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Chapter
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Learning Targets of this Chapter Contents
1. (context-free) grammars + 4.1 Introduction to parsing
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The chapter corresponds to [5,
Section 3.1-3.2] (or [6, Chapter

3]).

4.1 Introduction to parsing

What’s a parser generally doing

task of parser = syntax analysis

input: stream of tokens from lexer
output:
— abstract syntax tree

LL(1) .. ........
Bottom-up parsing . . .

— or meaningful diagnosis of source of syntazx error

the full “power” (i.e., expressiveness) of CFGs not used

thus:

— consider restrictions of CFGs, i.e., a specific subclass, and/or

— represented in specific ways (no left-recursion, left-factored ... )

—_
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60
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2 4 Parsing
4.1 Introduction to parsing

Syntax errors (and other errors)

Since almost by definition, the syntaz of a language are those aspects cov-
ered by a context-free grammar, a syntaz error thereby is a violation of the
grammar, something the parser has to detect. Given a CFG, typically given
in BNF resp. implemented by a tool supporting a BNF variant, the parser (in
combination with the lexer) must generate an AST ezactly for those programs
that adhere to the grammar and must reject all others. One says, the parser
recognizes the given grammar. An important practical part when rejecting
a program is to generate a meaningful error message, giving hints about po-
tential location of the error and potential reasons. In the most minimal way,
the parser should inform the programmer where the parser tripped, i.e., telling
how far, from left to right, it was able to proceed and informing where it stum-
bled: “parser error in line xxx/at character position yyy”). One typically has
higher expectations for a real parser than just the line number, but that’s the
basics.

It may be noted that also the subsequent phase, the semantic analysis, which
takes the abstract syntax tree as input, may report errors, which are then no
longer syntax errors but more complex kind of errors. One typical kind of error
in the semantic phase is a type error. Also there, the minimal requirement is to
indicate the probable location(s) where the error occurs. To do so, in basically
all compilers, the nodes in an abstract syntax tree will contain information
concerning the position in the original file, the resp. node corresponds to
(like line-numbers, character positions). If the parser would not add that
information into the AST, the semantic analysis would have no way to relate
potential errors it finds to the original, concrete code in the input. Remember:
the compiler goes in phases, and once the parsing phase is over, there’s no
going back to scan the file again.

Lexer, parser, and the rest

token
source 1 parser parse tree) Z}elSt f Oif interm.
exer| [ PAEORL prreeeeeeeeey e Iron
prograry get next rep-
¢ end
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4.1 Introduction to parsing
Top-down vs. bottom-up

o all parsers (together with lexers): left-to-right
« remember: parsers operate with trees
— parse tree (concrete syntax tree): representing grammatical deriva-
tion
— abstract syntax tree: data structure
« 2 fundamental classes
 while parser eats through the token stream, it grows, i.e., builds up (at
least conceptually) the parse tree:

Bottom-up

Parse tree is being grown from the leaves to the root.

Top-down

Parse tree is being grown from the root to the leaves.

AST

o while parse tree mostly conceptual: parsing build up the concrete data
structure of AST bottom-up vs. top-down.

Parsing restricted classes of CFGs

o parser: better be “efficient”
full complexity of CFLs: not really needed in practice!
o classification of CF languages vs. CF grammars, e.g.:
— left-recursion-freedom: condition on a grammar
— ambiguous language vs. ambiguous grammar
o classification of grammars = classification of languages
— a CF language is (inherently) ambiguous, if there’s no unambiguous
grammar for it
— a CF language is top-down parseable, if there exists a grammar that
allows top-down parsing ...

 in practice: classification of parser generating tools:

!Perhaps: if a parser has trouble to figure out if a program has a syntax error or not
(perhaps using back-tracking), probably humans will have similar problems. So better
keep it simple. And time in a compiler may be better spent elsewhere (optimization,
semantical analysis).
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4.2 Top-down parsing

— based on accepted notation for grammars: (BNF or some form of
EBNF etc.)

Classes of CFG grammars/languages

» maaaany have been proposed & studied, including their relationships
e lecture concentrates on
— top-down parsing, in particular
x LL(1)
* recursive descent
— bottom-up parsing
x LR(1)
* SLR
* LALR(1) (the class covered by yacc-style tools)
o grammars typically written in pure BNF

Relationship of some grammar (not language) classes

unambiguous hmbiguous

 /TL LR(k)
7 /TEIN] LR(1)
LALR(1
RO
LR(0
S Z

taken from [4]

4.2 Top-down parsing

General task (once more)

o Given: a CFG (but appropriately restricted)
o Goal: “systematic method” s.t.
1. for every given word w: check syntactic correctness
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2. [build AST /representation of the parse tree as side effect]
3. [do reasonable error handling]

Schematic view on “parser machine”

chefafej2f | (Jaf+faD] | |-

Reading “head”
moves left-to-right)

younded extra memory (stack)
Finite control

Note: sequence of tokens (not characters)

Derivation of an expression
Derivation

The slides contain some big series of overlays, showing the derivation. This
derivation process is not reprodiced here (resp. only a few slides later as some
big array of steps).

factors and terms

extp — termexp’ (4.1)
exp’ — addoptermezp’ | €

addop — + | -

term - factor term’

term’ - mulop factor term’ | €

mulop — *

factor — (exp) | n
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Remarks concerning the derivation

Note:

e input = stream of tokens

o there: 1... stands for token class number (for readability /concreteness),
in the grammar: just number

o in full detail: pair of token class and token value (number, 1)

Notation:

 underline: the place (occurrence of non-terminal where production is
used )
o erossed-out:
— terminal = token is considered treated
— parser “moves on”
— later implemented as match or eat procedure
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Not as a “film” but at a glance: reduction sequence

exp
term eap’

factor term” exp’

naumber term’ exp’

numberterm’ exp’

numbere exp’

numberezp’

numberaddop term exp’

number+ term exp’

number +term ezxp’

number +factor term’ exp’

number +aumber term’ exp’

number +numberterm’ exp’

number +numbermulop factor term’ exp’

number +numberx factor term’ exp’

number +number * ( exp ) term’ exp’

number +number *{ ezp ) term’ ezxp’

number +number * ( exp ) term’ exp’

number +number * ( term exp’ ) term’ exp’

number +number * ( factor term’ exp’ ) term/ exp’

number +number * (number term’ exp’ ) term’ exp’
number +number * (numberterm’ exp’ ) term’ exp’
number +number * (numbere exp’ ) term’ exp’

number +number * (numberezp’ ) term’ exp’

number +number * (numberaddop term exp’ ) term’ exp’
number +number * (number+term exp’ ) term’ exp’
number +number * (number + term exp’ ) term’ exp’
number +number * (number + factor term’ exp’ ) term’ exp’
number +number * (number + number term’ exp’ ) term’ exp’
number +number * (number + numberterm’ exp’ ) term’ exp’
number +number * (number + numbere exp’ ) term’ exp’
number +number * (number + numberezp’ ) term’ exp’
number +number * (number + numbere) term’ exp’
number +number * (number + number) term’ exp’
number +number * (number + number ) term’ exp’
number +number * (number + number ) € exp’

number +number * (number + number ) exp’

number +number # (number + number )e

number +number * (number + number )

L A e A AR A

Besides this derivation sequence, the slide version contains also an “overlay” version, expanding the sequence
step by step. The derivation is a left-most derivation.
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Best viewed as a tree

Nr € + factor term’ €

e

Nrmulop factor term’

Nr €

The tree does no longer contain information, which parts have been expanded
first. In particular, the information that we have concretely done a left-most
derivation when building up the tree in a top-down fashion is not part of the
tree (as it is not important). The tree is an example of a parse tree as it contains
information about the derivation process using rules of the grammar.

Non-determinism?

« not a “free” expansion/reduction/generation of some word, but
— reduction of start symbol towards the target word of terminals

erp = 1+2%(3+4)

— i.e.: input stream of tokens “guides” the derivation process (at least
it fixes the target)
« but: how much “guidance” does the target word (in general) gives?

Oracular derivation

exp — exp + term | exp — term | term
term — term * factor | factor
factor — (exp) | number
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erp =1 |1+2%3
Jp+ term =3 | 1+2%3
@+term =5 |1+2%3
factor + term =7 |1+2%3
number + term 11+2%3
number + term 1]+2%3
number + term =4 1+|2%3
number + term * factor =5 1+/2%3
number + factor * factor =7 1+ /2%3
number + number * factor 1+ 2%3
number + number * factor 1+2| %3
number + number * factor =7 1+2%]3
number + number * number 1+2% )3
number + number * number 1+2%3)

The derivation shows a left-most derivation. Again, the “redex” is underlined.
In addition, we show on the right-hand column the input and the progress
which is being done on that input. The subscripts on the derivation arrows
indicate which rule is chosen in that particular derivation step.

The point of the example is the following: Consider lines 7 and 8, and the
steps the parser does. In line 7, it is about to expand term which is the left-
most terminal. Looking into the “future” the unparsed part is 2 = 3. In that
situation, the parser chooses production 4 (indicated by =,). In the next line,
the left-most non-terminal is term again and also the non-processed input has
not changed. However, in that situation, the “oracular” parser chooses =5.

What does that mean? It means, that the look-ahead did not help the parser!
It used all look-head there is, namely until the end of the word. and it can
still not make the right decision with all the knowledge available at that given
point. Note also: choosing wrongly (like =5 instead of =, or the other way
around) would lead to a failed parse (which would require backtracking). That
means, it’s unparseable without backtracking (and not amount of look-ahead
will help), at least we need backtracking, if we do left-derivations and top-
down.

Right-derivations are not really an option, as typically we want to eat the
input left-to-right. Secondly, right-most derivations will suffer from the same
problem (perhaps not for the very grammar but in general, so nothing would
even be gained.)

On the other hand: bottom-up parsing later works on different principles, so
the particular problem illustrate by this example will not bother that style of
parsing (but there are other challenges then).

So, what is the problem then here? The reason why the parser could not make
a uniform decision (for example comparing line 7 and 8) comes from the fact
that these two particular lines are connected by =>4, which corresponds to the
production

term — term * factor
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there the derivation step replaces the left-most term by term again without
moving ahead with the input. This form of rule is said to be left-recursive
(with recursion on term). This is something that recursive descent parsers
cannot deal with (or at least not without doing backtracking, which is not an
option).

Note also: the grammar is not ambigious (without proof). If a grammar is
ambiguous, also then parsing won’t work properly (in this case neither will
bottom-up parsing), so that is not the problem.

We will learn how to transform grammars automatically to remove left-recursion.
It’s an easy construction. Note, however, that the construction not necessarily
results in a grammar that afterwards is top-down parsable. It simple removes
a “feature” of the grammar which definitely cannot be treated by top-down
parsing.

Side remark, for being super-precise: If a grammar contains left-recursion on
a non-terminal which is “irrelevant” (i.e., no word will ever lead to a parse in-
vovling that particular non-terminal), in that case, obvously, the left-recursion
does not hurt. Of course, the grammar in that case would be “silly”. We in
general do not consider grammars which contain such irrelevant symbols (or
have other such obviously meaningless defects). But unless we exclude such
silly grammars, it’s not 100% true that grammars with left-recursion cannot
be treated via top-down parsing. But apart from that, it’s the case:

left-recursion destroys top-down parseability

(when based on left-most derivations as it is always done).

Two principle sources of non-determinism here

Using production A — 3

S="a1 Aay=aq1 [ ag =" w

Conventions

e (1,9, 3: word of terminals and nonterminals
o w: word of terminals, only
« A: one non-terminal
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2 choices to make

1. where, i.e., on which occurrence of a non-terminal in a;Aas to
apply a production?
2. which production to apply (for the chosen non-terminal).

Left-most derivation

o that’s the easy part of non-determinism

« taking care of “where-to-reduce” non-determinism: left-most derivation
e notation =

o some of the example derivations earlier used that

Non-determinism vs. ambiguity

« Note: the “where-to-reduce”-non-determinism # ambiguitiy of a gram-
mar?>
 in a way (“theoretically”): where to reduce next is irrelevant:
— the order in the sequence of derivations does not matter
— what does matter: the derivation tree (aka the parse tree)

Lemma 4.2.1 (Left or right, who cares). S =7 w iff S=;w iff S=*
w.

« however (“practically”): a (deterministic) parser implementation: must
make a choice

Using production A -

S="ay Aay=a; fag=>"w
S=fw Aag=w [ ag=]w

What about the “which-right-hand side” non-determinism?

A-pB |~y

2Note that a; and s may contain non-terminals, including further occurrences of A.
3A CFG is ambiguous, if there exists a word (of terminals) with 2 different parse trees.
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Is that the correct choice?

S=Fw Aag=w ag=fw

o reduction with “guidance”: don’t loose sight of the target w
— “past” is fixed: w = wiws
— “future” is not:

Aag = fag =] wy  orelse  Aag = yoo =] we ?

Needed (minimal requirement):

In such a situation, “future target” ws must determine which of the rules to
take!

Deterministic, yes, but still impractical

Aag = fag =] we  orelse  Aag =) yag =] we ?

o the “target” wy is of unbounded length!
= impractical, therefore:

Look-ahead of length £

resolve the “which-right-hand-side” non-determinism inspecting only fixed-
length prefix of ws (for all situations as above)

LL(k) grammars

CF-grammars which can be parsed doing that.*

40f course, one can always write a parser that “just makes some decision” based on looking
ahead k symbols. The question is: will that allow to capture all words from the grammar
and only those.
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4.3 First and follow sets

We had a general look of what a look-ahead is, and how it helps in top-
down parsing. We also saw that left-recursion is bad for top-down parsing (in
particular, there can’t be any look-ahead to help the parser). The definition
discussed so far, being based on arbitrary derivations, were impractical. What
is needed is a criterion not for derivations, but on grammars that can be used
to check, whether the grammar is parseable in a top-down manner with a look-
ahead of, say k. Actually we will concentrate on a look-ahead of k£ = 1, which
is practically a decent thing to do.

