Chapter 3

Grammars

Course “Compiler Construction”
Martin Steffen
Spring 2018

N S
DS

Chapter 3

Learning Targets of Chapter “Grammars”.

AR, WO =

(context-free) grammars + BNF

ambiguity and other properties

terminology: tokens, lexemes,

different trees connected to grammars/parsing
derivations, sentential forms

The chapter corresponds to [2, Section 3.1-3.2] (or [3,
Chapter 3]).

$A5-05

@
e

Chapter 3

Outline of Chapter “Grammars”.

Nivy
Qd‘
STnAS

v

Introduction

Context-free grammars and BNF notation

Ambiguity

Syntax of a “Tiny” language

Chomsky hierarchy

Section

Introduction

Chapter 3 “Grammars”
Course “Compiler Construction”
Martin Steffen
Spring 2018

Bird’s eye view of a parser

sequence tree
of to-=> Parser represen-
kens tation

= check that the token sequence correspond to a
syntactically correct program

= if yes: yield tree as intermediate representation for
subsequent phases
= if not: give understandable error message(s)
= we will encounter various kinds of trees

= derivation trees (derivation in a (context-free) grammar)
= parse tree, concrete syntax tree
= abstract syntax trees

= mentioned tree forms hang together, dividing line a bit
fuzzy

= result of a parser: typically AST

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-5

(Context-free) grammars

= specifies the syntactic structure of a language
= here: grammar means CFG

= (G derives word w

Parsing

Given a stream of “symbols” w and a grammar G, find a
derivation from G that prodices w

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

Sample syntax tree

INF5110 —
Compiler
program Construction
55—
decs stmts
/"\ I Targets & Outline
Val’deC = Val StI‘T]t Introduction
- Context-free
aSSIgn_Stmt grammars and
—— BNF notation
var eXpr Ambiguity
| l
Syntax of a
X + “Tiny” language
Chomsky
var Val:ararchy
\ \
X %

Natural-language parse tree

INF5110 —
Compiler
Construction

/\ Targets & Outline
N P VP Introduction

/\ /\ Context-free

grammars and

DT N V N P BNF notation
| | | /\ Ambiguity

The dog bites NP N Syntaxofa

“Tiny” language
| | Chomsky
t h e man hierarchy

“Interface” between scanner and parser

= remember: task of scanner = “chopping up” the input
char stream (throw away white space etc) and classify
the pieces (1 piece = lexeme)
= classified lexeme = token
= sometimes we use (integer, "42”)
= integer: “class” or “type" of the token, also called
token name
= 742”7 : value of the token attribute (or just value).
Here: directly the lexeme (a string or sequence of chars)
= a note on (sloppyness/ease of) terminology: often: the
token name is simply just called the token

= for (context-free) grammars: the token (symbol)
corrresponds there to terminal symbols (or terminals,
for short)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-9

Section

Context-free grammars and BNF no-
tation

Chapter 3 “Grammars”

Course “Compiler Construction”
Martin Steffen

Spring 2018

Grammars

= in this chapter(s): focus on context-free grammars
= thus here: grammar = CFG

= as in the context of regular expressions/languages:
language = (typically infinite) set of words

= grammar = formalism to unambiguously specify a
language

= intended language: all syntactically correct programs of
a given progamming language

Slogan

A CFG describes the syntax of a programming language. !

! And some say, regular expressions describe its microsyntax.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-11

Context-free grammar

Definition (CFG)

A context-free grammar G is a 4-tuple G = (X7,%2N, S, P):

= 2N =

2 disjoint finite alphabets of terminals 7 and
non-terminals X
1 start-symbol S € ¥ (a non-terminal)

productions P = finite subset of X x (Xx + X7)*

terminal symbols: corresponds to tokens in parser =
basic building blocks of syntax

non-terminals: (e.g. “expression”, “while-loop”,
“method-definition” . ..)

grammar: generating (via “derivations”) languages
parsing: the inverse problem

CFG = specification

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-12

Further notions

= sentence and sentential form
= productions (or rules)

= derivation

= language of a grammar L(G)

