting here, where the symbol | is
semantically represented by set union U (cf. Definition 2.2.4 on page 18) which
is an associative operation on sets. Note that, in principle, one may choose the
first option —disambiguation via fixing an associativity— also in situations,
where the operator is not semantically associative. As illustration, use the -’
symbol with the usal intended meaning of “subtraction” or “one number minus
another”. Obviously, the expression

5-3-1 (2.12)

now can be interpreted in two semantically different ways, one representing
the result 1, and the other 3. As said, one could introduce the convention (for

instance) that the binary minus-operator associates to the left. In this case,
(2.12) represents (5-3) — 1.

Whether or not in such a situation one wants symbols to be associative or not is
a judgement call (a matter of language pragmatics). On the one hand, disam-
biguating may make expressions more readable by allowing to omit parenthesis
or other syntactic markers which may make the expression or program look
cumbersome. On the other, the “light-weight” and “programmer-friendly” syn-
tax may trick the unexpecting programmer into misconceptions about what the
program means, if unaware of the rules of assorciativity (and other priorities).
Disambiguation via associativity rules and priorities is therefore a double-edged
sword and should be used carefully. A situation where most would agree as-
sociativity is useful and completely unproblematic is the one illustrated for |

20 2 Scanning
2.2 Regular expressions

in reqular expression: it does not matter anyhow semantically. Decisions con-
cerning using a-priori ambiguous syntax plus rules how to disambiguate them
(or forbid them, or warn the user) occur in many situations in the scannning
and parsing phases of a compiler.

Now, the discussion concerning the “ambiguity” of the expression (a | ¢ | ba | be)
from equation (2.8) concentrated on the |-construct. A similar discussion could
obviously be made concerning concatenation (which actually here is not repre-
sented by a readable concatenation operator, but just by juxtaposition (=writing
expressions side by side)). In the concrete example from (2.8), no ambiguity
wrt. concatenation actually occurs, since expressions like ba are not ambigu-
ous, but for longer sequences of concatenation like abc, the question of whether
it means a(bc) or a(be) arises (and again, it’s not critical, since concatenation
is semantically associative).

Note also that one might think that the expression suffering from an ambigu-
ity concerning combinations of operators, for instance, combinations of | and
concatenation. For instance, one may wonder if ba | be could be interpreted
as (ba) | (be) and b(a | (be)) and b(a | b)e. However, on page 18, we stated
precedences or priorities 2.2.4 on page 18, stating that concatenation has a
higher precedence over |, meaning that the correct interpretation is (ba) | (bc).
In a text-book the interpretation is “suggested” to the reader by the typesetting
ba | be (and the notation it would be slightly less “helpful” if one would write
balbe. . . and what about the programmer’s version a_b|a_c?). The situation
with precedence is one where difference precedences lead to semantically differ-
ent interpretations. Even if there’s a danger therefore that programmers/read-
ers mis-interpret the real meaning (being unaware of precedences or mixing
them up in their head), using precedences in the case of regular expressions
certainly is helpful, The alternative of being forced to write, for instance

((a(b(ed))) | (b(a(ad)))) for abced|baad

is not even appealing to hard-core Lisp-programmers (but who knows ...).

A final note: all this discussion about the status of parentheses or left or right
assocativity in the interpretation of (for instance mathematical) notation is
mostly is over-the-top for most mathematics or other fields where some kind
of formal notations or languages are used. There, notation is introduced, per-
haps accompanied by sentences like “parentheses or similar will be used when
helpful” or “we will allow ourselves to omit parentheses if no confusion may
arise”, which means, the educated reader is expected to figure it out. Typically,
thus, one glosses over too detailed syntactic conventions to proceed to the more
interesting and challenging aspects of the subject matter. In such fields one is
furthermore sometimes so used to notational traditions (“multiplication binds
stronger than addition”), perhaps established since decades or even centuries,
that one does not even think about them consciously. For scanner and parser
designers, the situation is different; they are requested to come up with the

2 Scanning
2.3 DFA

notational (lexical and syntactical) conventions of perhaps a new language,
specify them precisely and implement them efficiently. Not only that: at the
same time, one aims at a good balance between expliciteness (“Let’s just force
the programmer to write all the parentheses and grouping explicitly, then he
will get less misconceptions of what the program means (and the lexer/parser
will be easy to write for me...)”) and economy in syntazx, leaving many con-
ventions, priorities, etc. implicit without confusing the target programmer. O

2.2.15 Additional “user-friendly” notations

rt = rr*
r? = rle

Special notations for sets of letters:

[0-9] range (for ordered alphabets)
~a ot a (everything except a)
all of X

naming regular expressions (“regular definitions”)

digit = [0-9]
nat = digit”
signedNat = (+|-)nat
number = signedNat(”.”nat)?(E signedNat)?