The considerations leading to a useful criterion for top-down parsing with back-
tracking will involve the definition of the so-called “first-sets”. In connection
with that definition, there will be also the (related) definition of follow-sets.

The definitions, as mentioned, will help to figure out if a grammar is top-down
parseable. Such a grammar will then be called an LL(1) grammar. One could
generalize the definition to LL(k) (which would include generalizations of the
first and follow sets), but that’s not part of the pensum. Note also: the first
and follow set definition will also later be used when discussing bottom-up
parsing.

Besides that, in this section we will also discuss what to do if the grammar is
not LL(1). That will lead to a transformation removing left-recursion. That
is not the only defect that one wants to transform away. A second problem
that is a show-stopper for LL(1)-parsing is known as “common left factors”.
If a grammar suffers from that, there is another transformation called left
factorization which can remedy that.

First and Follow sets

« general concept for grammars
« certain types of analyses (e.g. parsing):
— info needed about possible “forms” of derivable words,

First-set of A

which terminal symbols can appear at the start of strings derived from a given
nonterminal A

Follow-set of A

Which terminals can follow A in some sentential form.
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Remarks

« sentential form: word derived from grammar’s starting symbol

o later: different algos for first and follow sets, for all non-terminals of a
given grammar

e mostly straightforward

« one complication: nullable symbols (non-terminals)

» Note: those sets depend on grammar, not the language

First sets

Definition 4.3.1 (First set). Given a grammar GG and a non-terminal A. The
first-set of A, written Firstg(A) is defined as

Firstc(A)={a | A=faa, aeXr}+{ec| A={¢€}. (4.2)

Definition 4.3.2 (Nullable). Given a grammar G. A non-terminal A € Xy is
nullable, if A =% e.

Nullable

The definition here of being nullable refers to a non-terminal symbol. When
concentrating on context-free grammars, as we do for parsing, that’s basically
the only interesting case. In principle, one can define the notion of being
nullable analogously for arbitrary words from the whole alphabet ¥ = X7+ X y.
The form of productions in CFGs makes it obvious, that the only words which
actually may be nullable are words containing only non-terminals. Once a
terminal is derived, it can never be “erased”. It’s equally easy to see, that a
word « € X% is nullable iff all its non-terminal symbols are nullable. The same
remarks apply to context-sensitive (but not general) grammars.

For level-0 grammars in the Chomsky-hierarchy, also words containing terminal
symbols may be nullable, and nullability of a word, like most other properties
in that stetting, becomes undecidable.

First and follow set

One point worth noting is that the first and the follow sets, while seemingly
quite similar, differ in one important aspect (the follow set definition will
come later). The first set is about words derivable from a given non-terminal
A. The follow set is about words derivable from the starting symbol! As a
consequence, non-terminals A which are not reachable from the grammar’s
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starting symbol have, by definition, an empty follow set. In contrast, non-
terminals unreachable from a/the start symbol may well have a non-empty
first-set. In practice a grammar containing unreachable non-terminals is ill-
designed, so that distinguishing feature in the definition of the first and the
follow set for a non-terminal may not matter so much. Nonetheless, when im-
plementing the algo’s for those sets, those subtle points do matter! In general,
to avoid all those fine points, one works with grammars satisfying a number
of common-sense restructions. One are so called reduced grammars, where,
informally, all symbols “play a role” (all are reachable, all can derive into a
word of terminals).

Examples

Cf. the Tiny grammar
in Tiny, as in most languages

First(if-stmt) = {"if "}

in many languages:

First(assign-stmt) = {identifier, ("}

typical Follow (see later) for statements:

Follow(stmt) = {”;”,”end”, "else”, "until”}

Remarks

» note: special treatment of the empty word €
o in the following: if grammar G clear from the context
— =* for =,
— First for Firstq
o definition so far: “top-level” for start-symbol, only
o next: a more general definition
— definition of First set of arbitrary symbols (and even words)
— and also: definition of First for a symbol in terms of First for “other
symbols” (connected by productions)
= recursive definition
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A more algorithmic/recursive definition

o grammar symbol X: terminal or non-terminal or €

Definition 4.3.3 (First set of a symbol). Given a grammar G and grammar
symbol X. The first-set of X, written First(X), is defined as follows:

1. If X € X7 + {€}, then First(X) = {X}.
2. If X € ¥: For each production

X—>X1X2Xn

a) First(X) contains First(X;) ~ {€}

b) If, for some i < n, all First(X,), ..., First(X;) contain €, then First(X)
contains First(X;,1) \ {€}.

c) If all First(Xy),..., First(X,,) contain €, then First(X) contains {€}.

Recursive definition of First?

The following discussion may be ignored if wished. Even if details and theory
behind it is beyond the scope of this lecture, it is worth considering above
definition more closely. One may even consider if it is a definition at all (resp.
in which way it is a definition).

One naive first impression may be: it’s a kind of a “functional definition”, i.e.,
the above Definition 4.3.3 gives a recursive definition of the function First.
As discussed later, everything get’s rather simpler if we would not have to
deal with nullable words and e-productions. For the point being explained
here, let’s assume that there are no such productions and get rid of the special
cases, cluttering up Definition 4.3.3. Removing the clutter gives the following
simplified definition:

Definition 4.3.4 (First set of a symbol (no e-productions)). Given a grammar
G and grammar symbol X. The First-set of X # €, written First(X) is defined
as follows:

1. If X € X, then First(X)2{X}.
2. If X € ¥: For each production

X—>X1X2...Xn,

First(X) 2 First(X;).

Compared to the previous condition, I did the following 2 minor adaptations
(apart from cleaning up the €’s): In case (2), I replaced the English word
“contains” with the superset relation symbol 2. In case (1), I replaced the
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equality symbol = with the superset symbol 2, basically for consistency with
the other case.

Now, with Definition 4.3.4 as a simplified version of the original definition
being made slightly more explicit and internally consistent: in which way is
that a definition at all?

For being a definition for First(X), it seems awfully lax. Already in (1), it
“defines” that First(X) should “at least contain X”. A similar remark applies
to case (2) for non-terminals. Those two requirements are as such well-defined,
but they don’t define First(X) in a unique manner! Definition 4.3.4 defines
what the set First(X) should at least contain!

So, in a nutshell, one should not consider Definition 4.3.4 a “recursive definition
of First(X)” but rather

“a definition of recursive conditions on First(X), which, when sat-
isfied, ensures that First(X) contains at least all non-terminals we
are after”.

What we are really after is the smallest First(X) which satisfies those condi-
tions of the definitions.

Now one may think: the problem is that definition is just “sloppy”. Why does
it use the word “contain” resp. the 2-relation, instead of requiring equality,
i.e., =7 While plausible at first sight, unfortunately, whether we use 2 or set
equality = in Definition 4.3.4 does not change anything (and remember that
the original Definition 4.3.3 “mixed up” the styles by requiring equality in the
case of non-terminals and requiring “contains”, i.e., 2 for non-terminals).

Anyhow, the core of the matter is not = vs. 2. The core of the matter is that
“Definition” 4.3.4 is circular!

Considering that definition of First(X) as a plain functional and recursive
definition of a procedure missed the fact that grammar can, of course, contain
“loops”. Actually, it’s almost a characterizing feature of reasonable context-
free grammars (or even regular grammars) that they contain “loops” — that’s
the way they can describe infinite languages.

In that case, obviously, considering Definition 4.3.3 with = instead of 2 as the
recursive definition of a function leads immediately to an “infinite regress”, the
recurive function won’t terminate. So again, that’s not helpful.

Technically, such a definition can be called a recursive constraint (or a con-
straint system, if one considers the whole definition to consist of more than
one constraint, namely for different terminals and for different productions).
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Definition 4.3.5 (First set of a word). Given a grammar G and word «. The
first-set of
= X1 e Xn s

written First(a) is defined inductively as follows:

1. First(a) contains First(Xi) ~ {€}

2. for each i = 2,...n, if First(Xy) contains € for all k =1,...,i -1, then
First(a) contains First(X;) ~ {€}

3. If all First(Xy),..., First(X,) contain €, then First(X) contains {€}.

Concerning the definition of First

The definition here is of course very close to the definition of inductive case
of the previous definition, i.e., the first set of a non-terminal. Whereas the
previous definition was a recursive, this one is not.

Note that the word a may be empty, i.e., n = 0, In that case, the definition
gives First(e) = {e} (due to the 3rd condition in the above definition). In
the definitions, the empty word € plays a specific, mostly technical role. The
original, non-algorithmic version of Definition 4.3.1, makes it already clear,
that the first set not precisely corresponds to the set of terminal symbols that
can appear at the beginning of a derivable word. The correct intuition is that
it corresponds to that set of terminal symbols together with € as a special case,
namely when the initial symbol is nullable.

That may raise two questions. 1) Why does the definition makes that as special
case, as opposed to just using the more “straightforward” definition without
taking care of the nullable situation? 2) What role does € play here?

The second question has no “real” answer, it’s a choice which is being made
which could be made differently. What the definition from equation (4.3.1)
in fact says is: “give the set of terminal symbols in the derivable word and
indicate whether or not the start symbol is nullable. The information might
as well be interpreted as a pair consisting of a set of terminals and a boolean
(indicating nullability). The fact that the definition of First as presented
here uses € to indicate that additional information is a particular choice of
representation (probably due to historical reasons: “they always did it like
that ...”). For instance, the influential “Dragon book” [1, Section 4.4.2] uses
the e-based definition. The texbooks [2] (and its variants) don’t use € as
indication for nullability.

In order that this definition works, it is important, obviously, that € is not a
terminal symbol, i.e., € ¢ X7 (which is generally assumed).
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Having clarified 2), namely that using € is a matter of conventional choice,
remains question 1), why bother to include nullability-information in the defi-
nition of the first-set at all, why bother with the “extra information” of nulla-
bility? For that, there is a real technical reason: For the recursive definitions
to work, we need the information whether or not a symbol or word is nullable,
therefore it’s given back as information.

As a further point concerning the first sets: The slides give 2 definitions,
Definition 4.3.1 and Definition 4.3.3. Of course they are intended to mean the
same. The second version is a more recursive or algorithmic version, i.e., closer
to a recursive algorithm. If one takes the first one as the “real” definition of
that set, in principle we would be obliged to prove that both versions actually
describe the same same (resp. that the recurive definition implements the orig-
inal definition). The same remark applies also to the non-recursive/iterative
code that is shown next.

Pseudo code

for allX \in Au{e} do
First [X] = X
end;

for all non-terminals A do
First [A] = {}

end

while there are changes to any First [A] do
for each production A - X;...X, do

k = 1;

continue := true

while continue = true and k<n do
First [A] := First [A] u First [Xg] ~ {e}
if e¢ First[Xp] then continue := false
k ==k +1

end;

if continue = true

then First [A] := First [A] u {e}

end;
end

If only we could do away with special cases for the empty
words ...

for grammar without e-productions.®

for all non-terminals A do

First [A] = {} // counts as change
end
while there are changes to any First [A] do

A production of the form A - €.



20 4 Parsing
4.3 First and follow sets

for each production A - X1...X, do
First [A] := First [A] u First [X1]
end;
end

This simplification is added for illustration, only. What makes the algorithm
slightly more than just immediate is the fact that symbols can be nullable (non-
terminals can be nullable). If we don’t have e-transitions, then no symbol is
nullable. Under this simplifying assumption, the algorithm looks quite simpler.
We don’t need to check for nullability (i.e., we don’t need to check if € is part of
the first sets), and moreover, we can do without the inner while loop, walking
down the right-hand side of the production as long as the symbols turn out to
be nullable (since we know they are not).

Example expression grammar (from before)

exp — exp addop term | term (4.3)
addop — + | -
term — term mulop factor | factor
mulop — *
factor — (exp) | number

Example expression grammar (expanded)

exp — exp addop term (4.4)
exp — term
addop — +
addop — -
term — term mulop factor
term — factor
mulop — *
factor — (exp)
factor — n
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“Run” of the algo

nr pass 1 pass 2 pass 3

1  exp — expaddop term

2 exp— term

3 addop — +

4  addop - -

5 term — term mulop factor

6 term — factor

7  mulop — *

8 factor - (exp)

9 factor > n

How the algo works

The first thing to observe: the grammar does not contain e-productions. That,
very fortunately, simplifies matters considerably! It should also be noted that
the table from above is a schematic illustration of a particular execution strat-
egy of the pseudo-code. The pseudo-code itself leaves out details of the eval-
uation, notably the order in which non-deterministic choices are done by the
code. The main body of the pseudo-code is given by two nested loops. Even if
details (of data structures) are not given, one possible way of interpreting the
code is as follows: the outer while-loop figures out which of the entries in the
First-array have “recently” been changed, remembers that in a “collection”
of non-terminals A’s; and that collection is then worked off (i.e. iterated over)
on the inner loop. Doing it like that leads to the “passes” shown in the table.
In other words, the two dimensions of the table represent the fact that there
are 2 nested loops.

