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3
Grammars
Chapter

What
is it

about?
Learning Targets of this Chapter
1. (context-free) grammars +

BNF
2. ambiguity and other properties
3. terminology: tokens, lexemes,
4. different trees connected to

grammars/parsing
5. derivations, sentential forms

The chapter corresponds to [2,
Section 3.1–3.2] (or [3, Chapter
3]).
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3.1 Introduction

Bird’s eye view of a parser

sequence
of to-
kens

Parser
tree rep-
resenta-
tion

• check that the token sequence correspond to a syntactically correct pro-
gram
– if yes: yield tree as intermediate representation for subsequent phases
– if not: give understandable error message(s)

• we will encounter various kinds of trees
– derivation trees (derivation in a (context-free) grammar)
– parse tree, concrete syntax tree
– abstract syntax trees

• mentioned tree forms hang together, dividing line a bit fuzzy
• result of a parser: typically AST
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(Context-free) grammars

• specifies the syntactic structure of a language
• here: grammar means CFG
• G derives word w

Parsing

Given a stream of “symbols” w and a grammar G, find a derivation from G
that prodices w

The slide talks about deriving “words”. In general, words are finite sequences
of symbols from a given alphabet (as was the case for regular languages). In
the concrete picture of a parser, the words are sequences of tokens, which
are the elements that come out of the scanner. A successful derivation leads
to tree-like representations. There a various slightly different forms of trees
connected with grammars and parsing, which we will later see in more detail;
for now we just illustrated such tree-like structures, without distinguishing
between (abstract) syntax trees and parse trees.

Sample syntax tree

program
stmts
stmt

assign-stmt
expr
+

var
y

var
x

var
x

decs
val=vardec

Syntax tree

The displayed syntax tree is meant “impressionistic” rather then formal. Nei-
ther is it a sample syntax tree of a real programming language, nor do we
want to illustrate for instance special features of an abstract syntax tree vs. a
concrete syntax tree (or a parse tree). Those notions are closely related and
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corresponding trees might all looks similar to the tree shown. There might,
however, be subtle conceptual and representational differences in the various
classes of trees. Those are not relevant yet, at the beginning of the section.

Natural-language parse tree

S

NP

DT

The

N

dog

VP

V

bites

NP

NP

the

N

man

“Interface” between scanner and parser

• remember: task of scanner = “chopping up” the input char stream (throw
away white space etc) and classify the pieces (1 piece = lexeme)

• classified lexeme = token
• sometimes we use ⟨integer, ”42”⟩

– integer: “class” or “type” of the token, also called token name
– ”42” : value of the token attribute (or just value). Here: directly the
lexeme (a string or sequence of chars)

• a note on (sloppyness/ease of) terminology: often: the token name is
simply just called the token

• for (context-free) grammars: the token (symbol) corrresponds there to
terminal symbols (or terminals, for short)

Token names and terminals

Remark 1 (Token (names) and terminals). We said, that sometimes one uses
the name “token” just to mean token symbol, ignoring its value (like “42” from
above). Especially, in the conceptual discussion and treatment of context-free
grammars, which form the core of the specifications of a parser, the token
value is basically irrelevant. Therefore, one simply identifies “tokens = ter-
minals of the grammar” and silently ignores the presence of the values. In an



4 3 Grammars
3.2 Context-free grammars and BNF notation

implementation, and in lexer/parser generators, the value ”42” of an integer-
representing token must obviously not be forgotten, though . . .The grammar
maybe the core of the specification of the syntactical analysis, but the result of
the scanner, which resulted in the lexeme ”42” must nevertheless not be thrown
away, it’s only not really part of the parser’s tasks.