= parse tree

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

BNF notation

= popular & common format to write CFGs, i.e., describe
context-free languages

= named after pioneering (seriously) work on Algol 60

= notation to write productions/rules + some extra
meta-symbols for convenience and grouping
Slogan: Backus-Naur form

What regular expressions are for regular languages is BNF
for context-free languages.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-14

https://en.wikipedia.org/wiki/ALGOL_60

“Expressions” in BNF

extp — exp op exp | (exp) | number (1)
op - + | - | =

= “>" indicating productions and * |
alternatives 2

= convention: terminals written boldface, non-terminals
italic

= also simple math symbols like “+" and “(" are meant
above as terminals

indicating

= start symbol here: exp
= remember: terminals like number correspond to
tokens, resp. token classes. The attributes/token values
____are not relevant here.

2The grammar consists of 6 productions/rules, 3 for expr and 3 for
op, the | is just for convenience. Side remark: Often also := is used for

—.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

Different notations

= BNF: notationally not 100%

books/tools

= “classic” way (Algol 60):

<exp> 1= <exp> <op> <exp>
| (<exp>)
| NUMBER

<op> = + | - | =

“standardized” across

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free

grammars and
BNF notation

= Extended BNF (EBNF) and yet another style

= note: parentheses as terminals vs. as metasymbols

erp —

6.’L’p(”+” ’

”» _

77’”

%7) exp

7?(77 exp”)” | ’7number”

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

Different ways of writing the same grammar

= directly written as 6 pairs (6 rules, 6 productions) from
Yy x (EnxuXp)*, with “>" as nice looking

" " INF5110 —
Sepa rator : Compiler

Construction

erp — €exp op exrp (3) Targets & Outline
erp — (exrp) Introduction
61‘]9 - number Context-free
grammars and
op — + BNF notation
Op - - Ambiguity
op — * Syntax of a
“Tiny” language
= choice of non-terminals: irrelevant (except for human oo
readability):
E - EOE | (E) | number (4)
0~ vl
3-17

= still: we count 6 productions

Grammars as language generators

Deriving a word:

Start from start symbol. Pick a “matching” rule to rewrite
the current word to a new one; repeat until terminal
symbols, only.

= non-deterministic process

= rewrite relation for derivations:
= one step rewriting: w; = ws
= one step using rule n: wy; =, ws
= many steps: =% etc.

Language of grammar G

L(G)={s| start =" s and s€ X7}

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

Example derivation for
(number-number)*number

exp exp op exp
o (exp) op exp

(exp op exp) op exp
(n op exp) op exp
(n—ch) op exp
(n-n)op eap
(n-n)xexp
(n-n)*n

L R

= underline the “place” were a rule is used, i.e., an
occurrence of the non-terminal symbol is being
rewritten /expanded

= here: leftmost derivation®

3We'll come back to that later, it will be important.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

Rightmost derivation

exp exp op exp
o ezpopn
erp*n

(Zp op exp)*n
(ezp op n)*n
(exp-n)*n
(n-n)*n

.

= other (“mixed") derivations for the same word possible

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

Some easy requirements for reasonable
grammars

= all symbols (terminals and non-terminals): should occur
in a some word derivable from the start symbol

= words containing only non-terminals should be derivable

= an example of a silly grammar G (start-symbol A)

A - Bx
B - Ay
C - 1z

= L(G)=0
= those “sanitary conditions”: very minimal “common
sense” requirements

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-21

Parse tree

= derivation: if viewed as sequence of steps = linear
“structure”

= order of individual steps: irrelevant

= = order not needed for subsequent steps

= parse tree: structure for the essence of derivation

= also called concrete syntax tree.*

Leap

= numbers in the tree

= not part of the parse tree, indicate order of derivation,

only
= _here: leftmost derivation
*There will be abstract syntax trees, as well.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-22

Parse tree

= derivation: if viewed as sequence of steps = linear
“structure”