Having said that: it’s not the only way to “traverse the productions of the
grammar”. One could arrange a version with only one loop and a collec-
tion data structure, which contains all productions A — X;...X,, such that
First[A] has “recently been changed”. That data structure therefore con-
tains all the productions that “still need to be treated”. Such a collection data
structure containing “all the work still to be done” is known as work-list, even
if it needs not technically be a list. It can be a queue, i.e., following a FIFO
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strategy, it can be a stack (realizing LIFO), or some other strategy or heuris-
tic. Possible is also a randomized, i.e., non-deterministic strategy (which is
sometimes known as chaotic iteration).

“Run” of the algo

Grammar rule Pass | Pass 2 Pass 3
exp — exp
addop term
exp — term First(exp) =
{ (, number }
addop — + First(addop)
= {+}
addop — - First(addop)
={+.-)
term — term
mulop factor
term — factor «First(term) =
{(, number }
mulop — * First(mulop)
={*}
factor — (exp ) First( factor)
=1{(}
factor — number First( factory =
{ (, number }
Collapsing the rows & final result
o results per pass:
1 2 3
ezp {(;n}
addop {+,-}
term {(;n}
mulop {*}

factor {(,n}

o final results (at the end of pass 3):
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First[_]
ezp {(,n}
addop {+,-}
term  {(,n}
mulop {*}

factor {(,n}

Work-list formulation

for all non-terminals A do

First [A] := {}

WL := P // all productions
end
while WL #@ do

remove one (A- X;...X,) from WL

if First [A] # First[A] u First[Xq]
then First[A] := First[A] u First [X1]
add all productions (A—-X{...X]) to WL
else skip
end

o worklist here: “collection” of productions
« alternatively, with slight reformulation: “collection” of non-terminals in-
stead also possible

Follow sets

Definition 4.3.6 (Follow set (ignoring $)). Given a grammar G with start
symbol S, and a non-terminal A.

The follow-set of A, written Followg(A), is
Followg(A) ={a | S =5 apAacy, aeXr} . (4.5)

e More generally: $ as special end-marker

S8 = agAaay, aeXr+{8$}.

o typically: start symbol not on the right-hand side of a production
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Special symbol $

The symbol $ can be interpreted as “end-of-file” (EOF) token. It’s standard to
assume that the start symbol S does not occur on the right-hand side of any
production. In that case, the follow set of S contains $ as only element. Note
that the follow set of other non-terminals may well contain $.

As said, it’s common to assume that S does not appear on the right-hand
side on any production. For a start, S won’t occur “naturally” there anyhow
in practical programming language grammars. Furthermore, with S occuring
only on the left-hand side, the grammar has a slightly nicer shape insofar
as it makes its algorithmic treatment slightly nicer. It’s basically the same
reason why one sometimes assumes that for instance, control-flow graphs has
one “isolated” entry node (and/or an isolated exit node), where being isolated
means, that no edge in the graph goes (back) into into the entry node; for
exits nodes, the condition means, no edge goes out. In other words, while
the graph can of course contain loops or cycles, the enty node is not part
of any such loop. That is done likewise to (slightly) simplify the treatment
of such graphs. Slightly more generally and also connected to control-flow
graphs: similar conditions about the shape of loops (not just for the entry and
exit nodes) have been worked out, which play a role in loop optimization and
intermediate representations of a compiler, such as static single assignment
forms.

Coming back to the condition here concerning $: even if a grammar would not
immediatly adhere to that condition, it’s trivial to transform it into that form
by adding another symbol and make that the new start symbol, replacing the
old.

Special symbol $

It seems that [3] does not use the special symbol in his treatment of the follow
set, but the dragon book uses it. It is used to represent the symbol (not
otherwise used) “right of the start symbol”, resp., the symbol right of a non-
terminal which is at the right end of a derived word.

Follow sets, recursively

Definition 4.3.7 (Follow set of a non-terminal). Given a grammar G and
nonterminal A. The Follow-set of A, written Follow(A) is defined as follows:

1. If A is the start symbol, then Follow(A) contains $.
2. If there is a production B - aAS, then Follow(A) contains First(5)~{€}.
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3. If there is a production B - aAf such that € € First(3), then Follow(A)
contains Follow(B).

o §: “end marker” special symbol, only to be contained in the follow set

More imperative representation in pseudo code

Follow [S] := {$}

for all non-terminals A+ S do
Follow [A] = {}

end

while there are changes to any Follow-set do
for each production A - X;...X, do
for each X; which is a non-terminal do

Follow [X;] := Follow [X;]u(First (X1...Xp) N {€})
if ee First (Xi+1X7;+2...Xn)
then Follow[X;] := Follow|[X;] u Follow[A]
end
end
end

Note! First() = {€}
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Expression grammar once more

“Run” of the algo

nr pass 1 pass 2

1 exp — expaddop term

2 exp— term

5 term — term mulop factor

6 term — factor

8 factor - (exp)
normalsize

Recursion vs. iteration

“Run” of the algo

Grammar rule Pass | Pass 2
exp — exp addop Follow(exp) = Follow(term) =
term {$, + -} {$,+, -, %)}
Follow(addop) =
{{, number}
Follow(term) =
{$, + -}
exp — term
term — term mulop Follow(rerm) = Follow(facror) =
factor {$, +, = *} {$. 4, =, %)}
Follow(mulop) =
{ {, number}
Follow( factor) =
{8, 4, -, *
term — factor
factor — ( exp ) Follow(exp) =
{S,+,-,))
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lllustration of first/follow sets

e red arrows: illustration of information flow in the algos
e run of Follow:

— relies on First

— in particular a € First(E) (right tree)
o $ ¢ Follow(B)

The two trees are just meant a illustrations (but still correct). The grammar itself
is not given, but the tree shows relevant productions.

In case of the tree on the left (for the first sets): A is the root and must therefore
be the start symbol. Since the root A has three children C, D, and E, there must
be a production A - C D E. etc.

The first-set definition would “immediately” detect that F' has a in its first-set, i.e.,
all words derivable starting from F' start with an a (and actually with no other
terminal, as F' is mentioned only once in that sketch of a tree). At any rate, only
after determining that a is in the first-set of F’, then it can enter the first-set of C,
etc. and in this way percolating upwards the tree.

Note that the tree is insofar specific, in that all the internal nodes are different
non-terminals. In more realistic settings, different nodes would represent the same
non-terminal. And also in this case, one can think of the information percolating

up.

It should be stressed ...

More complex situation (nullability)
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S$

In the tree on the left, B, M, N,C, and F are nullable. That is marked in that the
resulting first sets contain €. There will also be exercises about that.

Some forms of grammars are less desirable than others

o left-recursive production:
A - Ax
more precisely: example of immediate left-recursion

e 2 productions with common “left factor”:

A-af | aBs where o # €

Left-recursive and unfactored grammars

At the current point in the presentation, the importance of those conditions
might not yet be clear. In general, it’s that certain kind of parsing techniques
require absence of left-recursion and of common left-factors. Note also that
a left-linear production is a special case of a production with immediate left
recursion. In particular, recursive descent parsers would not work with left-
recursion. For that kind of parsers, left-recursion needs to be avoided.

Why common left-factors are undesirable should at least intuitively be clear:
we see this also on the next slide (the two forms of conditionals). It’s intu-
itively clear, that a parser, when encountering an if (and the following boolean
condition and perhaps the then clause) cannot decide immediately which rule
applies. It should also be intiutively clear that that’s what a parser does: in-
putting a stream of tokens and trying to figure out which sequence of rules
are responsible for that stream (or else reject the input). The amout of addi-
tional information, at each point of the parsing process, to determine which
rule is responsible next is called the look-ahead. Of course, if the grammar is
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ambiguous, no unique decision may be possible (no matter the look-ahead).
Ambiguous grammars are unwelcome as specification for parsers.

On a very high-level, the situation can be compared with the situation for
regular languages/automata. Non-deterministic automata may be ok for spec-
ifying the language (they can more easily be connected to regular expressions),
but they are not so useful for specifying a scanner program. There, determin-
istic automata are necessary. Here, grammars with left-recursion, grammars
with common factors, or even ambiguous grammars may be ok for specifying
a context-free language. For instance, ambiguity may be caused by unspeci-
fied precedences or non-associativity. Nonetheless, how to obtain a grammar
representation more suitable to be more or less directly translated to a parser
is an issue less clear cut compared to regular languages. Already the question
whether or not a given grammar is ambiguous or not is undecidable. If ambigu-
ous, there’d be no point in turning it into a practical parser. Also the question,
what’s an acceptable form of grammar depends on what class of parsers one
is after (like a top-down parser or a bottom-up parser).

Some simple examples for both

e left-recursion

exp — exp+term

« classical example for common left factor: rules for conditionals

if-stmt — if (exp) stmtend
| if (exp) stmt else stmt end

Transforming the expression grammar

exp — exp addop term | term
addop — + | -

term — term mulop factor | factor
mulop — *
factor — (ezp) | number

 obviously left-recursive
o remember: this variant used for proper associativity!
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After removing left recursion

exp — termexp’

exp’ — addoptermexp’ | €
addop - + | -

term — factor term’
term’ — mulop factor term’ | €
mulop — *
factor - (exp) | n

o still unambiguous
o unfortunate: associativity now different!
» note also: e-productions & nullability

Left-recursion removal
Left-recursion removal

A transformation process to turn a CFG into one without left recursion

Explanation

e price: e-productions
e 3 cases to consider
— immediate (or direct) recursion
* simple
% general
— indirect (or mutual) recursion

Left-recursion removal: simplest case

Before

A - Aa | B
space
After

A - pA

A - oA | €
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Schematic representation

A - Aa | B A - pBA
A - aA | e
A A
7 —
A a g A
T S
A « Q A’
T S
A « Q A’
1 T~
B a A
|
€
Remarks

« both grammars generate the same (context-free) language (= set of words
over terminals)
o in EBNF:

A~ f{a}

o two negative aspects of the transformation
1. generated language unchanged, but: change in resulting structure
(parse-tree), i.a.w. change in associativity, which may result in
change of meaning
2. introduction of e-productions
« more concrete example for such a production: grammar for expressions

Left-recursion removal: immediate recursion (multiple)

Before

A - Aoy | ... | Aoy,
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space
After
A = BA | ] B
A > A | A
| €
EBNF

Note: can be written in EBNF' as:
A= (B | oo | Bu)(aa | o0 | ap)?

Removal of: general left recursion

Assume non-terminals Ay, ..., A,
for i := 1 to m do
for j := 1 to i-1 do
replace each grammar rule of the form A; - A;f by /] i<j
rule A; > a1 | aof | ... | axf
where Aj —oq | ag | ... | oy
is the current rule(s) for A; // current
end
{ corresponds to i=j }
remove, if necessary, immediate left recursion for A;
end
“current” = rule in the current stage of algo

Example (for the general case)
letA:Al, B=A2

Ba | Aa | ¢
Bb | Ab | d

SeIRS
{

|

A — BaA' | cA’
A" > aA | e
B - Bb| Ab|d
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A - BaA' | cA’
A > ad | e
B - Bb | BaA'b | cA'b | d

A - BaA' | cA’

A > ad | e

B — cA'bB | dB’

B’ - bB | aA'bB’ | e

Left factor removal

o CFG: not just describe a context-free languages

o also: intended (indirect) description of a parser for that language
= common left factor undesirable

o cf.: determinization of automata for the lexer

Simple situation

1. before
A-af | ay | ...
2. after
A - aA | ...
A > By

Example: sequence of statements

sequences of statements

1. Before

stmit-seq — stmi; stmit-seq
| stmt

2. After

stmi-seq —  stmt stmi-seq
stmt-seq’ — ;stmt-seq | €
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Example: conditionals

1. Before
if-stmt - if (exp) stmi-seqend
| if (exp) stmt-seqelse stmt-seqend

2. After
if-stmt — if (‘exp) stmt-seq else-or-end
else-or-end — else stmt-segend | end

Example: conditionals (without else)

1. Before
if-stmt — if (exp) stmit-seq
| if (exp) stmt-seq else stmt-seq

2. After
if-stmt — if (‘exp) stmi-seq else-or-empty
else-or-empty — else stmt-seq | €

Not all factorization doable in “one step”

1. Starting point
A - abcB | abC | aFE

2. After 1 step
A - abA' | aFE

A - cB | C
3. After 2 steps
A - aA”
A" - DA | E
A - cB | C

4. longest left factor
 note: we choose the longest common prefix (= longest left factor) in
the first step

Left factorization
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while there are changes to the grammar do
for each nonterminal A do
let « be a prefix of maz. length that is shared
by two or more productions for A

if  ate
then
let A-ay | ... | ap beall
prod. for A and suppose that aq,...,qp share «
sothat A>afy | ... | aBk | agsr | -+ | an,
that the ;s share no common prefiz, and
that the ay,1,...,a, do not share a.
replace rule A - a1 | ... | ayp by the rules
A-aA | agsq | --. | o
A,—>51 | | ,Bk
end
end

end

4.4 LL-parsing (mostly LL(1))

After having covered the more technical definitions of the first and follow sets
and transformations to remove left-recursion resp. common left factors, we go
back to top-down parsing, in particular to the specific form of LL(1) parsing.

Additionally, we discuss issues about abstract syntax trees vs. parse trees.