Notations

Remark 2. Writing a compiler, especially a compiler front-end comprising
a scanner and a parser, but to a lesser extent also for later phases, is about
implementing representation of syntactic structures. The slides here don’t im-
plement a lexer or a parser or similar, but describe in a hopefully unambiguous
way the principles of how a compiler front end works and is implemented. To
describe that, one needs “language” as well, such as English language (mostly
for intuitions) but also “mathematical” notations such as regular expressions,
or in this section, context-free grammars. Those mathematical definitions have
themselves a particular syntax one can see them as formal domain-specific
languages to describe (other) languages. One faces therefore the (unavoidable)
fact that one deals with two levels of languages: the language that is described
(or at least whose syntax is described) and the language used to descibe that
language. The situation is, of course, analogous when implementing a lan-
guage: there is the language used to implement the compiler on the one hand,
and the language for which the compiler is written for. For instance, one may
choose to implement a C++-compiler in C. It may increase the confusion, if one
chooses to write a C compiler in C . . . . Anyhow, the language for describing
(or implementing) the language of interest is called the meta-language, and
the other one described therefore just “the language”.

When writing texts or slides about such syntactic issues, typically one wants
to make clear to the reader what is meant. One standard way are typographic
conventions, i.e., using specific typographic fonts. I am stressing “nowadays”
because in classic texts in compiler construction, sometimes the typographic
choices were limited.

3.2 Context-free grammars and BNF notation

Grammars

• in this chapter(s): focus on context-free grammars
• thus here: grammar = CFG
• as in the context of regular expressions/languages: language = (typically

infinite) set of words
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• grammar = formalism to unambiguously specify a language
• intended language: all syntactically correct programs of a given progam-

ming language

Slogan

A CFG describes the syntax of a programming language. 1

Note: a compiler might reject some syntactically correct programs, whose
violations cannot be captured by CFGs. That is done by subsequent phases.
For instance, the type checker may reject syntactically correct programs that
are ill-typed. The type checker is an important part from the semantic phase
(or static analysis phase/. A typing discipline is not a syntactic property
of a language (in that it cannot captured most commonly by a context-free
grammar), it’s therefore a “semantics” property.

Remarks on grammars

Sometimes, the word “grammar” is synonymously for context-free grammars,
as CFGs are so central. However, context-sensitive and Turing-expressive
grammars exists, both more expressive than CFGs. Also a restricted class
of CFG correspond to regular expressions/languages. Seen as a grammar, reg-
ular expressions correspond so-called left-linear grammars (or alternativelty,
right-linear grammars), which are a special form of context-free grammars.

Context-free grammar

Definition 3.2.1 (CFG). A context-free grammar G is a 4-tupleG = (ΣT ,ΣN , S,P ):

1. 2 disjoint finite alphabets of terminals ΣT and
2. non-terminals ΣN

3. 1 start-symbol S ∈ ΣN (a non-terminal)
4. productions P = finite subset of ΣN × (ΣN +ΣT )∗

• terminal symbols: corresponds to tokens in parser = basic building blocks
of syntax

• non-terminals: (e.g. “expression”, “while-loop”, “method-definition” . . . )
• grammar: generating (via “derivations”) languages
• parsing: the inverse problem
⇒ CFG = specification

1And some say, regular expressions describe its microsyntax.
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Further notions

• sentence and sentential form
• productions (or rules)
• derivation
• language of a grammar L(G)
• parse tree

Those notions will be explained with the help of examples.

BNF notation

• popular & common format to write CFGs, i.e., describe context-free lan-
guages

• named after pioneering (seriously) work on Algol 60
• notation to write productions/rules + some extra meta-symbols for con-

venience and grouping

Slogan: Backus-Naur form

What regular expressions are for regular languages is BNF for context-free
languages.

“Expressions” in BNF

exp → exp op exp ∣ ( exp ) ∣ number
op → + ∣ − ∣ ∗

(3.1)

• “→” indicating productions and “ ∣ ” indicating alternatives 2

• convention: terminals written boldface, non-terminals italic
• also simple math symbols like “+” and “(′′ are meant above as terminals
• start symbol here: exp
• remember: terminals like number correspond to tokens, resp. token

classes. The attributes/token values are not relevant here.