= order of individual steps: irrelevant

= = order not needed for subsequent steps

= parse tree: structure for the essence of derivation

= also called concrete syntax tree.*

Leap

o
exp

= numbers in the tree

= not part of the parse tree, indicate order of derivation,

only
= _here: leftmost derivation
*There will be abstract syntax trees, as well.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-22

Parse tree

= derivation: if viewed as sequence of steps = linear
“structure”

= order of individual steps: irrelevant

= = order not needed for subsequent steps

= parse tree: structure for the essence of derivation

= also called concrete syntax tree.*

Leap

= numbers in the tree

= not part of the parse tree, indicate order of derivation,

only
= _here: leftmost derivation
*There will be abstract syntax trees, as well.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-22

Parse tree

= derivation: if viewed as sequence of steps = linear
“structure”

= order of individual steps: irrelevant

= = order not needed for subsequent steps

= parse tree: structure for the essence of derivation

= also called concrete syntax tree.*

Leap

exp op

= numbers in the tree

= not part of the parse tree, indicate order of derivation,

only
= _here: leftmost derivation
*There will be abstract syntax trees, as well.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-22

Parse tree

= derivation: if viewed as sequence of steps = linear
“structure”

= order of individual steps: irrelevant

= = order not needed for subsequent steps

= parse tree: structure for the essence of derivation

= also called concrete syntax tree.*

Leap

= numbers in the tree

= not part of the parse tree, indicate order of derivation,

only
= _here: leftmost derivation
*There will be abstract syntax trees, as well.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-22

Parse tree

= derivation: if viewed as sequence of steps = linear
“structure”

= order of individual steps: irrelevant

= = order not needed for subsequent steps

= parse tree: structure for the essence of derivation

= also called concrete syntax tree.*
Lexp
-
2 eap 3 op 4 exp
| |
n +

= numbers in the tree

= not part of the parse tree, indicate order of derivation,

only
= _here: leftmost derivation
*There will be abstract syntax trees, as well.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-22

Parse tree

= derivation: if viewed as sequence of steps = linear
“structure”

= order of individual steps: irrelevant

= = order not needed for subsequent steps

= parse tree: structure for the essence of derivation

= also called concrete syntax tree.*
Lexp
-
2 eap 3 op 4 exp
| | |
n + n

= numbers in the tree

= not part of the parse tree, indicate order of derivation,

only
= _here: leftmost derivation
*There will be abstract syntax trees, as well.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-22

Another parse tree (numbers for rightmost
derivation)

INF5110 —
Compiler
Construction

e€xrp Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

Another parse tree (numbers for rightmost
derivation)

INF5110 —
Compiler
Construction

e€xrp Targets & Outline
- Introduction
2 6xp Context-free

grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-23

Another parse tree (numbers for rightmost
derivation)

INF5110 —
Compiler
Construction

e€xrp Targets & Outline
- Introduction

6xp Context-free
grammars and
| BNF notation
n Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-23

Another parse tree (numbers for

derivation)

rightmost

exp
e
op 2 exp
|
n

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-23

Another parse tree (numbers for rightmost
derivation)

INF5110 —
Compiler
Construction

e€xrp Targets & Outline

W Introduction

Op 6xp Context-free
grammars and
| | BNF notation

* n Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-23

Another parse tree (numbers for rightmost
derivation)

INF5110 —
Compiler
Construction

exrp Targets & Outline
- Introduction

4 exrp 3 op 2 exp Context-free
grammars and
| | BNF notation

* n Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-23

Another parse tree (numbers for rightmost
derivation)

INF5110 —
Compiler
Construction

exrp Targets & Outline
- Introduction

4 exrp 3 op 2 exp Context-free

grammars and

— | | BNF notation
) * n Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-23

Another parse tree (numbers for rightmost
derivation)

exp
- T
4 exp 3op 2 exp
— I |
S exp) * n

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-23

Another parse tree (numbers for rightmost
derivation)

exp
- T
4 eap 3op 2 exp
'\ | |
S exp) * n
\
6 exp

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-23

Another parse tree (numbers for rightmost
derivation)

exp
- T
4 eap 3op 2 exp
'\ | |
S exp) * n
\
6 exp
|
n

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-23

Another parse tree (numbers for rightmost
derivation)