2.3 DFA

2.3.1 Finite-state automata

o simple “computational” machine
o (variations of) FSA’s exist in many flavors and under different names
o other rather well-known names include finite-state machines, finite la-
belled transition systems,
» “state-and-transition” representations of programs or behaviors (finite
state or else) are wide-spread as well
— state diagrams
— Kripke-structures
— I/O automata
— Moore & Mealy machines

https://en.wikipedia.org/wiki/Saul_Kripke

2 Scanning

« the logical behavior of certain classes of electronic circuitry with internal
memory (“flip-flops”) is described by finite-state automata.!?

Remark 6 (Finite states). The distinguishing feature of FSA (as opposed
to more powerful automata models such as push-down automata, or Turing-
machines), is that they have “ finitely many states ” That sounds clear enough
at first sight. But one has too be a bit more careful. First of all, the set of
states of the automaton, here called), is finite and fized for a given automa-
ton, all right. But actually, the same is true for pushdown automata and
Turing machines! The trick is: if we look at the illustration of the finite-state
automaton earlier, where the automaton had a head. The picture corresponds
to an accepting use of an automaton, namely one that is fed by letters on the
tape, moving internally from one state to another, as controlled by the differ-
ent letters (and the automaton’s internal “logic”, i.e., transitions). Compared
to the full power of Turing machines, there are two restrictions, things that a
finite state automaton cannot do

e it moves on one direction only (left-to-right)
e it is read-only.

All non-finite state machines have some additional memory they can use (be-
sides qo,...,qn € Q). Push-down automata for example have additionally a
stack, a Turing machine is allowed to write freely (= moving not only to the
right, but back to the left as well) on the tape, thus using it as external memory.

2.3.2 FSA

Definition 2.3.1 (FSA). A FSA A over an alphabet X is a tuple (3,Q, I, F,)

(: finite set of states
I <@, Fc@: initial and final states.
0 € @ x X x @ transition relation

« final states: also called accepting states

o transition relation: can equivalently be seen as function ¢ : Q xX — 29: for
each state and for each letter, give back the set of sucessor states (which
may be empty)

e more suggestive notation: ¢; 5 g2 for (q1,a,q2) €6

o we also use freely —self-evident, we hope— things like

a b
q1— 42— 43

2Historically, design of electronic circuitry (not yet chip-based, though) was one of the
early very important applications of finite-state machines.

2 Scanning
2.3.3 FSA as scanning machine?

o FSA have slightly unpleasant properties when considering them as de-
cribing an actual program (i.e., a scanner procedure/lexer)
« given the “theoretical definition” of acceptance:

The automaton eats one character after the other, and, when reading a letter,
it moves to a successor state, if any, of the current state, depending on the
character at hand.

« 2 problematic aspects of FSA
— non-determinism: what if there is more than one possible successor
state?
— undefinedness: what happens if there’s no next state for a given
input
o the 2nd one is easily repaired, the 1st one requires more thought
e [1]: recogniser corresponds to DFA

Non-determinism

Sure, one could try backtracking, but, trust us, you don’t want that in a
scanner. And even if you think it’s worth a shot: how do you scan a program
directly from magnetic tape, as done in the bad old days? Magnetic tapes can
be rewound, of course, but winding them back and forth all the time destroys
hardware quickly. How should one scan network traffic, packets etc. on the
fly? The network definitely cannot be rewound. Of course, buffering the traffic
would be an option and doing then backtracking using the buffered traffic, but
maybe the packet-scanning-and-filtering should be done in hardware/firmware,
to keep up with today’s enormous traffic bandwith. Hardware-only solutions
have no dynamic memory, and therefore actually are ultimately finite-state
machine with no extra memory.