2The grammar consists of 6 productions/rules, 3 for expr and 3 for op, the ∣ is just for
convenience. Side remark: Often also ∶∶= is used for →.

https://en.wikipedia.org/wiki/ALGOL_60
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Terminals

Conventions are not 100% followed, often bold fonts for symbols such as +
or ( are unavailable or not easily visible. The alternative using, for instance,
boldface “identifiers” like PLUS and LPAREN looks ugly. Some books would
write ’+’ and ’(’.

In a concrete parser implementation, in an object-oriented setting, one might
choose to implement terminals as classes (resp. concrete terminals as instances
of classes). in that case, a class name + is typically not available and the class
might be named Plus. Later we will have a look at how to systematically
implement terminals and non-terminals, and having a class Plus for a non-
terminal ‘+’ etc. is a systematic way of doing it (maybe not the most efficient
one available though.)

Most texts don’t follow conventions so slavishly and hope for an intuitive
understanding by the educated reader, that + is a terminal in a grammar, as
it’s not a non-terminal, which are written here in italics.

Different notations

• BNF: notationally not 100% “standardized” across books/tools
• “classic” way (Algol 60):

<exp> : := <exp> <op> <exp>
| ( <exp> )
| NUMBER

<op> : := + | − | ∗

• Extended BNF (EBNF) and yet another style

exp → exp ( ” + ” ∣ ” − ” ∣ ” ∗ ” ) exp
∣ ”(” exp ”)” ∣ ”number”

(3.2)

• note: parentheses as terminals vs. as metasymbols

“Standard” BNF

Specific and unambiguous notation is important, in particular if you imple-
ment a concrete language on a computer. On the other hand: understanding
the underlying concepts by humans is at least equally important. In that
way, bureaucratically fixed notations may distract from the core, which is un-
derstanding the principles. XML, anyone? Most textbooks (and we) rely on
simple typographic conventions (boldfaces, italics). For “implementations” of
BNF specification (as in tools like yacc), the notations, based mostly on ASCII,
cannot rely on such typographic conventions.
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Syntax of BNF

BNF and its variations is a notation to describe “languages”, more precisely
the “syntax” of context-free languages. Of course, BNF notation, when exactly
defined, is a language in itself, namely a domain-specific language to describe
context-free languages. It may be instructive to write a grammar for BNF in
BNF, i.e., using BNF as meta-language to describe BNF notation (or regular
expressions). Is it possible to use regular expressions as meta-language to
describe regular expression?

Different ways of writing the same grammar

• directly written as 6 pairs (6 rules, 6 productions) from ΣN ×(ΣN ∪ΣT )∗,
with “→” as nice looking “separator”:

exp → exp op exp
exp → ( exp )
exp → number
op → +

op → −

op → ∗

(3.3)

• choice of non-terminals: irrelevant (except for human readability):

E → E O E ∣ (E ) ∣ number
O → + ∣ − ∣ ∗

(3.4)

• still: we count 6 productions

Grammars as language generators

Deriving a word:

Start from start symbol. Pick a “matching” rule to rewrite the current word
to a new one; repeat until terminal symbols, only.

• non-deterministic process
• rewrite relation for derivations:

– one step rewriting: w1⇒ w2
– one step using rule n: w1⇒n w2
– many steps: ⇒∗ etc.
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By non-determinisic we mean the following. One can distinguish 2 forms of
non-determinism here: 1) a sentential form contains (most often) more than
one non-terminal. In that situation, one has the choice of expanding one non-
terminal or the other. 2) Besides that, there may be more than one production
or rule for a given non-terminal. Again, one has a choice.

As far as 1) is concerned. whether one expands one symbol or the other leads
to different derivations, but won’t lead to different derivation trees or parse
trees in the end. Below, we impose a fixed discipline on where to expand.
That leads to left-most or right-most derivations.