Parsing LL(1) grammars

o this lecture: we don’t do LL(k) with &> 1
o LL(1): particularly easy to understand and to implement (efficiently)
« not as expressive than LR(1) (see later), but still kind of decent

LL(1) parsing principle

Parse from 1) left-to-right (as always anyway), do a 2) left-most derivation
and resolve the “which-right-hand-side” non-determinism by

1. looking 1 symbol ahead.
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Explanation

« two flavors for LL(1) parsing here (both are top-down parsers)
— recursive descent
— table-based LL(1) parser

o predictive parsers

If one wants to be very precise: it’s recursive descent with one look-ahead and
without back-tracking. It’s the single most common case for recursive descent
parsers. Longer look-aheads are possible, but less common. Technically, even
allowing back-tracking can be done using recursive descent as principle (even
if not done in practice).

Sample expr grammar again

factors and terms

exp — termexp’ (4.6)
exp’ — addoptermexp’ | €

addop - + | -

term — factor term’

term’ — mulop factor term’ | €

mulop — *

factor - (exp) | n

Look-ahead of 1: straightforward, but not trivial

o look-ahead of 1:
— not much of a look-ahead, anyhow
— just the “current token”
= read the next token, and, based on that, decide
o but: what if there’s no more symbols?
= read the next token if there is, and decide based on the token or else the
fact that there’s none left®

Example: 2 productions for non-terminal factor

factor - (exp) | number

6Sometimes “special terminal” $ used to mark the end (as mentioned).
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Remark

that situation is trivial, but that’s not all to LL(1) ...

Recursive descent: general set-up

1. global variable, say tok, representing the “current token” (or pointer to
current token)

2. parser has a way to advance that to the next token (if there’s one)

Idea

For each non-terminal nonterm, write one procedure which:

o succeeds, if starting at the current token position, the “rest” of the token
stream starts with a syntactically correct word of terminals representing
nonterm

o fail otherwise

o ignored (for right now): when doing the above successfully, build the AST
for the accepted nonterminal.

Recursive descent

method factor for nonterminal factor

final int LPAREN=1 RPAREN=2 NUMBER=3,
PLUS=4,MINUS=5,TIMES=6;

void factor () {
switch (tok) {
case LPAREN: eat (LPAREN);expr ();eat (RPAREN);
case NUMBER: eat (NUMBER);
}

Recursive descent

qtype token = LPAREN | RPAREN | NUMBER
| PLUS | MINUS | TIMES
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let factor () = (*+ function for factors x)
match !tok with
LPAREN -> eat (LPAREN); expr(); eat(RPAREN)
| NUMBER —> eat (NUMBER)

Slightly more complex

» previous 2 rules for factor: situation not always as immediate as that

LL(1) principle (again)

given a non-terminal, the next token must determine the choice of right-hand
side”

First

= definition of the First set
Lemma 4.4.1 (LL(1) (without nullable symbols)). A reduced context-
free grammar without nullable non-terminals is an LL(1)-grammar iff for
all non-terminals A and for all pairs of productions A - oy and A - ay
with oy # ag:
Firsti(aq) n Firsty (o) = @ .

Common problematic situation

o often: common left factors problematic

if-stmt — if (exp) stmt
| if (exp) stmt else stmt

« requires a look-ahead of (at least) 2
e = try to rearrange the grammar
1. Extended BNF ([6] suggests that)

if-stmt — if (exp) stmt[else stmit]
1. left-factoring:

It must be the next token/terminal in the sense of First, but it need not be a token directly
mentioned on the right-hand sides of the corresponding rules.
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if-stmt — if (exp) stmt else—part
else—part — € | elsestmt

Recursive descent for left-factored if-stmt

procedure ifstmt ()
begin
match ("if");
match  ("(");
exp ();
match (")");
stmt ();
if token = "else"
then match ("else");
stmt ()
end
end ;

Left recursion is a no-go

factors and terms

etp — exp addop term | term (4.7)
addop — + | -
term — term mulop factor | factor
mulop — *
factor — (exp) | number

Left recursion explanation
« consider treatment of exp: First(ezp)?

— whatever is in First(term), is in First(exp)®
— even if only one (left-recursive) production = infinite recursion.

Left-recursion

Left-recursive grammar never works for recursive descent.

8 And it would not help to look-ahead more than 1 token either.
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Removing left recursion may help

Pseudo code

erp
exp’
addop
term
term/
mulop
factor

N N S S

term exp’

addop term exp' | €

+ | -

factor term’

mulop factor term’ | €
*

(ezp) | n

procedure exp ()
begin
term ();
exp’ ()
end

procedure exp’()
begin
case token of

"+": match("+");
term ();
exp’()

"-": match("-");
term ();
exp’ ()

end
end
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Recursive descent works, alright, but ...

Nr € + factor term’ €

/T

Nrmulop factor term’

Nr €

who wants this form of trees?

The two expression grammars again

factors and terms

1. Precedence & assoc.

extp — exp addop term | term
addop - + | -

term — term mulop factor | factor
mulop — %
factor — (ezp) | number

2. explanation
o clean and straightforward rules
o left-recursive

no left recursion

1. no left-rec.

exp — termexp’

ezp’ — addoptermezp’ | €
addop - + | -

term -  factor term’
term’ -  mulop factor term’ | €
mulop — %
factor - (exp) | n

2. Explanation
e 10 left-recursion



42 4 Parsing
4.4 LL-parsing (mostly LL(1))

e assoc. / precedence ok

e rec. descent parsing ok

e but: just “unnatural”

» non-straightforward parse-trees

Left-recursive grammar with nicer parse trees

1+2%(3+4)
cap
T
exp addop term
— T
tel‘m ‘!’ term mulop term
facltor facltor =|e facltor
— T
. . S
T
Nr mulop Nr

The simple “original” expression grammar (even nicer)
Flat expression grammar

etp — exp op exp | (erp) | number

op - + | - | =
Nice tree
1+2%(3+4)
exp
T
exp op exp
| | I
Nr + exrp op exp
Nr = ( ezp )
T~
exp op exrp
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Associtivity problematic

Precedence & assoc.

exp — exp addop term | term
addop - + | -
term — term mulop factor | factor
mulop — %
factor - (erp) | number
Example plus and minus
1. Formula
3+4+5
parsed “as”
(3+4)+5
3-4-5
parsed “as”
(3-4)-5
2. Tree
exp
T
erp addop term
T | I
exp addop term + factor
| I |
term + factor number
| |
factor number
|
number
exp
T
exp addop term
— T | |
erp addop term - factor
| I |
term - factor number
| |
factor number

number
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Now use the grammar without left-rec (but right-rec

instead)

No left-rec.

Example minus

1. Formula

2. Tree

exp - termexp’
ezp’ — addoptermexp’ | €
addop - + | -
term —  factor term’
term’ -  mulop factor term’ | €
mulop — %
factor - (exp) | n
3-4-5
parsed “as”
5 (4-5)
exp
/\
term ezp'
P T
factor termbddop term emp'
| [ PN — T
number € - factor  term/ addop  term e:l:p'

| | (2 N
— factor term' €

number €

number €

But if we need a “left-associative” AST?

o we want (3-4)-5, not 3-(4-5)
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factor term’ addop term exp’
/\ A
number € - factor term’ addop term ea:p'
number € - factor term’ €

number €

Code to “evaluate” ill-associated such trees correctly

function exp’ (valsofar: int): int;
begin
if token = '+' or token = '-'
then
case token of
"+': match ('+');

valsofar := valsofar 4+ term;
"-'": match ('-"');
valsofar := valsofar - term;

end case;
return exp’(valsofar);
else return valsofar
end;

» extra “accumulator” argument valsofar

 instead of evaluating the expression, one could build the AST with the
appropriate associativity instead:

 instead of valueSoFar, one had rootOfTreeSoFar

“Designing” the syntax, its parsing, & its AST

« trade offs:
1. starting from: design of the language, how much of the syntax is left
“implicit™

9Lisp is famous/notorious in that its surface syntax is more or less an explicit notation for
the ASTs. Not that it was originally planned like this ...
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2. which language class? Is LL(1) good enough, or something stronger
wanted?

. how to parse? (top-down, bottom-up, etc.)

4. parse-tree/concrete syntax trees vs. ASTSs

w

AST vs. CST

once steps 1.-3. are fixed: parse-trees fixed!
parse-trees = essence of grammatical derivation process
often: parse trees only “conceptually” present in a parser
AST:
— abstractions of the parse trees
— essence of the parse tree
— actual tree data structure, as output of the parser
— typically on-the fly: AST built while the parser parses, i.e. while it
executes a derivation in the grammar

AST vs. CST/parse tree

Parser "builds" the AST data structure while "doing" the parse tree

AST: How “far away” from the CST?

o AST: only thing relevant for later phases = better be clean . ..
o AST “=” CST?

— building AST becomes straightforward

— possible choice, if the grammar is not designed “weirdly”,

factor term’ addop term exp’
A W
number € - factor term’ addop term exp’
number € - factor term’ €

number €
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parse-trees like that better be cleaned up as AST

exp

- T
exp addop term
— T | |
exp addop term - factor
| I | [
term - factor number
I I
factor number

number

slightly more reasonable looking as AST (but underlying grammar not directly
useful for recursive descent)

exp op exp
I I — T
number - erp op exp
I I I
number - number

That parse tree looks reasonable clear and intuitive

number -
number number
exp: —
exp : number exp: —
/\
erp : number erp : number

Certainly minimal amount of nodes, which is nice as such. However, what is
missing (which might be interesting) is the fact that the 2 nodes labelled “-”
are expressions!
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This is how it’s done (a recipe)

Assume, one has a “non-weird” grammar

etp — exp op exp | (exp) | number
op - + | - | *

Explanation

 typically that means: assoc. and precedences etc. are fixed outside the
non-weird grammar
— by massaging it to an equivalent one (no left recursion etc.)
— or (better): use parser-generator that allows to specify assoc ... like
“"s" binds stronger than "+", it associates to the left ...”

,, without cluttering the grammar.

o if grammar for parsing is not as clear: do a second one describing the
ASTs

Remember (independent from parsing)

BNF describe trees

This is how it’s done (recipe for OO data structures)
Recipe

e turn each non-terminal to an abstract class

« turn each right-hand side of a given non-terminal as (non-abstract) sub-
class of the class for considered non-terminal

« chose fields & constructors of concrete classes appropriately

« terminal: concrete class as well, field/constructor for token’s value

Example in Java

etp — exp op exp | (exp) | number
op - + | - | *

abstract public class Exp {

}
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public class BinExp extends Exp { // exp -> exp op ezp
public Exp left , right;
public Op op;
public BinExp(Exp 1, Op o, Exp r) {
left=1; op=o0; right=r;}

public class ParentheticExp extends Exp { // exp -> ( op )
public Exp exp;
public ParentheticExp (Exp e) {exp = 1;}

}

public class NumberExp extends Exp { // ezp -> NUMBER
public number; // token wvalue
public Number(int i) {number = i;}

}

abstract public class Op { // non—terminal = abstract
}

public class Plus extends Op { // op -> "+"'

}

public class Minus extends Op { // op —-> "-"

}

public class Times extends Op { // op —> "+"

}

Exp e = new BinExp(
new NumberExp(3),
new Minus (),
new BinExp(new ParentheticExpr (
new NumberExp (4) ,
new Minus (),
new NumberExp (5))))

Pragmatic deviations from the recipe

« it’s nice to have a guiding principle, but no need to carry it too far ...

e To the very least: the ParentheticExpr is completely without pur-
pose: grouping is captured by the tree structure

= that class is not needed
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« some might prefer an implementation of

op—>+ | - | *

as simply integers, for instance arranged like

public class BinExp extends Exp { // exp -> exzp op ezp
public Exp left , right;
public int op;
public BinExp(Exp 1, int o, Exp r) {pos=p; left=l; oper=o; right=r;}
public final static int PLUS=0, MINUS=1, TIMES=2;

and used as BinExpr.PLUS etc.

Recipe for ASTs, final words:

» space considerations for AST representations are irrelevant in most cases
o clarity and cleanness trumps “quick hacks” and “squeezing bits”
« some deviation from the recipe or not, the advice still holds:

Do it systematically

A clean grammar is the specification of the syntax of the language and thus
the parser. It is also a means of communicating with humans (at least with
pros who (of course) can read BNF) what the syntax is. A clean grammar is
a very systematic and structured thing which consequently can and should be
systematically and cleanly represented in an AST, including judicious and
systematic choice of names and conventions (nonterminal ezp represented by
class Exp, non-terminal stmt by class Stmt etc)

Louden

« a word on [6]: His C-based representation of the AST is a bit on the
“bit-squeezing” side of things ...

Extended BNF may help alleviate the pain

BNF

extp — expaddopterm | term
term — term mulop factor | factor
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EBNF

exp — term{ addop term }
term —  factor{ mulop factor }

Explanation

but remember:

o EBNF just a notation, just because we do not see (left or right) recursion in
{ ...}, does not mean there is no recursion.

e not all parser generators support EBNF

« however: often easy to translate into loops- 1°

o does not offer a general solution if associativity etc. is problematic

Pseudo-code representing the EBNF productions

procedure exp;

begin
term ; { recursive call }
while token = "4" or token = "-"'
do
match (token);
term; // recursive call
end
end

procedure term;
begin
factor; { recursive call }
while token = "x'
do
match (token );
factor; // recursive call
end
end

How to produce “something” during RD parsing?

Recursive descent

So far: RD = top-down (parse-)tree traversal via recursive procedure.!! Possible
outcome: termination or failure.