2.3.4 DFA: deterministic automata

Definition 2.3.2 (DFA). A deterministic, finite automaton A (DFA for short)
over an alphabet X is a tuple (2, Q, I, F,0)

o (: finite set of states
e I={i} €@Q, FcQ: initial and final states.
e 0:() x X — (@ transition function

« transition function: special case of transition relation:
— deterministic

2 Scanning

— left-total'® (“complete”)

2.3.5 Meaning of an FSA

The intended meaning of an FSA over an alphabet X is the set of all the
finite words, the automaton accepts.

Definition 2.3.3 (Accepting words and language of an automaton). A word
C1Ca ... cp, With ¢; € X is accepted by automaton A over X, if there exists states
q0,q2, - - -, qn from @ such that

c1 c2 c3 Cn
G —q@ —q—> ... d4pn-1—>(qn,

and were ¢y € I and ¢, € F'. The language of an FSA A, written L(A), is the
set of all words that A accepts.

2.3.6 FSA example

a
a
@O X
b
b
2.3.7 Example: identifiers
identifier = letter(letter | digit)* (2.13)

13That means, for each pair ¢, a from @x¥, 6(g,a) is defined. Some people call an automaton
where § is not a left-total but a determinstic relation (or, equivalently, the function § is
not total, but partial) still a deterministic automaton. In that terminology, the DFA as
defined here would be determinstic and total.

2 Scanning
2.3 DFA

letter

. letter
—

digit

letter

letter

—>(start
0

ther
GHH’ digit
any

o transition function/relation § not completely defined (= partial function)

2.3.8 Automata for numbers: natural numbers

digit
nat

[0-9] (2.14)
digit*

digit

< > digit

2 Scanning

Remarks
One might say, it’s not really the natural numbers, it’s about a decimal notation
of natural numbers (as opposed to other notations, for example Roman numeral

notation). Note also that initial zeroes are allowed here. It would be easy to
disallow that.

2.3.9 Signed natural numbers

signednat = (+|-)nat | nat (2.15)

digit

digit

Remarks

Again, the automaton is deterministic. It’s easy enough to come up with
this automaton, but the non-deterministic one is probably more straightfor-
ward to come by with. Basically, one informally does two “constructions”,
the “alternative” which is simply writing “two automata”, i.e., one automaton
which consists of the union of the two automata, basically. In this example, it
therefore has two initial states (which is disallowed obviously for deterministic
automata). Another implicit construction is the “sequential composition”.

2.3.10 Signed natural numbers: non-deterministic

digit
—
digit

-O O
digit

2 Scanning
2.3 DFA

2.3.11 Fractional numbers

frac = signednat(”."nat)? (2.16)

digit digit

digit
OTO=O-0=0

2.3.12 Floats

digit = [0-9] (2.17)
nat = digit"
signednat = (+|-)nat | nat
frac = signednat(”.”nat)?

float = frac(E signednat)?

« Note: no (explicit) recursion in the definitions
» note also the treatment of digit in the automata.

2.3.13 DFA for floats

28 2 Scanning
2.4 Implementation of DFA

2.3.14 DFAs for comments

Pascal-style

OO0

C, C**, Java

other

OO0

other

2.4 Implementation of DFA

2.4.1 Repeat frame: Example: identifiers

2.4.2 Implementation of DFA (1)

letter

. letter [other]
_)

digit

2 Scanning 29
2.4 Implementation of DFA

Unlike the previous automaton, this one is deterministic, but it’s not total.
The transition function is only partial. The “missing” transitions are often not
shown (the make the pictures more compact). It is then implicitly assumed,
that encountering a character not covered by a transition leads to some extra
“error” state (which also is not shown).

The [] around the transition other at the end means that the scanner does not
move forward in the input there (but the automaton proceeds to the accepting
state). Note also that the accepting state has changed. Longest prefix.