INF5110 —
Compiler
Construction

exrp Targets & Outline
- Introduction
4 exrp 3 op 2 exp Context-free
grammars and
I | | BNF notation
b erp) * n Ambiguity
— i{-r_]taf of a
iny” language
7 6
op exp Chomsky
| hierarchy
n

3-23

Another parse tree (numbers for rightmost
derivation)

INF5110 —
Compiler
Construction

exrp Targets & Outline
- Introduction
4 exrp 3 op 2 exp Context-free
grammars and
I | | BNF notation
b erp) * n Ambiguity
— i{-r_]taf of a
iny” language
7 6
op exp Chomsky
| | hierarchy
- n

3-23

Another parse tree (numbers for rightmost
derivation)

INF5110 —
Compiler
Construction

exrp Targets & Outline
- Introduction
4 exrp 3 op 2 exp Context-free
grammars and
,\ | | BNF notation
5 el‘p) * n Ambiguity
/'\ Syntax of a
“Tiny” language
8 7 6
exp op exp Chomsky
| | hierarchy
- n

3-23

Another parse tree (numbers for rightmost
derivation)

INF5110 —
Compiler
Construction

exrp Targets & Outline
- Introduction
4 exrp 3 op 2 exp Context-free
grammars and
,\ | | BNF notation
5 el‘p) * n Ambiguity
T Syntax of a
“Tiny” language
8 7 6
exp op exp Chomsky
| | | hierarchy
n - n

3-23

Another parse tree (numbers for rightmost
derivation)

INF5110 —
Compiler
Construction

1
exrp Targets & Outline
- Introduction
4 exrp 3 op 2 exp Context-free
grammars and
T | | BNF notation
(5 el‘p) * n Ambiguity
T Syntax of a
“Tiny” language
8 7 6
exp op exp Chomsky
| | | hierarchy
n - n

Abstract syntax tree

= parse tree: contains still unnecessary details
= specifically: parentheses or similar, used for grouping

= tree-structure: can express the intended grouping
already

= remember: tokens contain also attribute values (e.g.:

full token for token class n may contain lexeme like
’7427’)

exp

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-24

Abstract syntax tree

= parse tree: contains still unnecessary details
= specifically: parentheses or similar, used for grouping

= tree-structure: can express the intended grouping
already

= remember: tokens contain also attribute values (e.g.:

full token for token class n may contain lexeme like

40")
Leap
I
2 exp +
/\
3 4

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-24

Abstract syntax tree

= parse tree: contains still unnecessary details
= specifically: parentheses or similar, used for grouping

= tree-structure: can express the intended grouping
already

= remember: tokens contain also attribute values (e.g.:

full token for token class n may contain lexeme like

40")
Leap
I
2 exp +
| /\
n 3 4

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-24

Abstract syntax tree

= parse tree: contains still unnecessary details
= specifically: parentheses or similar, used for grouping

= tree-structure: can express the intended grouping
already

= remember: tokens contain also attribute values (e.g.:

full token for token class n may contain lexeme like

40")
Leap
1
2 exp 3op +
| /\
n 3 4

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-24

Abstract syntax tree

= parse tree: contains still unnecessary details
= specifically: parentheses or similar, used for grouping

= tree-structure: can express the intended grouping
already

= remember: tokens contain also attribute values (e.g.:

full token for token class n may contain lexeme like

40")
Leap
1
2 exp 3op +
n + 3 4

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-24

Abstract syntax tree

= parse tree: contains still unnecessary details
= specifically: parentheses or similar, used for grouping

= tree-structure: can express the intended grouping
already

= remember: tokens contain also attribute values (e.g.:

full token for token class n may contain lexeme like

40")
Leap
- I
2 exp 3op 4 exp +
n + 3 4

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-24

Abstract syntax tree

= parse tree: contains still unnecessary details
= specifically: parentheses or similar, used for grouping