Language of grammar G

L(G) = {s ∣ start ⇒∗ s and s ∈ Σ∗
T}

Example derivation for (number−number)∗number

exp ⇒ exp op exp
⇒ (exp)op exp
⇒ (exp op exp)op exp
⇒ (n op exp)op exp
⇒ (n−exp)op exp
⇒ (n−n)op exp
⇒ (n−n)∗exp
⇒ (n−n)∗n

• underline the “place” were a rule is used, i.e., an occurrence of the non-
terminal symbol is being rewritten/expanded

• here: leftmost derivation3

Rightmost derivation

exp ⇒ exp op exp
⇒ exp op n
⇒ exp∗n
⇒ (exp op exp)∗n
⇒ (exp op n)∗n
⇒ (exp−n)∗n
⇒ (n−n)∗n

3We’ll come back to that later, it will be important.
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• other (“mixed”) derivations for the same word possible

Some easy requirements for reasonable grammars

• all symbols (terminals and non-terminals): should occur in a some word
derivable from the start symbol

• words containing only non-terminals should be derivable
• an example of a silly grammar G (start-symbol A)

A → Bx
B → Ay
C → z

• L(G) = ∅
• those “sanitary conditions”: very minimal “common sense” requirements

Remark 3. There can be further conditions one would like to impose on gram-
mars besides the one sketched. A CFG that derives ultimately only 1 word of
terminals (or a finite set of those) does not make much sense either. There are
further conditions on grammar characterizing there usefulness for parsing. So
far, we mentioned just some obvious conditions of “useless” grammars or “de-
fects” in a grammer (like superfluous symbols). “Usefulness conditions” may
refer to the use of ε-productions and other situations. Those conditions will be
discussed when the lecture covers parsing (not just grammars).

Remark 4 (“Easy” sanitary conditions for CFGs). We stated a few conditions
to avoid grammars which technically qualify as CFGs but don’t make much
sense; there are easier ways to describe an empty set . . .

There’s a catch, though: it might not immediately be obvious that, for a given
G, the question L(G) =? ∅ is decidable!

Whether a regular expression describes the empty language is trivially decidable
immediately. Whether or not a finite state automaton descibes the empty lan-
guage or not is, if not trivial, then at least a very easily decidable question. For
context-sensitive grammars (which are more expressive than CFG but not yet
Turing complete), the emptyness question turns out to be undecidable. Also,
other interesting questions concerning CFGs are, in fact, undecidable, like:
given two CFGs, do they describe the same language? Or: given a CFG, does
it actually describe a regular language? Most disturbingly perhaps: given a
grammar, it’s undecidable whether the grammar is ambiguous or not. So there
are interesting and relevant properties concerning CFGs which are undecidable.
Why that is, is not part of the pensum of this lecture (but we will at least have
to deal with the important concept of grammatical ambiguity later). Coming
back for the initial question: fortunately, the emptyness problem for CFGs is
decidable.
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Questions concerning decidability may seem not too relevant at first sight. Even
if some grammars can be constructed to demonstrate difficult questions, for
instance related to decidability or worst-case complexity, the designer of a lan-
guage will not intentionally try to achieve an obscure set of rules whose status
is unclear, but hopefully strive to capture in a clear manner the syntactic prin-
ciples of an equally hopefully clearly structured language. Nonetheless: gram-
mars for real languages may become large and complex, and, even if conceptu-
ally clear, may contain unexpected bugs which makes them behave unexpectedly
(for instance caused by a simple typo in one of the many rules).

In general, the implementor of a parser will often rely on automatic tools
(“parser generators”) which take as an input a CFG and turns it in into an
implementation of a recognizer, which does the syntactic analysis. Such tools
obviously can reliably and accurately help the implementor of the parser au-
tomatically only for problems which are decidable. For undecidable problems,
one could still achieve things automatically, provided one would compromise
by not insisting that the parser always terminates (but that’s generally is seen
as unacceptable), or at the price of approximative answers. It should also
be mentioned that parser generators typcially won’t tackle CFGs in their full
generality but are tailor-made for well-defined and well-understood subclasses
thereof, where efficient recognizers are automaticlly generatable. In the part
about parsing, we will cover some such classes.