0That results in a parser which is somehow not “pure recursive descent”. It’s “recusive
descent, but sometimes, let’s use a while-loop, if more convenient concerning, for instance,
associativity”

"U\Modulo the fact that the tree being traversed is “conceptual” and not the input of the
traversal procedure; instead, the traversal is “steered” by stream of tokens.
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Rest

o Now: instead of returning “nothing” (return type void or similar), return
some meaningful, and build that up during traversal
o for illustration: procedure for expressions:
— return type int,
— while traversing: evaluate the expression

Evaluating an exp during RD parsing

function exp() : int;

var temp: int

begin
temp := term (); { recursive call }
while token = "+" or token = "-"

case token of
"+": match ("4+");

temp := temp + term();
"—": match ("-")
temp := temp - term();
end
end
return temp;

end

Building an AST: expression

function exp() : syntaxTree;
var temp, newtemp: syntaxTree
begin
temp := term (); { recursive call }
while token = "+"' or token = "-"
case token of
w_,’_w: match (n_,’_n)’

newtemp := makeOpNode ("+");
leftChild (newtemp) := temp;
rightChild (newtemp) := term();
temp := newtemp;
"_“: matCh (H_ﬂ)
newtemp := makeOpNode(" -");
leftChild (newtemp) := temp;
rightChild (newtemp) := term();
temp := newtemp;
end
end
return temp;

end

e note: the use of temp and the while loop
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Building an AST: factor

factor - (exp) | number

function factor() : syntaxTree;
var fact: syntaxTree
begin

case token of
|l(|l: matCh (!l(“);

fact := exp();
match (")");
number :
match (number)
fact := makeNumberNode(number);
else : error ... // fall through
end
return fact;
end

Building an AST: conditionals

if-stmt — if (‘exp) stmt [else stmi]

function ifStmt() : syntaxTree;
var temp: syntaxTree
begin
match ("if");
match ("(");
temp := makeStmtNode ("if")
testChild (temp) := exp();
match (")");
thenChild (temp) := stmt();
if token = "else"
then match "else";

elseChild (temp) := stmt();
else elseChild (temp) := nil;
end
return temp;
end

Building an AST: remarks and “invariant”

o LL(1) requirement: each procedure/function/method (covering one specific
non-terminal) decides on alternatives, looking only at the current token
e call of function A for non-terminal A:
— upon entry: first terminal symbol for A in token
— upon exit: first terminal symbol after the unit derived from A in token
e match ("a") : checks for "a" in token and eats the token (if matched).

LL(1) parsing

o remember LL(1) grammars & LL(1) parsing principle:
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LL(1) parsing principle

1 look-ahead enough to resolve “which-right-hand-side” non-determinism.

Further remarks

o instead of recursion (as in RD): explicit stack
o decision making: collated into the LL(1) parsing table
o LL(1) parsing table:
— finite data structure M (for instance 2 dimensional array)?
M:YnxYp - ((Eny xX") + error)

2

- M[A,a] =w
e we assume: pure BNF

Construction of the parsing table

Table recipe

1. If A» aeP and a« =" af3, then add A > « to table entry M[A,a]
2. IfA»>aePanda="€ecand S$ =" fAay (where a is a token (=non-terminal)
or 8), then add A - « to table entry M[A,a]

Table recipe (again, now using our old friends First and Follow)

Assume A - o € P.

1. If a € First(a), then add A - « to M[A,a].
2. If « is nullable and a € Follow(A), then add A - « to M[A,a].

Example: if-statements

o grammars is left-factored and not left recursive

stmt — if-stmt | other
if-stmt — if (exp) stmt else—part
else—part — elsestmt | €
etp - 0|1

120ften, the entry in the parse table does not contain a full rule as here, needed is only the
right-hand-side. In that case the table is of type Xy x X7 - (X* +error). We follow the
convention of this book.
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| First | Follow
stmt other, if | $,else
if-stmt | if $, else
else—part | else, e $, else
erp 0,1 )

Example: if statement: “LL(1) parse table”

M[N, T] | if other else 0 1 $
statement | statement Statement
— if-stmt —» other
if-stmt if-stmt —
if (exp ),
statement
else-part
else-part else-part — else-part
else — £
statement
else-part — €
exp exp—0 |exp—1

e 2 productions in the “red table entry”
o thus: it’s technically not an LL(1) table (and it’s not an LL(1) grammar)
e note: removing left-recursion and left-factoring did not help!

LL(1) table based algo

while the top of the parsing stack #$
if the top of the parsing stack is terminal a
and the next input token =a
then
pop the parsing stack;
advance the input; // *“match''
else if the top the parsing is non-terminal A
and  the next input token is a terminal or $
and parsing table M[A,a] contains
production A - X1 X5...X,
then (% generate x)
pop the parsing stack
for i:=n to 1 do
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push X onto the stack;
else error
if  the top of the stack = $
then accept
end

LL(1): illustration of run of the algo

Remark

The most interesting steps are of course those dealing with the dangling else, namely
those with the non-terminal else—part at the top of the stack. That’s where the LL(1)
table is ambiguous. In principle, with else—part on top of the stack (in the picture
it’s just L), the parser table allows always to make the decision that the “current
statement” resp “current conditional” is done.

Expressions
exp — exp addop term | term
addop - + | -
term — term mulop factor | factor
mulop — *
factor — (exp) | number
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left-recursive = not LL(k)

exp — termexp’
exp’ — addoptermexp’ | €
addop — + | -
term — factor term’
term’ — mulop factor term’ | €
mulop — *
factor — (exp) | n
First Follow
exp (,number | $,)
633’]7, +, € $7 )
addop | +,- (,number
term | (,number | $,),+,-
term’ | x,€ $,),+,-
mulop | * (,number
factor | (,number | $,),+,-, *
Expressions: LL(1) parse table
MIN, T] ( number ) + - * $
exp exp — exp —
termexp'|  term exp’
exp’ exp' = e | exp’ — exp’ — exp’ — €
addop addop
termexp'| term exp'
addop addop — | addop —
+ -
term term — term —
factor factor
term’ term’
term’ term' — | term' — & |term’' — & | term' — | term' —
e mulop £
Jactor
term’
mu{(}p mm'op —_
*
factor | factor — | factor —
(exp) number
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Error handling

o at the least: do an understandable error message
o give indication of line / character or region responsible for the error in the
source file
e potentially stop the parsing
e some compilers do error recovery
— give an understandable error message (as minimum)
— continue reading, until it’s plausible to resume parsing = find more errors
— however: when finding at least 1 error: no code generation
— observation: resuming after syntax error is not easy

Error messages

e important:
— try to avoid error messages that only occur because of an already reported
error!
— report error as early as possible, if possible at the first point where the
program cannot be extended to a correct program.
— make sure that, after an error, one doesn’t end up in a infinite loop without
reading any input symbols.
o« What’s a good error message?
— assume: that the method factor () chooses the alternative (exp) but
that it, when control returns from method exp (), does not find a )
— one could report : left paranthesis missing
— But this may often be confusing, e.g. if what the program text is: ( a +
b c)
— here the exp () method will terminate after ( a + b, as c cannot extend
the expression). You should therefore rather give the message error in
expression or left paranthesis missing.
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Handling of syntax errors using recursive descent

Method: «Panic mode» with use of «Synchronizing set»

Synch-set (stack or parameter):
<programs $

begin <deklsekvs | < setningssekv>‘7 end end

<stmnt>/; <stmnt>; ............. ) First(stmt)
™~

- i
xpr> then <stmnt> | elﬁcstr@ then First(stmt) else

+ - First(term)

\ .
/( integer name
* First(factor)

—

Syntax errors with sync stack

From the sketch at the previous page we can easily find:
- Which call should continue the execution?

- What input symbol should this method search for before resuming?

- We assume that § is added to the synch. stack only by the
outermost method (for the start symbol)

- The union of everything on the stack is called the "synch. set”, SS

The algorithm for this goes is as follows:
For each coming input symbol, test if it is a member of SS
If so:

= Look through the SS stack from newest to oldest, and find the newest
method

= that are willing to resume at one of these symbol

= This method will itself know how to resume after the actual
input symbol

What is not easy is to program this without destroing the nich
program structure occuring from pure recursive descent. 2
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Procedures for expression with "error recovery"

I'::gic:d““ exp (synchset ) 5 Main philosophy Uses parameters, not a stack
checkinput ( { (, number |, synchset ) ; The method "checkinput” The procedures must themselves
if not ( token in synchset ) then is called twice: First to resume execution at the right

term ( synchser ) ; ) check that the place inside themselves when they
while roken = + or token = - do construction starts get the control back,

correctly, and secondly
to check that the symbol
after the construction is
legal.

match (token)
term ( synchset ) ;
end while ; Aso{ +,-}17?
checkinput ( synchset, | (, number |) ;
end if
end exp

or it must terminate immediately if
it cannot resume execution on the
current symbol.

if token in {(,number} then ...

procedure factor ( synchset ) ;

begin procedure scanto ( synchset ) ;
checkinput ( { (, number }, synchset ) ; begin
if not ( roken in synchset ) then while not ( token in synchser w { $ }) do
case token of getToken 5
(¢ march((); end scanto
exp ({)});<«— Why not the full"synchset"?
match( )} ;

procedure checkinput ( firstset, followset ) §
begin
if not ( token in firstser ) then

number :
match{ number) ;

else error

end case ; error;
checkinput ( synchset, { (, number }): ~ scanto ( firstser U followset ) 5
end if ; end if 5
end factor ; end; 27

4.5 Bottom-up parsing

Bottom-up parsing: intro

"R" stands for right-most derivation.

LR(0) « only for very simple grammars
e approx. 300 states for standard programming languages
« only as intro to SLR(1) and LALR(1)

SLR(1) e expressive enough for most grammars for standard PLs
« same number of states as LR(0)
e main focus here

LALR(1) -« slightly more expressive than SLR(1)
« same number of states as LR(0)
o we look at ideas behind that method as well

LR(1) covers all grammars, which can in principle be parsed by looking at the next
token
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Remarks

There seems to be a contradiction in the explanation of LR(0): if LR(0) is so weak
that it works only for unreasonably simple language, how can one speak about that
standard languages have 300 states? The answer is, the other more expressive parsers
(SLR(1) and LALR(1)) use the same construction of states, so that’s why one can
estimate the number of states, even if standard languages don’t have a LR(0) parser;
they may have an LALR(1)-parser, which has, it its core, LR(0)-states.

Grammar classes overview (again)

unambiguous hmbiguous

CLE\ LRK)
CLON\| LR(1)

/
-
LALR(1)
SLR
LR(0)
S

Z

LR-parsing and its subclasses

o right-most derivation (but left-to-right parsing)

e in general: bottom-up parsing more powerful than top-down

o typically: tool-supported (unlike recursive descent, which may well be hand-
coded)

e based on parsing tables 4+ explicit stack

o thankfully: left-recursion no longer problematic

o typical tools: yacc and its descendants (like bison, CUP, etc)

o another name: shift-reduce parser

tokens + non-terms .

(4

states LR parsing table
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Example grammar

S - S

S - ABtr | ...

A - tgts | t1B | ...
B - t2t3 | Ate |

e assume: grammar unambiguous
o assume word of terminals t1ts ...ty and its (unique) parse-tree

o general agreement for bottom-up parsing:

— start symbol never on the right-hand side or a production
— routinely add another “extra” start-symbol (here S')!3

Parse tree for t;...t7

t1 t2 tz tg t5 te tr

Remember: parse tree independent from left- or right-most-derivation

LR: left-to right scan, right-most derivation?
Potentially puzzling question at first sight:

How does the parser right-most derivation, when parsing left-to-right?

13That will later be relied upon when constructing a DFA for “scanning” the stack, to control
the reactions of the stack machine. This restriction leads to a unique, well-defined initial
state.
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Discussion
e short answer: parser builds the parse tree bottom-up
e derivation:

— replacement of nonterminals by right-hand sides
— derivation: builds (implicitly) a parse-tree top-down

- sentential form: word from X* derivable from start-symbol
Right-sentential form: right-most derivation

S="a

Slighly longer answer

LR parser parses from left-to-right and builds the parse tree bottom-up. When
doing the parse, the parser (implicitly) builds a right-most derivation in reverse
(because of bottom-up).

Example expression grammar (from before)

exp — exp addop term | term (4.8)
addop - + | -
term — term mulop factor | factor
mulop — *
factor — (ezp) | number

exp
|
term

term/Wtor
factor | I

number * number

Bottom-up parse: Growing the parse tree

exp
te;“m

termtor

facltor ! |

number * number
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number * number factor * number

term *» number
term * factor

term
exp

PPl

Reduction in reverse = right derivation

Reduction

factor *n
term *n
term * factor
term

erp

PP 3 d

Right derivation

n*n <, factor*n
<r termx*n
<, term=* factor
<=p term
<=, exp

Underlined entity

o underlined part:
— different in reduction vs. derivation
— represents the “part being replaced”
x for derivation: right-most non-terminal
* for reduction: indicates the so-called handle (or part of it)
e consequently: all intermediate words are right-sentential forms

Handle

Definition 4.5.1 (Handle). Assume S = acAw =, afw. A production A - [ at
position k following « is a handle of afw We write (A — 3, k) for such a handle.