= tree-structure: can express the intended grouping
already

= remember: tokens contain also attribute values (e.g.:

full token for token class n may contain lexeme like

40")
Leap
-
2 exp 3op 4 exp +
| | | — T~
n + n 3 4

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-24

AST vs. CST

= parse tree
= important conceptual structure, to talk about grammars

T INF5110 —
and derivations. . . , Compiler

Construction

= most likely not explicitly implemented in a parser
= AST is a concrete data structure

= important IR of the syntax (for the language being
implemented)

Targets & Outline
Introduction

Context-free

= written in the meta-language used in the grammars and
implementation BNF notation

= therefore: nodes like + and 3 are no longer (necessarily Ambiguity
and directly) tokens or lexemes Syntax of a

. “Tiny” language
= concrete data stuctures in the meta-language
Chomsky

(C-structs, instances of Java classes, or what suits best) hierarchy
= the figure is meant schematic, only
= produced by the parser, used by later phases
= note also: we use 3 in the AST, where lexeme was "3"
= at some point, the lexeme string (for numbers) is
translated to a number in the meta-language (typically
already by the lexer) 3-25

Plausible schematic AST (for the other
parse tree)

INF5110 -

Compiler
Construction
*
/\ Targets & Outline

- 42 Introduction

/\ Context-free

grammars and
34 3 BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

= this AST: rather “simplified” version of the CST

= an AST closer to the CST (just dropping the
parentheses): in principle nothing “wrong” with it either

Conditionals

Conditionals G,

stmt — if-stmt | other
if-stmt — if (exp) stmt
| if (exp) stmt else stmt
ezqp - 0|1

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

Parse tree

if (0) other else other

stmt
if-stmt
T TS
if (exp) stmt else stmt
.
0 other other

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

Another grammar for conditionals

Conditionals G5

stmt
if-stmt
else—part
erp

€ = empty word

N

if-stmt | other
if (‘exp) stmt else—part

elsestmt | €
0|1

(6)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

A further parse tree + an AST

stmt

INF5110 —
Compiler
Construction

if-stmt

Targets & Outline
Introduction

if (erp) stmt else—part Context-free

grammars and

BNF notation
Ambiguity

Syntax of a
0 other else stmt “Tiny" language

Chomsky
hierarchy

other

COND
— T

0 other other 3-30

Section
Ambiguity

Chapter 3 “Grammars”
Course “Compiler Construction”
Martin Steffen
Spring 2018

Tempus fugit ...

picture source: wikipedia

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

Ambiguous grammar

Definition (Ambiguous grammar)

A grammar is ambiguous if there exists a word with two
different parse trees.

Remember grammar from equation (1):

exp — exp op exp | (exp) | number
op - + | - | =

Consider:

n-n*n

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

exp

erp op erp
exp op eTrp * n
| | |
n - n
exp
T
exp op exrp
n - exp op exrp
| | |
n * n

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

2 resulting ASTs

* —_
- 42 34 *
/\ /\
34 3 3 42

different parse trees = different® ASTs = different®
meaning

Side remark: different meaning

The issue of “different meaning” may in practice be subtle:
is (x+y)—zthesame as z + (y — 2)?

®At least in many cases.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

2 resulting ASTs

* p—
- 42 34 *
/\ /\
34 3 3 42

different parse trees = different® ASTs = different®
meaning

Side remark: different meaning

The issue of “different meaning” may in practice be subtle:
is (x +y) — z the same as z + (y — 2)? In principle yes, but
what about MAXINT 7

®At least in many cases.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

Precendence & associativity

= one way to make a grammar unambiguous (or less

. INF5110 -
am bIgUOUS) Compiler

Construction

= for instance:

binary op's precedence associativity Targets & Outline
+, — low left Introduction
H Context-free
% ' / hlgher Ieft grammars and
T hlghest r|ght BNF notation
Ambiguity

= a1 b written in standard math as ab:

Syntax of a
“Tiny” language

Chomsky
hierarchy

5+3/5x2+41213
5+3/5x2+42 =
(5+((3/5x2)) + (4@)) .
= mostly fine for binary ops, but usually also for unary
ones (postfix or prefix)

Unambiguity without imposing explicit
associativity and precedence

= removing ambiguity by reformulating the grammar
= precedence for op's: precedence cascade