2.4.3 Implementation of DFA (1): “code”

{ starting state }

if the next character is a letter
then
advance the input;
{ now in state 2 }
while the next character is a letter or digit
do
advance the input;
{ stay in state 2 }
end while;
{ go to state 3, without advancing input }
accept;
else
{ error or other cases }
end

2.4.4 Explicit state representation

state := 1 { start }
while state = 1 or 2
do
case state of
1: case input character of
letter: advance the input;
state = 2
else state := { error or other };
end case;
2: case input character of
letter ,digit: advance the input;
state := 2; { actually unessessary }

30 2 Scanning
2.4 Implementation of DFA

else state := 3;
end case;
end case;
end while;
if state = 3 then accept else error;

2.4.5 Table representation of a DFA

state IHI}E‘; letter digit other
1 2
3

2.4.6 Better table rep. of the DFA

state miﬁ: letter digit other accepting
L 2 no
2 22 B o
3 yes

add info for

e accepting or not
(13

e “ non-advancing ” transitions
— here: 3 can be reached from 2 via such a transition

2.4.7 Table-based implementation

state := 1 { start }
ch := next input character;
while not Accept[state] and not error(state)
do
while state = 1 or 2
do
newstate := T[state ,ch];

{if Advance[state ,ch]
then ch:=next input character };
state := newstate

end while;

if Accept [state] then accept;

2 Scanning

2.5 NFA

2.5.1 Non-deterministic FSA

Definition 2.5.1 (NFA (with e transitions)). A non-deterministic finite-state
automaton (NFA for short) A over an alphabet X is a tuple (X,Q, 1, F,J),
where

e (Q: finite set of states
o« 1@, Fc(Q: initial and final states.
o 0:(Q)xX — 29 transition function

In case, one uses the alphabet ¥ + {€}, one speaks about an NFA with e-
transitions.

o in the following: NFA mostly means, allowing € transitions'4

o ¢ treated differently than the “normal” letters from X.

e § can equivalently be interpreted as relation: § € @ x X x () (transition
relation labelled by elements from X3).

Finite state machines

Remark 7 (Terminology (finite state automata)). There are slight variations
in the definition of (deterministic resp. non-deterministic) finite-state au-
tomata. For instance, some definitions for non-deterministic automata might
not use e-transitions, i.e., defined over 3, not over ¥ + {€}. Another word for
FSAs are finite-state machines. Chapter 2 in [4] builds in e-transitions into
the definition of NFA, whereas in Definition 2.5.1, we mention that the NFA
is not just non-deterministic, but “also” allows those specific transitions. Of
course, e-transitions lead to non-determinism as well, in that they correspond
to “spontaneous” transitions, not triggered and determined by input. Thus, in
the presence of e-transition, and starting at a given state, a fized input may
not determine in which state the automaton ends up in.

Deterministic or non-deterministic FSA (and many, many variations and ez-
tensions thereof) are widely used, not only for scanning. When discussing
scanning, e-transitions come in handy, when translating reqular expressions to
FSA, that’s why [4] directly builds them in.

147t does not matter much anyhow, as we will see.

32 2 Scanning
2.6 From regular expressions to DFAs (Thompson’s construction)

2.5.2 Language of an NFA

» remember £(A) (Definition 2.3.3 on page 24)

« applying definition directly to ¥ + {€}: accepting words “containing” let-
ters €

o as said: special treatment for e-transitions/e-“letters”. e rather represents
absence of input character/letter.

Definition 2.5.2 (Acceptance with e-transitions). A word w over alphabet %
is accepted by an NFA with e-transitions, if there exists a word w’ which is
accepted by the NFA with alphabet ¥ + {€} according to Definition 2.3.3 and
where w is w’ with all occurrences of € removed.

Alternative (but equivalent) intuition

A reads one character after the other (following its transition relation). If in a
state with an outgoing e-transition, A can move to a corresponding successor
state without reading an input symbol.

2.5.3 NFA vs. DFA

o NFA: often easier (and smaller) to write down, esp. starting from a regular
expression
o non-determinism: not immediately transferable to an algo

N

2.6 From regular expressions to DFAs
(Thompson’s construction)

2.6.1 Why non-deterministic FSA?

Task: recognize :=, <=, and = as three different tokens:

2 Scanning 33
2.6 From regular expressions to DFAs (Thompson's construction)

—>O—>O—:>© return ASSIGN
—>O—<>O—:>© return LE

—>O—:>© return EQ

2.6.2 FSA (1-2)

O—:>© return ASSIGN

O——0O retumn LE

@ return EQ

2.6.3 What about the following 3 tokens?

—>O—<>O—=>© return LE
—>O—<>O—>>© return NE

—>O—<>© return LT

2 Scanning

2.6 From regular expressions to DFAs (Thompson’s construction)

2.6.4 Non-det FSA (2-2)

return LE

<O—>@ return NE

return LT

2.6.5 Non-det FSA (2-3)

@ return LE

—>O—<> Z @ return NE

@ return LT

2.6.6 Regular expressions - NFA

« needed: a systematic translation (= algo, best an efficient one)
« conceptually easiest: translate to NFA (with e-transitions)

— postpone determinization for a second step

— (postpone minimization for later, as well)

Compositional construction [?]