Parse tree

• derivation: if viewed as sequence of steps ⇒ linear “structure”
• order of individual steps: irrelevant
• ⇒ order not needed for subsequent steps
• parse tree: structure for the essence of derivation
• also called concrete syntax tree.4

1 exp

2 exp

n

3 op

+

4 exp

n

• numbers in the tree
– not part of the parse tree, indicate order of derivation, only
– here: leftmost derivation

4There will be abstract syntax trees, as well.
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Another parse tree (numbers for rightmost derivation)

1 exp

4 exp

(
5 exp

8 exp

n

7 op

−

6 exp

n

)

3 op

∗

2 exp

n

Abstract syntax tree

• parse tree: contains still unnecessary details
• specifically: parentheses or similar, used for grouping
• tree-structure: can express the intended grouping already
• remember: tokens contain also attribute values (e.g.: full token for token

class n may contain lexeme like ”42” . . . )
1 exp

2 exp

n

3 op

+

4 exp

n

+

3 4

AST vs. CST

• parse tree
– important conceptual structure, to talk about grammars and deriva-
tions. . . ,

– most likely not explicitly implemented in a parser
• AST is a concrete data structure

– important IR of the syntax (for the language being implemented)
– written in the meta-language used in the implementation
– therefore: nodes like + and 3 are no longer (necessarily and directly)
tokens or lexemes

– concrete data stuctures in the meta-language (C-structs, instances of
Java classes, or what suits best)

– the figure is meant schematic, only
– produced by the parser, used by later phases
– note also: we use 3 in the AST, where lexeme was "3"
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⇒ at some point, the lexeme string (for numbers) is translated to a
number in the meta-language (typically already by the lexer)

Plausible schematic AST (for the other parse tree)

*

-

34 3

42

• this AST: rather “simplified” version of the CST
• an AST closer to the CST (just dropping the parentheses): in principle

nothing “wrong” with it either

Conditionals

Conditionals G1

stmt → if -stmt ∣ other
if -stmt → if ( exp ) stmt

∣ if ( exp ) stmt else stmt
exp → 0 ∣ 1

(3.5)

Parse tree

if ( 0 ) other else other

stmt

if -stmt

if ( exp

0

) stmt

other

else stmt

other
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Another grammar for conditionals

Conditionals G2

stmt → if -stmt ∣ other
if -stmt → if ( exp ) stmt else−part

else−part → else stmt ∣ ε
exp → 0 ∣ 1

(3.6)

Abbreviation

ε = empty word

A further parse tree + an AST

stmt

if -stmt

if ( exp

0

) stmt

other

else−part

else stmt

other

COND

0 other other

A potentially missing else part may be represented by null-“pointers” in lan-
guages like Java
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3.3 Ambiguity

Before we mentioned some “easy” conditions to avoid “silly” grammars, with-
out going into it. Ambiguity is more important and complex. Roughly speak-
ing, a grammar is ambiguous, if there exist sentences for which there are two
different parse trees. That’s in general highly undesirable, as it means there
are sentences with different syntactic interpretations (which therefore may ul-
timately interpreted differently). That is generally a no-no, but even if one
would accept such a language definition, parsing would be problematic, as it
would involve backtracking trying out different possible interpretations dur-
ing parsing (which would also be a no-no for reasons of efficiency) In fact,
later, when dealing with actual concrete parsing procedures, they cover cer-
tain specific forms of CFG ( with names like LL(1), LR(1), etc.), which are in
particular non-ambiguous. To say it differently: the fact that a grammar is
parseable by some, say, LL(1) top-down parser (which does not do backtrack-
ing) implies directly that the grammar is unambiguous. Similar for the other
classes we’ll cover.

Note also: given an ambiguous grammar, it is often possible to find a different
“equivalent” grammar that is unambiguous. Even if such reformulations are
often possible, it’s not guaranteed: there are context-free languages which do
have an ambiguous grammar, but not unambigous one. In that case, one
speaks of an ambiguous context-free language. We concentrate on ambiguity
of grammars.

Tempus fugit . . .

picture source: wikipedia
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Ambiguous grammar

Definition 3.3.1 (Ambiguous grammar). A grammar is ambiguous if there
exists a word with two different parse trees.