Note:
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o w (right of a handle) contains only terminals
e w: corresponds to the future input still to be parsed!
o af will correspond to the stack content (/3 the part touched by reduction step).
e the =, -derivation-step in reverse:
— one reduce-step in the LR-parser-machine
— adding (implicitly in the LR-machine) a new parent to children § (=
bottom-up!)
o “handle”-part 8 can be empty (= €)

Schematic picture of parser machine (again)

[ e s D]

Reading “head”
(moves left-to-right)

bounded extra memory (stack)
Finite control

General LR “parser machine” configuration

e Stack:
— contains: terminals + non-terminals (+ §)
— containing: what has been read already but not yet “processed”
e position on the “tape” (= token stream)
— represented here as word of terminals not yet read
— end of “rest of token stream”: $, as usual
¢ state of the machine
— in the following schematic illustrations: not yet part of the discussion
— later: part of the parser table, currently we explain without referring to
the state of the parser-engine
— currently we assume: tree and rest of the input given
— the trick ultimately will be: how do achieve the same without that tree
already given (just parsing left-to-right)
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Schematic run (reduction: from top to bottom)

$ titotstatstety $
$ty totstatstets §
$t1to t3tatstgty $
$titats tatstets $
$t.B titstets $
$A tytstety $
$ Aty tstgt7 §
$ Atyts tet7 $
$AA tgt7 $
$ AAtg t7 $
$AB t7 $
$ ABt, $
$S $
$5’ $

2 basic steps: shift and reduce

o parsers reads input and uses stack as intermediate storage
e so far: no mention of look-ahead (i.e., action depending on the value of the
next token(s)), but that may play a role, as well

Shift

Move the next input symbol (terminal) over to the top of the stack (“push”)

Reduce

Remove the symbols of the right-most subtree from the stack and replace it by the
non-terminal at the root of the subtree (replace = “pop + push”).

Remarks

e easy to do if one has the parse tree already!
o reduce step: popped resp. pushed part = right- resp. left-hand side of handle

Example: LR parsing for addition (given the tree)

E' - E
E - E+n | n
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CST
EI
E
E
n + n
Run
parse stack  input action
1 8 n+n$ shift
2 8$n +n$ red:. E—>n
3 $FE +n$ shift
4 $E+ n$ shift
5 $F+n $ reduce E - E+n
6 $F $ red: B> E
7 $E $ accept

note: line 3 vs line 6!; both contain F on top of stack

(right) derivation: reduce-steps “in reverse”

!
EF=F=FE+n=n+n

Example with e-transitions: parentheses

s - S

S — (8)S | e

side remark: unlike previous grammar, here:

e production with two non-terminals in the right
= difference between left-most and right-most derivations (and mixed ones)
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Parentheses: tree, run, and right-most derivation

CST

—~_
@)}

Run

parse stack input action
1 8 ()$ shift
2 8¢ )$ reduce S —e€
3 $(S )$  shift
4 8$(95) $ reduce S —e€
5 $(95)S $ reduce S—(S5)S
6 $S $ reduce S’ > S
7 85 $ accept

Note: the 2 reduction steps for the € productions

Right-most derivation and right-sentential forms

S =, 5=, (S)S=+(8)=r()

Right-sentential forms & the stack

- sentential form: word from X* derivable from start-symbol

Right-sentential form: right-most derivation

S =%

T

(07
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Explanation
o right-sentential forms:

— part of the “run”

— but: split between stack and input
Run

parse stack  input action

1 $ n+n$ shift

2 $n +n8$ red:. F—-n

3 $F +n$ shift

4 $E+ n$ shift

5 $FE+n $ reduce F - E+n
6 $F $ red: B> FE

7T $E $ accept

Derivation and split

FE =, E=,F+n=,n+n

n+ino LFinsEo FE

Rest

EF' =, E=,FE+n|~ E+|n~E|+n=,n| +n~| n+n

Viable prefixes of right-sentential forms and handles

o right-sentential form: F+n
« viable prefixes of RSF
— prefixes of that RSF on the stack
— here: 3 viable prefixes of that RSF: E, F+, F+n
e handle: remember the definition earlier
o here: for instance in the sentential form n+n
— handle is production E — n on the left occurrence of n in n+n (let’s
write n; +ny for now)
— note: in the stack machine:
x the left n; on the stack
x Test +ny on the input (unread, because of LR(0))
« if the parser engine detects handle n; on the stack, it does a reduce-step
« However (later): reaction depends on current state of the parser engine
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A typical situation during LR-parsing

SI
1 After a shift, the next

S reduction to be made is a
Allthese are _——= |\ reduction with the
A ©

reduced

@ 0 production:
A 7
-/ / \\\\ c
® B ©@ @ Then, after two shifts, we
S/ // \\ the production:

D->t2 t3

© . s, W
will make a reduction with
/ Then, what’s next?

t1 t 13t4 t516 ...... tn$

token rest of input

The stack is reduced version of the processed input

General design for an LR-engine

« some ingredients clarified up-to now:
— bottom-up tree building as reverse right-most derivation,
— stack vs. input,
— shift and reduce steps
e however: 1 ingredient missing: next step of the engine may depend on
— top of the stack (“handle”)
— look ahead on the input (but not for LL(0))
— and: current state of the machine (same stack-content, but different
reactions at different stages of the parse)

But what are the states of an LR-parser?
General idea:

Construct an NFA (and ultimately DFA) which works on the stack (not the
input). The alphabet consists of terminals and non-terminals X7 u Xy. The
language

«a may occur on the stack during

Stacks(G) = {a | LR-parsing of a sentence in E(G)}

is regular!
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LR(0) parsing as easy pre-stage

o LR(0): in practice too simple, but easy conceptual step towards LR(1),
SLR(1) etc.
« LR(1): in practice good enough, LR(k) not used for &k > 1

LR(0) item

production with specific “parser position” . in its right-hand side

Rest

e . is, of course, a “meta-symbol” (not part of the production)
« For instance: production A — «, where a = v, then
LR(0) item

A - By

complete and initial items

o item with dot at the beginning: initial item
o item with dot at the end: complete item

Example: items of LR-grammar

Grammar for parentheses: 3 productions

S - 5
S > (S)S | e
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8 items
S - .S
S - S.
S - .(95)S
S - (.9)S
S - (S.)S
S - (5).5
S - (95)S.
S - .
Remarks

« note: S — € gives S — . as item (not S — €. and S - .€)
o side remark: see later, it will turn out: grammar not LR(0)

Another example: items for addition grammar
Grammar for addition: 3 productions

£ - F
E - FE+n|n

(coincidentally also:) 8 items

Rl

N 2 2 2R TR R

E+n
E.+n
EF+.n
FE+n.

SHGHGHEGRGR!

Remarks: no LR(0)

o also here: it will turn out: not LR(0) grammar
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Finite automata of items
« general set-up: items as states in an automaton
« automaton: “operates” mot on the input, but the stack

e automaton either

— first NFA, afterwards made deterministic (subset construction), or
— directly DFA

States formed of sets of items

In a state marked by/containing item

A= By

e 3 on the stack
e 7: to be treated next (terminals on the input, but can contain also non-
terminals)

State transitions of the NFA

e XeX
e two kind of transitions

Terminal or non-terminal

[A > a.X7 ]f\:[A S aX.g ]

Epsilon (X: non-terminal here)

[A - a.X7 ]—G{X .8 ]

Explanation

o In case X = terminal (i.e. token) =
— the left step corresponds to a shift step!4
o for non-terminals (see next slide):

14We have explained shift steps so far as: parser eats one terminal (= input token) and
pushes it on the stack.
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— interpretation more complex: non-terminals are officially never on
the input

— note: in that case, item A - «.Xn has two (kinds of) outgoing tran-
sitions

Transitions for non-terminals and ¢

e so far: we never pushed a non-terminal from the input to the stack, we
replace in a reduce-step the right-hand side by a left-hand side
e however: the replacement in a reduce steps can be seen as
1. pop right-hand side off the stack,
2. instead, “assume” corresponding non-terminal on input &
3. eat the non-terminal an push it on the stack.
» two kind of transitions
1. the e-transition correspond to the “pop” half
2. that X transition (for non-terminals) corresponds to that “eat-and-
push” part
o assume production X — 3 and initial item X - .3

Terminal or non-terminal

[A S a. X7 ]35[,4 S aX.g ]

Epsilon (X: non-terminal here)

Given production X — f:

[A > a.X7 ]—€>[X > .8 ]

Initial and final states
initial states:

« we make our lives easier
 we assume (as said): one extra start symbol say S’ (augmented grammar)
= initial item S’ — .5 as (only) initial state
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final states:

o NFA has a specific task, “scanning” the stack, not scanning the input
 acceptance condition of the overall machine: a bit more complex
— input must be empty
— stack must be empty except the (new) start symbol
— NFA has a word to say about acceptence
x but not in form of being in an accepting state
* 80: no accepting states
% but: accepting action (see later)

NFA: parentheses

€

Remarks on the NFA

« colors for illustration
— “reddish”: complete items
— “blueish”: init-item (less important)
— “violet’tish”: both
e init-items
— one per production of the grammar
— that’s where the e-transistions go into, but
— with exception of the initial state (with S’-production)
no outgoing edges from the complete items
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NFA: addition

Determinizing: from NFA to DFA

 standard subset-construction!®

o states then contains sets of items
 especially important: e-closure

o also: direct construction of the DFA possible

DFA: parentheses

5
S> .(9)S [S—> (S)S.P

S —

5 Technically, we don’t require here a total transition function, we leave out any error state.
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DFA: addition

2 4
[E—> n. [E—> E+.n]E[E—> E +n.

Direct construction of an LR(0)-DFA

o quite easy: simply build in the closure already

e-closure
o if A— «.B7 is an item in a state where
e there are productions B— 1 | fB2... =

e add items B —» .3, , B— .05 ... to the state
» continue that process, until saturation

initial state

S .5

plus closure

Direct DFA construction: transitions

Al - O[l.Xﬁl ¥ Al - OélX.ﬁl
ce > AQ g O[QX.ﬁQ
Ay > . X[ plus closure

o X: terminal or non-terminal, both treated uniformely

All items of the form A - «.X 3 must be included in the post-state
and all others (indicated by "...") in the pre-state: not included

o re-check the previous examples: outcome is the same
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How does the DFA do the shift/reduce and the rest?

» we have seen: bottom-up parse tree generation
o we have seen: shift-reduce and the stack vs. input
« we have seen: the construction of the DFA

But: how does it hang together?

We need to interpret the “set-of-item-states” in the light of the stack content
and figure out the reaction in terms of

« transitions in the automaton

« stack manipulations (shift/reduce)

e acceptance

e input (apart from shifting) not relevant when doing LR(0)

Determinism

and the reaction better be uniquely determined .. ..

Stack contents and state of the automaton

« remember: at any given intermediate configuration of stack/input in a
run
1. stack contains words from »*
2. DFA operates deterministically on such words
o the stack contains the “past”: read input (potentially partially reduced)
o when feeding that “past” on the stack into the automaton
— starting with the oldest symbol (not in a LIFO manner)
— starting with the DFA’s initial state
= stack content determines state of the DFA
« actually: each prefix also determines uniquely a state
» top state:
— state after the complete stack content
— corresponds to the current state of the stack-machine
= crucial when determining reaction
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State transition allowing a shift

 assume: top-state (= current state) contains item

X - a.af

e construction thus has transition as follows

S t

X > «a.ap 3 X - aa.fs

o shift is possible
o if shift is the correct operation and a is terminal symbol corresponding to
the current token: state afterwards = ¢

State transition: analogous for non-terminals

Production
X > a.Bp
Transition
(s) t
o Bl ...
X > a.Bp X > aB.p
Explanation

e same as before, now with non-terminal B
» note: we never read non-term from input
« not officially called a shift
 corresponds to the reaction followed by a reduce step, it’s not the reduce
step itself
 think of it as folllows: reduce and subsequent step
— not as: replace on top of the stack the handle (right-hand side) by
non-term B,
— but instead as:
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1. pop off the handle from the top of the stack
2. put the non-term B “back onto the input” (corresponding to the
above state s)
3. eat the B and shift it to the stack
 later: a goto reaction in the parse table

State (not transition) where a reduce is possible

remember: complete items (those with a dot . at the end)
assume top state s containing complete item A — ~.

a complete right-hand side (“handle”) v on the stack and thus done

o may be replaced by right-hand side A

= reduce step

e builds up (implicitly) new parent node A in the bottom-up procedure
« Note: A on top of the stack instead of ~:16

— new top state!

— remember the “goto-transition” (shift of a non-terminal)

Remarks: states, transitions, and reduce steps

e ignoring the e-transitions (for the NFA)

o there are 2 “kinds” of transitions in the DFA
1. terminals: reals shifts
2. non-terminals: “following a reduce step”

No edges to represent (all of) a reduce step!

o if a reduce happens, parser engine changes state!
o however: this state change is not represented by a transition in the DFA
(or NFA for that matter)

 especially not by outgoing errors of completed items

6Indirectly only: as said, we remove the handle from the stack, and pretend, as if the A
is next on the input, and thus we “shift” it on top of the stack, doing the corresponding
A-transition.
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Rest

o if the (rhs of the) handle is removed from top stack: =
— “go back to the (top) state before that handle had been added”: no
edge for that
« later: stack notation simply remembers the state as part of its configura-
tion

Example: LR parsing for addition (given the tree)

E' - E
E - E+n | n

CST
B
E
FE
|
n + n
Run

parse stack  input action

1 8 n+n$ shift

2 $n +n$ red:. E—-n

3 $F +n$ shift

4 $FE+ n$ shift

5 $F+n $ reduce F - E+n
6 $F $ red: B> F

7 SE $ accept

note: line 3 vs line 6!; both contain E on top of stack
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DFA of addition example

e note line 3 vs. line 6
o both stacks = E = same (top) state in the DFA (state 1)

LR(0) grammars

LR(0) grammar

The top-state alone determines the next step.