Design goal: The NFA of a compound regular expression is given by taking the
NFA of the immediate subexpressions and connecting them appropriately.

2 Scanning 3
2.6 From regular expressions to DFAs (Thompson's construction) 5

Compositionality

o construction slightly! simpler, if one uses automata with one start and
one accepting state

= ample use of e-transitions

Compositionality

Remark 8 (Compositionality). Compositional concepts (definitions, construc-
tions, analyses, translations ...) are immensely important and pervasive in
compiler techniques (and beyond). One example already encountered was the
definition of the language of a regular expression (see Definition 2.2.4 on
page 18). The design goal of a compositional translation here is the under-
lying reason why to base the construction on non-deterministic machines.

Compositionality is also of practical importance (“component-based software”).
In connection with compilers, separate compilation and (static / dynamic)
linking (i.e. “composing”) of separately compiled “units” of code is a crucial
feature of modern programming languages/compilers. Separately compilable
units may vary, sometimes they are called modules or similarly. Part of the
success of C was its support for separate compilation (and tools like make that
helps organizing the (re-)compilation process). For fairness sake, C was by
far not the first major language supporting separate compilation, for instance
FORTRAN II allowed that, as well, back in 1958.

Btw., Ken Thompson, the guy who first described the regexpr-to-NFA construc-
tion discussed here, is one of the key figures behind the UNIX operating system
and thus also the C language (both went hand in hand). Not suprisingly, con-
sidering the material of this section, he is also the author of the grep -tool
(“globally search a reqular expression and print”). He got the Turing-award
(and many other honors) for his contributions. O

151t does not matter much, though.

2 Scanning

2.6 From regular expressions to DFAs (Thompson’s construction)

2.6.7 Illustration for e-transitions

O——>0O——© return ASSIGN

—><O—<>O—>© return LE
—

@ return EQ

2.6.8 Thompson’s construction: basic expressions

basic (= non-composed) regular expressions: €, @&, a (for all a €X)

Remarks

The @ is slightly odd: it’s sometimes not part of regular expressions. If it’s
lacking, then one cannot express the empty language, obviously. That’s not
nice, because then the regular languages are not closed under complement.
Also: obviously, there exists an automaton with an empty language. Therefore,
@ should be part of the regular expressions, even if practically it does not play
much of a role.

2 Scanning
2.6 From regular expressions to DFAs (Thompson's construction)

2.6.9 Thompson’s construction: compound expressions

O T € O .S, @

.5 /O T O\
o

2.6.10 Thompson’'s construction: compound expressions:

iteration

2 Scanning
2.7 Determinization

2.6.11 Example: ab|a

2.7 Determinization

2.7.1 Determinization: the subset construction
Main idea

« Given a non-det. automaton A. To construct a DFA A: instead of
backtracking: explore all successors “at the same time” =

« each state ¢’ in A: represents a subset of states from A

o Given a word w: “feeding” that to A leads to the state representing all
states of A reachable via w

2 Scanning

Remarks

o side remark: this construction, known also as powerset construction,
seems straightforward enough, but: analogous constructions works for
some other kinds of automata, as well, but for others, the approach does
not work.16

e origin: [5]

2.7.2 Some notation/definitions

Definition 2.7.1 (e-closure, a-successors). Given a state ¢, the e-closure of
q, written close.(a), is the set of states reachable via zero, one, or more e-
transitions. We write ¢, for the set of states, reachable from ¢ with one a-
transition. Both definitions are used analogously for sets of states.

e-closure

Remark 9 (e-closure). [4] does not sketch an algorithm but it should be clear
that the e-closure is easily implementable for a given state, resp. a given finite
set of states. Some textbooks also denote X instead of €, and consequently speak
of A-closure. And in still other contexts (mainly not in language theory and
recognizers), silent transitions are marked with T.