= some bind stronger than others (* more than +)
= introduce separate non-terminal for each precedence
level (here: terms and factors)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

Expressions, revisited

= associativity

= Jeft-assoc: write the corresponding rules in left-recursive

manner, e.g.:
exp — exp addop term | term

= right-assoc: analogous, but right-recursive
= non-assoc:

exp — term addop term | term

factors and terms

exp — exp addop term | term
addop - + | -

term — term mulop factor | factor
mulop — *
factor — (exp) | number

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

34 -3 %42

exrp
exp addop term

| | T
term - term mulop factor

| | | |

factor factor * n
| |
n n

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

INF5110 —
exp Compiler

Construction

. T

exrp addop term Targets & Outline

/'\ | | Introduction

exrp addop term - factor Context-free

grammars and
| | | | BNF notation

term - factoxr n Ambiguity
Syntax of a

| | “Tiny” language

fCLCtor n Chomsky
| hierarchy

n

Real life example

—__ |eft associative
Operator Precedence

Java performs operati ing the following ing (or pr)
rules if parentheses are not used to determine the r of evaluation (op-
erators on the same line are evaluated in left-to-right order subject to the
conditional evaluation rule for && and |]). The operations are listed be-
low from highest to lowest preced; (we use {exp) to denote an atomic

or parenthesized expression):
postfix ops 0. ((exp) (exp) ++ (exp) ——
prefix ops ++{exp) ——(exp) —(exp) (exp) !(exp)
creation/cast new ((type))(exp) :
mult./div. * | %
add./subt. o
shift << 3> >>> :
comparison < <= > >= instanceof
equality == I=
bitwise-and &
birwise-xor -
birwise-or |
and &&
or |
conditional (bool_exp)? (true_val): /false_val)
assignment =

op assignment +
bitwise assign. >>= <<= >>>=
boolean assign. & |

= —= = [= %=

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

341

Another example

cppreferance.com Crote sccoet ot a

e Dprassons

C++ Operator Precedence

-+ oper

descenang precadence.

Precedence|operator Description Associativity
PR scope rasoluton Lefto gt

o Sufpoth nerment and docrment

pel) typeld

a0

2
At
[s cecrement Rghto e
e oy o i
b o Logical NOT and bitwse NOT
(tpe) csle cost
PR Indirection dereference
o ot
sizeot Szerentt
amry dealcation
a - Lofetoight
s Ml picaton, duison, and remsincer
G 5
stonsl cosrators < and = respctively
o stionsl cosrators > and = raspectively
s d = respectively
n (5evise o (excisive or)
» [Bevise 03 neuave o1
1 Logica an
1 ogcal
Ternary condivonale Ao et
fro s
Direct assgrment (oroudod by dfaut for C=-
1 (Compound sssignment by sum and dference
(Compound asignment b sroduet, quatien, and remainder
= (Compound assignmert by bitwse I st and righ shi
(Compound sssgnmer: by iwse AND, XOR, and o1
1 Comms Lehzo g
it cantbe)«
nkerpreted as (siaeof Gnt)) * p.but ot stzeof (111)%).
rana
e o 7 e g
o be
losr prcadarce. o ramol e arprasons i ccout << 0 b and e e ared s
e] vandrot 2 std:scout =< (o & 6) o1 (o

opctars v h s prsconc v bt s vt 1 e e of st £
e Eocmedas b notas (a = b) = < becauss of gttodft
i porsed (21 51 - ¢ smdnor 8+ (b~ c) because o ro-ift

Y
ey o Soatem oo

Juays ssociate ight 1661 { dalete 144p 5 delatalrr(+p))) and nary posthe spertors aways sssadiate
e lo nght Cal1] 1730+ 1 ((al1))[2])4+
aven though they are grouped th unary postf operatrs: b 1 pareed (301 anc ol . (b-+)

Opsrator procedance s unafacted by opsrator vercadng. For sxample, std:scout << 3 7 b : i parses 35