Remember grammar from equation (3.1):

exp → exp op exp ∣ ( exp ) ∣ number
op → + ∣ − ∣ ∗

Consider:

n−n∗n

2 CTS’s

exp

exp

exp

n

op

−

exp

n

op

∗

exp

n

exp

exp

n

op

−

exp

exp

n

op

∗

exp

n

2 resulting ASTs

∗

−

34 3

42

−

34 ∗

3 42

different parse trees ⇒ different5 ASTs ⇒ different5 meaning
5At least in many cases.
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Side remark: different meaning

The issue of “different meaning” may in practice be subtle: is (x + y) − z the
same as x + (y − z)? In principle yes, but what about MAXINT ?

Precendence & associativity

• one way to make a grammar unambiguous (or less ambiguous)
• for instance:

binary op’s precedence associativity
+, − low left
×, / higher left
↑ highest right

• a ↑ b written in standard math as ab:

5 + 3/5 × 2 + 4 ↑ 2 ↑ 3 =
5 + 3/5 × 2 + 423 =
(5 + ((3/5 × 2)) + (4(23))) .

• mostly fine for binary ops, but usually also for unary ones (postfix or
prefix)

Unambiguity without imposing explicit associativity and
precedence

• removing ambiguity by reformulating the grammar
• precedence for op’s: precedence cascade

– some bind stronger than others (∗ more than +)
– introduce separate non-terminal for each precedence level (here: terms
and factors)

Expressions, revisited

• associativity
– left-assoc: write the corresponding rules in left-recursive manner, e.g.:

exp → exp addop term ∣ term

– right-assoc: analogous, but right-recursive
– non-assoc:

exp → term addop term ∣ term
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factors and terms

exp → exp addop term ∣ term
addop → + ∣ −

term → term mulop factor ∣ factor
mulop → ∗

factor → ( exp ) ∣ number

(3.7)

34 − 3 ∗ 42

exp

exp

term

factor

n

addop

−

term

term

factor

n

mulop

∗

factor

n

34 − 3 − 42

exp

exp

exp

term

factor

n

addop

−

term

factor

n

addop

−

term

factor

n

Ambiguity

As mentioned, the question whether a given CFG is ambiguous or not is unde-
cidable. Note also: if one uses a parser generator, such as yacc or bison (which
cover a practically usefull subset of CFGs), the resulting recognizer is always
deterministic. In case the construction encounters ambiguous situations, they
are “resolved” by making a specific choice. Nonetheless, such ambiguities in-
dicate often that the formulation of the grammar (or even the language it
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defines) has problematic aspects. Most programmers as “users” of a program-
ming language may not read the full BNF definition, most will try to grasp
the language looking at sample code pieces mentioned in the manual, etc. And
even if they bother studying the exact specification of the system, i.e., the full
grammar, ambiguities are not obvious (after all, it’s undecidable, at least the
problem in general). Hidden ambiguities, “resolved” by the generated parser,
may lead misconceptions as to what a program actually means. It’s similar to
the situation, when one tries to study a book with arithmetic being unaware
that multiplication binds stronger than addition. Without being aware of that
, not much will make sense. A parser implementing such grammars may make
consistent choices, but the programmer using the compiler may not be aware
of them. At least the compiler writer, responsible for designing the language,
will be informed about “conflicts” in the grammar and a careful designer will
try to get rid of them. This may be done by adding associativities and prece-
dences (when appropriate) or reformulating the grammar, or even reconsider
the syntax of the language. While ambiguities and conflicts are generally a bad
sign, arbitrarily adding a complicated “precedence order” and “associativities”
on all kinds of symbols or complicate the grammar adding ever more separate
classes of nonterminals just to make the conflicts go away is not a real solu-
tion either. Chances are, that those parser-internal “tricks” will be lost on the
programmer as user of the language, as well. Sometimes, making the language
simpler (as opposed to complicate the grammar for the same language) might
be the better choice. That can typically be done by making the language more
verbose and reducing “overloading” of syntax. Of course, going overboard by
making groupings etc. of all constructs crystal clear to the parser, may also
lead to non-elegant designs. Lisp is a standard example, notoriously known
for its extensive use of parentheses. Basically, the programmer directly writes
down syntax trees, which certainly removes all ambiguities, but still, moun-
tains of parentheses are also not the easiest syntax for human consumption.
So it’s a balance.