It may be obvious but: the set of states in the e-closure of a given state are not
“language-equivalent”. Howewver, the union of languages for all states from the
e-closure corresponds to the language accepted with the given state as initial
one. However, the language being accepted is not the property which is relevant
here in the determinization. The e-closure is needed to capture the set of all
states reachable by a given word. But again, the exact characterization of the
set need to be done carefully. The states in the set are also not equivalent wrt.
their reachability information: Obuviously, states in the e-closure of a given
state may be reached by more words. The set of reaching words for a given
state, however, is not in general the intersection of the sets of corresponding
words of the states in the closure. O

2.7.3 Transformation process: sketch of the algo

Input: NFA A over a given

16For some forms of automata, non-deterministic versions are strictly more expressive than
the deterministic one.

2 Scanning

Output: DFA A

L. the dnitial state: close (1), where I are the initial states of A
2. for a state Q' in A: the a-successor of @) is given by close.(Q,), i.e.,

Q = close(Qa) (2.18)

3. repeat step 2 for all states in A and all a € ¥, until no more states are
being added B
4. the accepting states in A: those containing at least one accepting state of

A

Note: [1]: slightly more “concrete” formulation using a work-list.

2.7.4 Example ab|a

— q abla

€ €
ool
— 2 b @ ab|a

2.7.5 Example: identifiers

Remember: regexpr for identifies from equation (2.13)

2 Scanning
2.8 Minimization

2.7.6 Identifiers: DFA

letter

0

{47 57 67 77 97 10}

letter

a@eﬂ‘fr (2,3,4,5,7, 1OD
digt

{47 57 77 8’ 97 10}
Udigit

letter | digit

2.8 Minimization
Minimization

 automatic construction of DFA (via e.g. Thompson): often many super-
fluous states
o goal: “combine” states of a DFA without changing the accepted language

1. Properties of the minimization algo

Canonicity: all DFA for the same language are transformed to the same
DFA

2 Scanning

Minimality: resulting DFA has minimal number of states

2. Remarks
o “side effects”: answers to equivalence problems
— given 2 DFA: do they accept the same language?
— given 2 regular expressions, do they describe the same language?
« modern version: [2].

Hopcroft’s partition refinement algo for minimization

o starting point: complete DFA (i.e., error-state possibly needed)
o first idea: equivalent states in the given DFA may be identified
« equivalent: when used as starting point, accepting the same language
» partition refinement:
— works “the other way around”
— instead of collapsing equivalent states:
x start by “collapsing as much as possible” and then,
x iteratively, detect mon-equivalent states, and then split a “col-
lapsed” state
* stop when no violations of “equivalence” are detected
e partitioning of a set (of states):
o worklist: data structure of to keep non-treated classes, termination if
worklist is empty

Partition refinement: a bit more concrete

o Initial partitioning: 2 partitions: set containing all accepting states F,
set containing all non-accepting states Q\F
e Loop do the following: pick a current equivalence class @); and a symbol
a
— if for all ¢ € Q;, 0(q,a) is member of the same class (); = consider
Q; as done (for now)
— else:

* split Q; into Q!,...Q% s.t. the above situation is repaired for
each Q! (but don’t split more than necessary).

x be aware: a split may have a “cascading effect”: other classes
being fine before the split of Q); need to be reconsidered = worklist
algo

o stop if the situation stabilizes, i.e., no more split happens (= worklist
empty, at latest if back to the original DFA)

2 Scanning
2.8 Minimization

Split in partition refinement: basic step

o before the split {q1,q2,...,q6}
« after the split on a: {Qb %@}, {Q?n 44, %}a {%}

1. Note

The pic shows only one letter a, in general one has to do the same con-
struction for all letters of the alphabet.

Again: DFA for identifiers

Completed automaton

letter

4,5,6,7,9,10}

letter

letter

2 Scanning

Minimized automaton (error state omitted)

letter
. letter
9
digit

Another example: partition refinement & error state

(a|e)b (2.19)

Partition refinement

error state added initial partitioning split after a

2 Scanning 45
2.9 Scanner implementations and scanner generation tools

End result (error state omitted again)

a

a@ b

2.9 Scanner implementations and scanner
generation tools

This last section contains only rather superficial remarks concerning how to
implement as scanner or lexer. A few more details can be found in [1, Section
2.5]. The oblig will include the implementation of a lexer/scanner.