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
rarchy

342

Non-essential ambiguity

left-assoc

stmt-seq — stmt-seq;stmt | stmt

stmt — S
stmt-seq
-
stmt 5 stmt-seq
| /l\
S stmt 5 stmt-seq
| |
S stmt
|
S

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

Non-essential ambiguity (2)

right-assoc representation instead

stmt-seq — stmt;stmt-seq | stmt

stmt - S
stmt-seq
-
stmt-seq 5 stmt
/l\ |
stmit-seq 5 stmt S
| |
stmt S

|
S

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-44

Possible AST representations

Seq

Seq

S—=+S—S

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-45

Dangling else

INF5110 —
Compiler

Nested if’s Construction

Targets & Outline

if (0)if (1) other else other

Introduction

Context-free

Remember grammar from equation (5): grammars and
Ambiguity
stmt — if-stmt | other Syntox of 8
if—stmt — if(exp) stmt “Tiny” language
| if (exp) stmt else stmt bl
ezqp - 0|1

Should it be like this ...

stmt
|
if-stmt
|
if (exp) stmt else

| I
0 if-stmt

=~

stmt

other

or like this

stmt
I
if-stmt
//'\
if (exp) stmt
| |
0 if-stmt
e Y

if (exp) stmtelse stmt

| | |
1 other other

= common convention: connect else to closest “free” (=
dangling) occurrence

Unambiguous grammar

Grammar

stmt — matched_stmt | unmatch_stmt
matched_stmt — if (exp) matched_stmt else matched_stmt
| other
unmatch_stmt — if (exp) stmt
| if (exp) matched_stmt else unmatch_stmt
exp - 0| 1

= never have an unmatched statement inside a matched

= complex grammar, seldomly used

= instead: ambiguous one, with extra “rule”: connect
each else to closest free if

= alternative: different syntax, e.g.,

= mandatory else,
= or require endif

CST

stmt

unmatch__stmt

Pl

if (exp) stmt
0 matched__stmt
if (exp) else matched_stmt

1 other

Adding sugar: extended BNF

= make CFG-notation more “convenient” (but without
more theoretical expressiveness)

= syntactic sugar

EBNF

Main additional notational freedom: use regular expressions
on the rhs of productions. They can contain terminals and
non-terminals

= EBNF: officially standardized, but often: all “sugared”
BNFs are called EBNF
= in the standard:
= o written as {a}
= a7 written as [«]
= supported (in the standardized form or other) by some
parser tools, but not in all

= remember equation (2)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

EBNF examples

A - pa}
A - {a}p
stmt-seq — stmt {;stmt}

stmt-seq — {stmt;} stmt
if-stmt — if (exp) stmt[else stmt]

greek letters: for non-terminals or terminals.

for A-Aa | B

for A-aA | B

Section
Syntax of a “Tiny” language

Chapter 3 “Grammars”

Course “Compiler Construction”
Martin Steffen

Spring 2018

BNF-grammar

program
stmit-seq
stmt

if-stmt

repeat-stmt
assign-stmt
read-stmt
write-stmt
expr
coOmparison-op
simple-expr
addop

term

mulop
factor

N S S T 20 N e S A A

for TINY

stmt_seq INF5110 —
Compiler
Stmt—seq H stmt | stmt Construction

if-stmt | repeat-stmt | assign-stmt
read-stmt | write-stmt

if expr then stmt end

if expr then stmt else stmt end
repeat stmt-sequntil expr
identifier := expr

read identifier

write ezpr A
simple-expr comparison-op simple-expr | simp|e-« eEpr

< | =

simple-expr addop term | term
+ | -

term mulop factor | factor
|/

(ezpr) | number | identifier

Targets & Outline
Introduction
Context-free
grammars and

BNF notation

Ambiguity

hierarchy

3-54

Syntax tree nodes

typedef enum {StmtK,ExpK} NodeKind;

INF5110 —
typedef enum {IfK,RepeatK,AssignK,ReadK,WriteK} StmtKind; Compiler

Construction

typedef enum {OpK, ConstK,IdK} ExpKind;