No LR(0) here

o especially: no shift /reduce conflicts in the form shown
e thus: previous number-grammar is not LR(0)

Simple parentheses

A > (A)]|a
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DFA

Remaks

o for shift:

— many shift transitions in 1 state allowed

— shift counts as one action (including “shifts” on non-terms)
e but for reduction: also the production must be clear

Simple parentheses is LR(0)

DFA

t

VA (1) P
[A—» (A.)]:):[A—» (A).
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Remaks

state possible action

only shift

only red: (with A" - A)
only red: (with A —» a)
only shift

only shift

only red (with A - (A4))

T W N~ O

NFA for simple parentheses (bonus slide)

[ AA[A’—> A

A—> A)] [A—> a]—»[A—> a.]

<5/

> (Ap{4- (4 )]»[Aa (4).)

Parsing table for an LR(0) grammar

o table structure: slightly different for SLR(1), LALR(1), and LR(1) (see later)
o note: the “goto” part: “shift” on non-terminals (only 1 non-terminal A here)
o corresponding to the A-labelled transitions

e see the parser run on the next slide

state | action rule input  goto

(a) A

0 shift 3 2 1

1 |reduce A'—> A

2 |reduce A—a

3 | shift 3 2 4

4 | shift 5

5 |reduce A—(A)
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Parsing of ((a))

stage | parsing stack input action

1 $ ((a))$ shift

2 $0 (3 (a))$ shift

3 $0(3(3 a))$ shift

4 $0(3(3a2 ))$ reduce A—a

5 $0(5(344 ))$ shift

6 80(3(544)5 )$ reduce A > (A)
7 $0(344 )$ shift

8 $0(344)5 $ reduce A— (A)
9 $0A, $ accept

e note: stack on the left
— contains top state information
— in particular: overall top state on the right-most end
e note also: accept action
— reduce wrt. to A" - A and
— empty stack (apart from $, A, and the state annotation)
= accept

Parse tree of the parse

>>

p—

_
_
N— ——
N ——

e As said:
— the reduction “contains” the parse-tree
— reduction: builds it bottom up
— reduction in reverse: contains a right-most derivation (which is “top-
down”)
 accept action: corresponds to the parent-child edge A" — A of the tree

Parsing of erroneous input

o empty slots it the table: “errors”
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stage

action

N O Uk W N

parsing stack input
$o ((a)$
$0(5 (a)$
$0(3(3 a)$
$0(3(3a2 )$
$0(3(3A4 )$
$0(3(3A4)5 $
$0(;A44 $

shift
shift
shift
reduce A — a
shift

reduce A —» (A)
7777

stage | parsing stack input action

Invariant

1 $9

()$ shift
)$ PP

important general invariant for LR-parsing: never shift something “illegal” onto the

stack

LR(0) parsing algo, given DFA

let s be the current state, on top of the parse stack

1. s contains A - «.X 3, where X is a terminal
e shift X from input to top of stack. the new state pushed on the stack:

X
state t where s — ¢

e else: if s does not have such a transition: error
2. s contains a complete item (say A — ~v.): reduce by rule A - :
e A reduction by S’ - S: accept, if input is empty; else error:

o clse:

pop: remove 7 (including “its” states from the stack)

back up: assume to be in state u which is now head state

push: push A to the stack, new head state ¢t where u A (in the DFA)

LR(0) parsing algo remarks

o in [6]: slightly differently formulated
o instead of requiring (in the first case):

X -
— push state ¢t were s — ¢ or similar, book formulates

— push state containing item A - a. X

« analogous in the second case
o algo (= deterministic) only if LR(0) grammar



4 Parsing
4.5 Bottom-up parsing

— in particular: cannot have states with complete item and item of form
Aa. X (otherwise shift-reduce conflict)

— cannot have states with two X-successors (known as reduce-reduce con-
flict)

DFA parentheses again: LR(0)?

S > S
S > (S)S | e

—| S—> .(S5)S S S.

Look at states 0, 2, and 4

DFA addition again: LR(0)?

E' - FE
E - E+n | n

How to make a decision in state 17
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Decision? If only we knew the ultimate tree already ...

... especially the parts still to come

CST
El
FE
FE
n + n
Run
parse stack  input action
1 8 n+n$ shift
2 $n +n$ red:. E—>n
3 $F +n$ shift
4 $E+ n$ shift
5 $F+n $ reduce F - E+n
6 $E $ red: B > F
7 $E $ accept
Explanation

e current stack: represents already known part of the parse tree

o since we don’t have the future parts of the tree yet:

= look-ahead on the input (without building the tree as yet)

o LR(1) and its variants: look-ahead of 1 (= look at the current type of the
token)
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Addition grammar (again)

o How to make a decision in state 12 (here: shift vs. reduce)
= look at the next input symbol (in the token)

One look-ahead

o LR(0), not useful, too weak

 add look-ahead, here of 1 input symbol (= token)

o different variations of that idea (with slight difference in expresiveness)
« tables slightly changed (compared to LR(0))

o but: still can use the LR(0)-DFAs

Resolving LR(0) reduce/reduce conflicts

LR(0) reduce/reduce conflict:

SLR(1) solution: use follow sets of non-terms

o If Follow(A) n Follow(B) = @

= next symbol (in token) decides!
— if token € Follow(a) then reduce using A - «
— if token € Follow(f) then reduce using B - 3
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Resolving LR(0) shift/reduce conflicts

LR(0) shift/reduce conflict:

. )
A= a. by C]

/
By — B1.bim C]

By — B2.bayo
—

SLR(1) solution: again: use follow sets of non-terms

o If Follow(A)n{b1,bs,...} =&
= next symbol (in token) decides!
— if token € Follow(A) then reduce using A - «, non-terminal A determines
new top state
— if token € {by,ba,...} then shift. Input symbol b; determines new top
state

SLR(1) requirement on states (as in the book)

o formulated as conditions on the states (of LR(0)-items)
o given the LR(0)-item DFA as defined

SLR(1) condition, on all states s

1. For any item A - «.Xf in s with X a terminal, there is no complete item
B — ~. in s with X € Follow(B).

2. For any two complete items A - . and B — . in s, Follow(a)n Follow(3) =
16

Revisit addition one more time
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o Follow(E") = {$}
= — shift for +
— reduce with E' — E for $ (which corresponds to accept, in case the input
is empty)

SLR(1) algo

let s be the current state, on top of the parse stack

1. s contains A - «.X 3, where X is a terminal and X is the next token on
the input, then
o shift X from input to top of stack. the new state pushed on the stack:
X
state t where s — ¢!7
2. s contains a complete item (say A — v.) and the next token in the input
is in Follow(A): reduce by rule A — ~:
e A reduction by S’ — S: accept, if input is empty'®
o else:
pop: remove 7 (including “its” states from the stack)

back up: assume to be in state u which is now head state

A
push: push A to the stack, new head state t where u — ¢t

3. if next token is such that neither 1. or 2. applies: error

Repeat frame: given DFA

Parsing table for SLR(1)

N (2 ’ 3 4
[E—» n.P [E—> E+.nQ[E—> E+n.9

17Cf. to the LR(0) algo: since we checked the existence of the transition before, the else-part
is missing now.

18Cf. to the LR(0) algo: This happens now only if next token is $. Note that the follow set
of S in the augmented grammar is always only $
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state input goto
n + $ E
0 5:2 1
1 s:3 accept
2 r:(F —>n)
3 5:4
4 r:(E—>E+n) r:(E—>E+n)

for state 2 and 4: n ¢ Follow(E)

Parsing table: remarks

o SLR(1) parsing table: rather similar-looking to the LR(0) one
o differences: reflect the differences in: LR(0)-algo vs. SLR(1)-algo
o same number of rows in the table ( = same number of states in the DFA)
o only: colums “arranged differently
— LR(0): each state uniformely: either shift or else reduce (with given rule)
— now: non-uniform, dependent on the input. But that does not apply to
the previous example. We’ll see that in the next, then.
« it should be obvious:
— SLR(1) may resolve LR(0) conflicts
— but: if the follow-set conditions are not met: SLR(1) shift-shift and/or
SRL(1) shift-reduce conflicts
— would result in non-unique entries in SRL(1)-table!?

SLR(1) parser run (= “reduction”)

state input goto
n + $ E
0 5:2 1
1 5:3 accept
2 r:(E —>n)
3 s:4
4 r:(E—-FE+n) r:(E—- E+n)

by which it, strictly speaking, would no longer be an SRL(1)-table :-)
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stage | parsing stack input action
1 $0 n+n+n$ shift: 2
2 $ony +n+n$ reduce: £ - n
3 $0F, +n+n$ shift: 3
4 $0F1+3 n+n$ shift: 4
5 $0F1+3ny +n$ reduce: £ - E+n
6 $0F n$ shift 3
7 S0 +3 n$ shift 4
8 $0F1+3n4 $ reduce: E - E+n
9 $0F1 $ accept
Corresponding parse tree
El
E
E
E/l\
n + n + n

Revisit the parentheses again: SLR(1)?

Grammar: parentheses (from before)

Follow set

Follow(S) =), $}

s - S

S - (8)S | e
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DFA

SLR(1) parse table

state input goto
( ) $ S

0 5:2 r:S—e r:S—-e 1
1 accept
2 s:2 r:S—e r:S—e 3
3 s:4
4 5:2 r:S—-e r:S—-e 5
5 r:S—>(8)S r:S-(5)S

Parentheses: SLR(1) parser run (= “reduction”)

state input goto
( ) $ S

0 s:2 r:S—e r:S—e 1
1 accept
2 5:2 r:S—e r:S—e 3
3 s:4
4 s:2 r:S—e r:S—e 5
5 r:S—->(S)S r:S-(5)S
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stage | parsing stack input action

1 $ ()()$ shift: 2

2 $o(, )()$ reduce: S—e€

3 $0(5553 )()$ shift: 4

4 $0(253)4 ()$ shift: 2

5 $0(553),(5 )$ reduce: S —e€

6 $0(253)4(2S3 )$ shift: 4

7 $0(553),(553), $ reduce: S — €

8 $0(QS3)4(253)4S5 $ reduce: S — (S)S
9 $0(553) 455 $ reduce: S—(5)S
10 $051 $ accept

Remarks

Note how the stack grows, and would continue to grow if the sequence of () would
continue. That’s characteristic from right-recursive formulation of rules, and may
constitute a problem for LR-parsing (stack-overflow).

SLR(k)

« in principle: straightforward: k look-ahead, instead of 1
 rarely used in practice, using Firsty, and Followy instead of the k = 1 versions
o tables grow exponentially with k!

As with other parsing algorithms, the SLR(1) parsing algorithm can be extended to
SLR(K) parsing where parsing actions are based on k = | symbols of lookahead. Using

the sets First, and Follow, as defined in the
following two rules:

previous chapter, an SLR(k) parser uses the

L. If state s contains an item of the form A — w. X (X a token), and Xw €
First (X ) are the next & tokens in the input string, then the action is to shift the
current input token onto the stack, and the new state to be pushed on the stack is
the state containing the item A — a X . B.

2. If state s contains the complete item A — a., and w € Follow(A) are the next k
tokens in the input string, then the action is to reduce by the rule A — «.

SLR(k) parsing is more powerful than SLR(1) parsing when & > 1, but at a sub-
stantial cost in complexity, since the parsing table grows exponentially in size with k.

Ambiguity & LR-parsing

o in principle: LR(k) (and LL(k)) grammars: unambiguous
o definition/construction: free of shift/reduce and reduce/reduce conflict (given
the chosen level of look-ahead)
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o However: ambiguous grammar tolerable, if (remaining) conflicts can be solved
“meaningfully” otherwise:

Additional means of disambiguation:

1. by specifying associativity / precedence “outside” the grammar

2. by “living with the fact” that LR parser (commonly) prioritizes shifts over
reduces

Rest

o for the second point (“let the parser decide according to its preferences”):
— use sparingly and cautiously

— typical example: dangling-else

— even if parsers makes a decision, programmar may or may not “understand
intuitively” the resulting parse tree (and thus AST)

— grammar with many S/R-conflicts: go back to the drawing board

Example of an ambiguous grammar

stmt — if-stmt | other
if-stmt — if (exp) stmt

| if (exzp) stmtelse stmt
excp - 0|1

In the following, F for exp, etc.
Simplified conditionals

Simplified “schematic” if-then-else

S — I | other
I - if S| if Selse S

Follow-sets

| Follow
st {8}
S | {$,else}

I | {8, else}
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Rest

o since ambiguous: at least one conflict must be somewhere

DFA of LR(0) items

: (o)

S - .5
S—.I S/>
—| S — .other —I>
I>.if S
I - if S else S|[iff - if .S > Qg
L ) I - if S else .S

h I —if .Selse S
other 3 .
S —.0
S — other. |« S — .other
therS — .other .
. I—.if S
I—.if S

I — .if S else S
I—>.ifSelseS’x J
if S lS
7
[I S if S else S.

i A

Simple conditionals: parse table

Grammar

I (1)
other (2)
if S (3)
if S else S (4)

~

— -
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SLR(1)-parse-table, conflict resolved

state input goto
if else other $ S I

0 s:4 s:3 1 2

1 accept

2 r:l r:l

3 r:2 r:2

4 s:4 s:3 5 2

5 s:6 r:3

6 s:4 s:3 7T 2

7 r:4 r:4

Explanation

o shift-reduce conflict in state 5: reduce with rule 3 vs. shift (to state 6)
o conflict there: resolved in favor of shift to 6
e note: extra start state left out from the table