2.9.1 Tools for generating scanners

o scanners: simple and well-understood part of compiler

« hand-coding possible

« mostly better off with: generated scanner

« standard tools lex / flex (also in combination with parser generators,
like yacc / bison

 variants exist for many implementing languages

o based on the results of this section

2.9.2 Main idea of (f)lex and similar

« output of lexer/scanner = input for parser
« programmer specifies regular expressions for each token-class and corre-
sponding actions!'” (and whitespace, comments etc.)

1"Tokens and actions of a parser will be covered later. For example, identifiers and digits as
described but the reg. expressions, would end up in two different token classes, where the
actual string of characters (also known as lezeme) being the value of the token attribute.

46 2 Scanning
2.9 Scanner implementations and scanner generation tools

o the spec. language offers some conveniences (extended regexpr with pri-
orities, associativities etc) to ease the task

« automatically translated to NFA (e.g. Thompson)

o then made into a deterministic DFA (“subset construction”)

« minimized (with a little care to keep the token classes separate)

 implement the DFA (usually with the help of a table representation)

2.9.3 Sample flex file (excerpt)

{DIGIT}+ {
printf("An integer: %s (%d)\n”, yytext,
atoi(yytext));

1

2 || DIGIT [0-9]

3| ID [a—z][a-20-9]*
4

5 | %%

6

7

8

[
[=2)

}

{DIGIT}+".” {DIGIT }
printf(”A float: %s (%g)\n”, yytext,
atof (yytext));
}

if |then|begin|end|procedure | function {
printf(7A keyword: %s\n”, yytext);

}

e e s
0 N O U W N =

[
©

Bibliography

[1] Cooper, K. D. and Torczon, L. (2004). Engineering a Compiler. Elsevier.

[2] Hopcroft, J. E. (1971). An nlogn algorithm for minimizing the states in
a finite automaton. In Kohavi, Z., editor, The Theory of Machines and
Computations, pages 189-196. Academic Press, New York.

[3] Kleene, S. C. (1956). Representation of events in nerve nets and finite
automata. In Automata Studies, pages 3-42. Princeton University Press.

[4] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS
Publishing.

[5] Rabin, M. and Scott, D. (1959). Finite automata and their decision prob-
lems. IBM Journal of Research Developments, 3:114-125.

Index

>, 10
L(r) (language of r), 17

accepting state, 22

alphabet, 10
ordered, 21

automaton
accepting, 24
language, 24
semantics, 24

blank character, 3

character, 3

classification, 6

comment, 28

compiler compiler, 9
context-free grammar, 15, 17

DFA, 2
definition, 23

digit, 25

disk head, 4

encoding, 3

final state, 22
floating point numbers, 27
Fortan, 6
Fortran, 5
FSA, 2, 21, 22
definition, 22
scanner, 23
semantics, 24

I/O automaton, 22
identifier, 3, 8

inite-state automaton, 21
initial state, 22
irrational number, 12

keyword, 3, 6
Kripke structure, 22

labelled transition system, 22

Index

language, 10

of an automaton, 24
letter, 10
lexem

and token, 7
lexer, 3

classification, 7
lexical scanner, 3

Mealy machine, 22
meaning, 24
Moore machine, 22

NFA, 2
non-determinism, 23
number
floating point, 27
fractional, 27
numeric costants, 8

parser generator, 9
pragmatics, 6, 19
priority, 9

rational language, 14

rational number, 12

regular definition, 21

regular expression, 2, 9
language, 17
meaning, 17
named, 21
precedence, 18
semanticsx, 18
syntax, 18

regular expressions, 14

reserved word, 3, 6

scanner, 2, 3
screener, 6
semantics, 24
state diagram, 22
string literal, 8
successor state, 22

Index

symbol, 10
symbol table, 10
symbols, 10

token, 7

tokenizer, 3

transition function, 22
transition relation, 22
Turing machine, 4

undefinedness, 23

whitespace, 3, 6
word, 10
vs. string, 11

	Contents
	Front end
	Scanning
	Intro
	Regular expressions
	DFA
	Implementation of DFA
	NFA
	From regular expressions to DFAs (Thompson's construction)
	Determinization
	Minimization
	Scanner implementations and scanner generation tools