But in general: if it’s enormously complex to come up with a reasonably unam-
bigous grammar for an intended language, chances are, that reading programs
in that language and intutively grasping what is intended may be hard for
humans, too.

Note also: since already the question, whether a given CFG is ambiguous or not
is undecidable, it should be clear, that the following question is undecidable as
well: given a grammar, can I reformulate it, still accepting the same language,
that it becomes unambiguous?
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Real life example
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Another example

Non-essential ambiguity

left-assoc

stmt-seq → stmt-seq ; stmt ∣ stmt
stmt → S

stmt-seq

stmt

S

; stmt-seq

stmt

S

; stmt-seq

stmt

S
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Non-essential ambiguity (2)

right-assoc representation instead

stmt-seq → stmt ; stmt-seq ∣ stmt
stmt → S

stmt-seq

stmt-seq

stmt-seq

stmt

S

; stmt

S

; stmt

S

Possible AST representations

Seq

S S S

Seq

S S S

Dangling else

Nested if’s

if (0 ) if (1 )other else other

Remember grammar from equation (3.5):

stmt → if -stmt ∣ other
if -stmt → if ( exp ) stmt

∣ if ( exp ) stmt else stmt
exp → 0 ∣ 1
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Should it be like this . . .

stmt

if -stmt

if ( exp

0

) stmt

if -stmt

if ( exp

1

) stmt

other

else stmt

other

. . . or like this

stmt

if -stmt

if ( exp

0

) stmt

if -stmt

if ( exp

1

) stmt

other

else stmt

other

• common convention: connect else to closest “free” (= dangling) occur-
rence

Unambiguous grammar

Grammar

stmt → matched_stmt ∣ unmatch_stmt
matched_stmt → if ( exp )matched_stmt else matched_stmt

∣ other
unmatch_stmt → if ( exp ) stmt

∣ if ( exp )matched_stmt else unmatch_stmt
exp → 0 ∣ 1

• never have an unmatched statement inside a matched
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• complex grammar, seldomly used
• instead: ambiguous one, with extra “rule”: connect each else to closest

free if
• alternative: different syntax, e.g.,

– mandatory else,
– or require endif

CST

stmt

unmatch_stmt

if ( exp

0

) stmt

matched_stmt

if ( exp

1

) elsematched_stmt

other

Adding sugar: extended BNF

• make CFG-notation more “convenient” (but without more theoretical ex-
pressiveness)

• syntactic sugar

EBNF

Main additional notational freedom: use regular expressions on the rhs of
productions. They can contain terminals and non-terminals

• EBNF: officially standardized, but often: all “sugared” BNFs are called
EBNF

• in the standard:
– α∗ written as {α}
– α? written as [α]
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• supported (in the standardized form or other) by some parser tools, but
not in all

• remember equation (3.2)

EBNF examples

A → β{α} for A→ Aα ∣ β

A → {α}β for A→ αA ∣ β

stmt-seq → stmt {; stmt}
stmt-seq → {stmt ;} stmt
if -stmt → if ( exp ) stmt[else stmt]

greek letters: for non-terminals or terminals.

3.4 Syntax of a “Tiny” language

BNF-grammar for TINY

program → stmt-seq
stmt-seq → stmt-seq ; stmt ∣ stmt

stmt → if -stmt ∣ repeat-stmt ∣ assign-stmt
∣ read-stmt ∣ write-stmt

if -stmt → if expr then stmt end
∣ if expr then stmt else stmt end

repeat-stmt → repeat stmt-seq until expr
assign-stmt → identifier ∶= expr

read-stmt → read identifier
write-stmt → write expr

expr → simple-expr comparison-op simple-expr ∣ simple-expr
comparison-op → < ∣ =

simple-expr → simple-expr addop term ∣ term
addop → + ∣ −
term → term mulop factor ∣ factor

mulop → ∗ ∣ /
factor → ( expr ) ∣ number ∣ identifier

Syntax tree nodes
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typedef enum {StmtK,ExpK} NodeKind;
typedef enum {IfK,RepeatK,AssignK,ReadK,WriteK} StmtKind;
typedef enum {OpK,ConstK,IdK} ExpKind;