/+ ExpType is used for type checking x/ Targets & Outline

typedef enum {Void, Integer,Boolean} ExpType; IOt Ction
Context-free

#fdefine MAXCHILDREN 3 grammars and

BNF notation

typedef struct treeNode Abisuity

{ struct treeNode % child[MAXCHILDREN]; Eﬁsfgémy
struct treeNode x sibling;
int lineno;
NodeKind nodekind;
union { StmtKind stmt; ExpKind exp;} kind;
union { TokenType op;
int wval;
char % name; } attr;
ExpType type; /#* for type checking of exps */

Chomsky
hierarchy

3-55

Comments on C-representation

INF5110 -

Compiler
Construction
= typical use of enum type for that (in C)
= enum's in C can be very efficient Targets & Outline

Introduction

= treeNode struct (records) is a bit “unstructured”

Context-free
grammars and

= newer languages/higher-level than C: better structuring 2T rre

advisable, especially for languages larger than Tiny. Ambiguity

= in Java-kind of languages: inheritance/subtyping and e e
abstract classes/interfaces often used for better e
structuri ng hierarchy

Sample Tiny program

read x; { input as integer }
if 0 < x then { don't compute if x <= 0
fact := 1;
repeat
fact := fact * x;
x = x -1
until x = 0;
write fact { output factorial of x }
end

}

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

3-57

Same Tiny program again

read x; { input as integer }
if 0 < x then { don't compute if x <=0 }

fact = 1;
repeat
fact := fact * x;
x = x -1
until x = 0;
write fact { output factorial of x }
end

= keywords |/ reserved words highlighted by bold-face type
setting

= reserved syntax like 0, :=, ... is not bold-faced

= comments are italicized

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

Abstract syntax tree for a tiny program

INF5110 —
Compiler
Construction

X :=x -1
until x = 0;
write fact { output factorial of = }

Targets & Outline

Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

Some questions about the Tiny grammy

= is the grammar unambiguous?

= How can we change it so that the Tiny allows empty
statements?

= What if we want semicolons in between statements and
not after?

= What is the precedence and associativity of the different
operators?

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

Section
Chomsky hierarchy

Chapter 3 “Grammars”

Course “Compiler Construction”
Martin Steffen

Spring 2018

The Chomsky hierarchy

= linguist Noam Chomsky [1]

= important classification of (formal) languages
(sometimes Chomsky-Sch\"utzenberger)

= 4 levels: type 0 languages — type 3 languages

= |evels related to machine models that
generate/recognize them

= so far: regular languages and CF languages

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

rule format languages machines closed
3 A—-aB , A—a regular NFA, DFA all
2 A - 1809 CF pushdown U, *, 0
automata
1 a1 Aag — a1 Bas context- (linearly re- | all
sensitive stricted au-
tomata)
0 a—>f, ate recursively Turing ma- | all, except
enumerable | chines complement

Conventions

terminals a,b, ... € X7,

non-terminals A, B,...€ X

general words a, ... € (XrUuXy)*

Phases of a compiler & hierarchy
“Simplified” design?

1 big grammar for the whole compiler? Or at least a CSG for
the front-end, or a CFG combining parsing and scanning?

theoretically possible, but bad idea:

= efficiency
= bad design
= especially combining scanner + parser in one BNF:
= grammar would be needlessly large
= separation of concerns: much clearer/ more efficient
design
= for scanner/parsers: regular expressions + (E)BNF:
simply the formalisms of choice!
= front-end needs to do more than checking syntax, CFGs
not expressive enough

= for level-2 and higher: situation gets less clear-cut, plain
CSG not too useful for compilers

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

References |

Bibliography

[1] Chomsky, N. (1956). : Three models for the description of language. IRE Transactions on
Information Theory, 2(113-124).

[2] Cooper, K. D. and Torczon, L. (2004). Engineering a Compiler. Elsevier.
[3] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Syntax of a
“Tiny” language

Chomsky
hierarchy

	Grammars
	Targets & Outline
	Introduction
	Context-free grammars and BNF notation
	Ambiguity
	Syntax of a ``Tiny'' language
	Chomsky hierarchy