/* ExpType is used for type checking */
typedef enum {Void,Integer,Boolean} ExpType;

#define MAXCHILDREN 3

typedef struct treeNode
{ struct treeNode * child[MAXCHILDREN];

struct treeNode * sibling;
int lineno;
NodeKind nodekind;
union { StmtKind stmt; ExpKind exp;} kind;
union { TokenType op;

int val;
char * name; } attr;

ExpType type; /* for type checking of exps */

Comments on C-representation

• typical use of enum type for that (in C)
• enum’s in C can be very efficient
• treeNode struct (records) is a bit “unstructured”
• newer languages/higher-level than C: better structuring advisable, especially

for languages larger than Tiny.
• in Java-kind of languages: inheritance/subtyping and abstract classes/inter-

faces often used for better structuring

Sample Tiny program

read x; { input as integer }
if 0 < x then { don't compute if x <= 0 }

fact := 1;
repeat

fact := fact * x;
x := x -1

until x = 0;
write fact { output factorial of x }

end
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Same Tiny program again

read x ; { input as i n t e g e r }
i f 0 < x then { don ' t compute i f x <= 0 }

f a c t := 1 ;
repeat

f a c t := f a c t ∗ x ;
x := x −1

until x = 0 ;
write f a c t { output f a c t o r i a l o f x }

end

• keywords / reserved words highlighted by bold-face type setting
• reserved syntax like 0, :=, . . . is not bold-faced
• comments are italicized

Abstract syntax tree for a tiny program

Some questions about the Tiny grammy

• is the grammar unambiguous?
• How can we change it so that the Tiny allows empty statements?
• What if we want semicolons in between statements and not after?
• What is the precedence and associativity of the different operators?
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3.5 Chomsky hierarchy

The Chomsky hierarchy

• linguist Noam Chomsky [1]
• important classification of (formal) languages (sometimes Chomsky-Sch/"utzenberger)
• 4 levels: type 0 languages – type 3 languages
• levels related to machine models that generate/recognize them
• so far: regular languages and CF languages

Overview

rule format languages machines closed
3 A→ aB , A→ a regular NFA, DFA all
2 A→ α1βα2 CF pushdown

automata
∪, ∗, ○

1 α1Aα2 → α1βα2 context-
sensitive

(linearly re-
stricted au-
tomata)

all

0 α → β, α /= ε recursively
enumerable

Turing ma-
chines

all, except
comple-
ment

Conventions

• terminals a, b, . . . ∈ ΣT ,
• non-terminals A,B, . . . ∈ ΣN

• general words α,β . . . ∈ (ΣT ∪ΣN)∗

Remark: Chomsky hierarchy

The rule format for type 3 languages (= regular languages) is also called right-linear.
Alternatively, one can use right-linear rules. If one mixes right- and left-linear rules,
one leaves the class of regular languages. The rule-format above allows only one
terminal symbol. In principle, if one had sequences of terminal symbols in a right-
linear (or else left-linear) rule, that would be ok too.
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Phases of a compiler & hierarchy

“Simplified” design?

1 big grammar for the whole compiler? Or at least a CSG for the front-end, or a
CFG combining parsing and scanning?

Remarks

theoretically possible, but bad idea:

• efficiency
• bad design
• especially combining scanner + parser in one BNF:

– grammar would be needlessly large
– separation of concerns: much clearer/ more efficient design

• for scanner/parsers: regular expressions + (E)BNF: simply the formalisms
of choice!
– front-end needs to do more than checking syntax, CFGs not expressive

enough
– for level-2 and higher: situation gets less clear-cut, plain CSG not too

useful for compilers
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