Parser run (= reduction)

state input goto
if else other $ S I
0 s:4 s:3 1 2
1 accept
2 r:l r:l
3 ri2 r:2
4 s:4 s:3 5 2
5 s:6 r:3
6 s:4 s:3 7 2
7 r:4 r:4
stage | parsing stack input action
1189 if if other else other$ shift: 4
2 | $oif, if other else other$ shift: 4
3 | $oif,if, other else other$ shift: 3
4 | $yif4if jothers else other$ reduce: 2
5 | $oif4if41S5 else other$ shift 6
6 $0if4if4 S561S66 other $ shift: 3
7 | $pif,if,Sselsegothers $ reduce: 2
8 | $oif,if 155elseq Sy $ reduce: 4
9 | $ifsl $ reduce: 1
10 | $051 $ accept
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Parser run, different choice

state input goto
if else other $ S 1
0 s:4 s:3 1 2
1 accept
2 r:l r:l
3 2 2
4 s5:4 s:3 5 2
5 s:6 r:3
6 s:4 s:3 7 2
7 r:4 r:4
stage | parsing stack input action
11 8% if if other else other$ shift: 4
2 | $pify if other else other$ shift: 4
3 | $pif,if, other else other$ shift: 3
4 | $ifsif sjothers else other$ reduce: 2
5 | $pif,4if 4S5 else other$ reduce 3
6 | $oifsls else other $ reduce 1
7 | $0if 4S5 else other$ shift 6
8 | $pif,Sselseq other$ shift 3
9 | $,if,Sselsegothers $ reduce 2
10 | $pif41SselsesSy $ reduce 4
11 | 8051 $ accept

Parse trees: simple conditions
shift-precedence: conventional

S

PN

I
| | S S

if if other else other
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“wrong” tree

S

7N

b

if if other else other

standard “dangling else” convention

“an else belongs to the last previous, still open (= dangling) if-clause”

Use of ambiguous grammars

o advantage of ambiguous grammars: often simpler

o if ambiguous: grammar guaranteed to have conflicts

« can be (often) resolved by specifying precedence and associativity
o supported by tools like yacc and CUP ...

E' - FE
E - E+FE | ExE | n
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DFA for + and x

States with conflicts

e state 5

— stack contains $... E +E$
— for input $: reduce, since shift not allowed from $
— for input +; reduce, as + is left-associative

— for input =: shift, as * has precedence over +

e state 6:

— stack contains $... E *E$
— for input $: reduce, since shift not allowed from $
— for input +; reduce, a * has precedence over +

— for input *: shift, as * is left-associative

o see also the table on the next slide

Parse table + and x

state input goto
n + * $ E
0 s:2 1
1 s:3 s:4 accept
2 r:E->n r:E->n r:E->n
3 5:2 5
4 s:2 6
5 r:E—>FE+FE s:4 r:E—-FE+FE
6 r:E—->FE*E r:E—-E*E r:E—->E=*E
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How about exponentiation (written 1 or **)?

Defined as right-associative. See exercise

For comparison: unambiguous grammar for + and =
Unambiguous grammar: precedence and left-assoc built in
E' - E

E - E+T | T
T - Tx*n | n

‘ Follow
£’ {$} (as always for start symbol)
E | {8,+}
T | {8$,+, %}

DFA for unambiguous + and x

DFA remarks

o the DFA now is SLR(1)
— check states with complete items

state 1: Follow(E') = {$}
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state 4: Follow(E) ={$,+}
state 6: Follow(FE) ={$,+}

state 3/7: Follow(T) = {$,+,*}

— in no case there’s a shift /reduce conflict (check the outgoing edges vs. the

follow set)

— there’s not reduce/reduce conflict either

LR(1) parsing

o most general from of LR(1) parsing

o aka: canonical LR(1) parsing

o usually: considered as unecessarily “complex” (i.e. LALR(1) or similar is good

enough)

o “stepping stone” towards LALR(1)

Basic restriction of SLR(1)

Uses look-ahead, yes, but only after it has built a non-look-ahead DFA (based on

LR (0)-items)

A help to remember

SRL(1) “improved” LR(0) parsing LALR(1) is “crippled” LR(1) parsing.

Limits of SLR(1) grammars

Assignment grammar fragment?20

stmt
call-stmt
assign-stmt
var

exrp

— 43

call-stmt | assign-stmt
identifier

var:i= erp

[exp] | identifier
var | n

Assignment grammar fragment, simplified

S - id | V:=E
V - id
E - Vi |n

20Inspired by Pascal, analogous problems in C ...

103



4 Parsing
104 4.5 Bottom-up parsing

non-SLR(1): Reduce/reduce conflict

S—id|V:=E First | Follow
stmt — call-stmt | assign-stmt y :
call-simt — identifier V—id S |d $
assign-stmt — var = exp E—-YV | n v |id =%
var — var [ exp ] | identifier ! T
exp — var | number id, n $

s

SLR(1)-betrakning: Gir
her reduser/reduser-
konflikt for input = $. Se
First og Follow over.

Situation can be saved: more look-ahead

S— id|Vi=E Alsé, for SLR(1): Gir

stmt —» call-stmt \ assign-stmt her reduser/reduser-

call-stmt — identifier V—id konflikt for input =4
assign-stmt — var := exp E-YV | n Se First og Follow .
var — var [ exp ] | identifier 9

exp — var | number under.

First Follow
S |id $
vV |id =%
E |id,n $

LALR(1) (and LR(1)): Being more precise with the
follow-sets

o LR(0)-items: too “indiscriminate” wrt. the follow sets
» remember the definition of SLR(1) conflicts
o LR(0)/SLR(1)-states:

— sets of items?! due to subset construction

— the items are LR(0)-items

— follow-sets as an after-thought

21That won’t change in principle (but the items get more complex)
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Add precision in the states of the automaton already

Instead of using LR(0)-items and, when the LR(0) DFA is done, try to disambiguate
with the help of the follow sets for states containing complete items: make more
fine-grained items:

« LR(1) items
e each item with “specific follow information”: look-ahead

LR(1) items

e main idea: simply make the look-ahead part of the item
« obviously: proliferation of states??

LR(1) items

[A—a.p,a] (4.9)

 a: terminal/token, including $

LALR(1)-DFA (or LR(1)-DFA)

el v

SI:R(l)l

[§'— .5, 8] ! . .

S — . id. $| ] > o 55 Follow(
[§ —> .V3:=E,$] { @l R

[v_._, -idl -I v
, id [§ —> id..$] mdlen
@ [V — id..: =] tilstand
@ av { =
" probler
IS —V.:=E.,%| [§ — Vi=.E.$) . LR(1)
© =F—-v.s] akkurat

[ —— .n.§|

[V—>.id.5%) @

n id

[[S —Vi=E .. %]
®
)

yd
EE_.V.%J [iE—-»n.ﬁ@]] Ev —ﬂid..é@l]"

22Not to mention if we wanted look-ahead of k > 1, which in practice is not done, though.
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Remarks on the DFA
o Cf. state 2 (seen before)
— in SLR(1): problematic (reduce/reduce), as Follow(V') = {:=,$}

— now: diambiguation, by the added information
o LR(1) would give the same DFA

Full LR(1) parsing

o AKA: canonical LR(1) parsing

e the best you can do with 1 look-ahead
o unfortunately: big tables

o pre-stage to LALR(1)-parsing

SLR(1)

LR(0)-item-based parsing, with afterwards adding some extra “pre-compiled” info
(about follow-sets) to increase expressivity

LALR(1)

LR(1)-item-based parsing, but afterwards throwing away precision by collapsing
states, to save space

LR(1) transitions: arbitrary symbol

o transitions of the NFA (not DFA)

X-transition

(14~ a.XB,a]]—X>[[A—> aX.f,a]]

LR(1) transitions: €

e-transition

for all
B-py | B2... andall be First(va)

[[A ~ a.Bry ,a]]ﬁ[[B - .8 ,b]]
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including special case (v =€)

forall B—> 1 | B2...

[[A - a.B ,a]]f»[[B - .8 ,a]]

LALR(1) vs LR(1)

LALR(1)

| A—s 48] ) A Jw—a.s)
) {:_’*M;.H 0 LALR(1)
—.a,5]

O~

[A —a.,5/)]

®

i
P
[A — (.A4),$/)] A [A—(A)8N1 | ) [1A —(4)..5N

[A— . (4))) O) €

[A—.a)] b

O
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LR(1)
A—= (A)a [A— (.A),3/))]
LR(1) e
[A'— ,A . $) A flA’—-—-r R Q
[A = . (A}, §] L 0)

[A — .a,5|

@ a

Y
[A —— (.A),§]

KH — (A.),5] I ) | A —— {A}..il]
[-"‘" _'il.l'l lkh @ @

A —.(A))]
©)

[A— (.A))] | A [A— (A)] | | [A — (A).))]
[A—. ()] ®) ©®

[A —.a,}]
( B©)

Core of LR(1)-states

¢ actually: not done that way in practice
e main idea: collapse states with the same core

Core of an LR(1) state

= set of LR(0)-items (i.e., ignoring the look-ahead)

Rest

o observation: core of the LR(1) item = LR(0) item

o 2 LR(1) states with the same core have same outgoing edges, and those lead
to states with the same core
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LALR(1)-DFA by as collapse

e collapse all states with the same core
e based on above observations: edges are also consistent
o Result: almost like a LR(0)-DFA but additionally
— still each individual item has still look ahead attached: the union of the
“collapsed” items
— especially for states with complete items [A — «,a,b,...] is smaller than
the follow set of A
— = less unresolved conflicts compared to SLR(1)

Concluding remarks of LR / bottom up parsing

o all constructions (here) based on BNF (not EBNF)
o conflicts (for instance due to ambiguity) can be solved by
— reformulate the grammar, but generarate the same language®?
— use directives in parser generator tools like yacc, CUP, bison (precedence,
assoc.)
— or (not yet discussed): solve them later via semantical analysis
— NB: not all conflics are solvable, also not in LR(1) (remember ambiguous
languages)

LR/bottom-up parsing overview

advantages remarks

LR(0) defines states also used | not really used, many
by SLR and LALR conflicts, very weak

SLR(1) clear improvement over | weaker than LALR(1).
LR(0) in expressiveness, | but often good enough.
even if using the same | Ok for  hand-made
number of states. Table | parsers for small gram-
typically with 50K en- | mars
tries

LALR(1) | almost as expressive as | method  of  choice
LR(1), but number of | for —most generated
states as LR(0)! LR-parsers

LR(1) the method covering | large number of states
all  bottom-up, one- | (typically 11M of en-
look-ahead  parseable | tries), mostly LALR(1)
grammars preferred

231f designing a new language, there’s also the option to massage the language itself. Note
also: there are inherently ambiguous languages for which there is no unambiguous gram-
mar.
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Remeber: once the table specific for LR(0), ...is set-up, the parsing algorithms all
work the same

Again: Error handling

Error handling
Minimal requirement

Upon “stumbling over” an error (= deviation from the grammar): give a reasonable
& understandable error message, indicating also error location. Potentially stop
parsing

Rest

« for parse error recovery
— one cannot really recover from the fact that the program has an error (an
syntax error is a syntax error), but
— after giving decent error message:
* move on, potentially jump over some subsequent code,
* until parser can pick up normal parsing again
* s0: meaningfull checking code even following a first error
— avoid: reporting an avalanche of subsequent spurious errors (those just
“caused” by the first error)
— “pick up” again after semantic errors: easier than for syntactic errors

Error messages

e important:
— avoid error messages that only occur because of an already reported error!
— report error as early as possible, if possible at the first point where the
program cannot be extended to a correct program.
— make sure that, after an error, one doesn’t end up in an infinite loop
without reading any input symbols.
o« What’s a good error message?
— assume: that the method factor () chooses the alternative (exp) but
that it , when control returns from method exp (), does not find a )
— one could report : left paranthesis missing
— But this may often be confusing, e.g. if what the program text is: ( a +
b c)
— here the exp () method will terminate after ( a + b, as c cannot extend
the expression). You should therefore rather give the message error in
expression or left paranthesis missing.
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Error recovery in bottom-up parsing

e panic recovery in LR-parsing
— simple form
— the only one we shortly look at
e UpON Error: recovery =
— pops parts of the stack
— ignore parts of the input
e until “on track again”
e but: how to do that
o additional problem: non-determinism
— table: constructed conflict-free under normal operation
— upon error (and clearing parts of the stack + input): no guarantee it’s
clear how to continue
= heuristic needed (like panic mode recovery)

Panic mode idea

e try a fresh start,
e promising “fresh start” is: a possible goto action
e thus: back off and take the next such goto-opportunity

Possible error situation

parse stack | input action
1 $paibacs(ydses | f )gh...8 no entry for £
2 $paibsc3B, gh ...8 back to normal
3 $0a1b203ng7 h $

state input goto
) f g ...|... A B

3 u v
4 _ _
5 —
6 — = -
u - - reduce...
v - - shift : 7

Panic mode recovery
Algo

1. Pop states for the stack until a state is found with non-empty goto entries
2. o If there’s legal action on the current input token from one of the goto-
states, push token on the stack, restart the parse.
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o If there’s several such states: prefer shift to a reduce
e Among possible reduce actions: prefer one whose associated non-terminal

is least general

3. if no legal action on the current input token from one of the goto-states: advance
input until there is a legal action (or until end of input is reached)

Example again

parse stack input action
1 $oaibzcsz(,dses | £ )gh...8 no entry for £
2  $paibacsB, gh ...$ back to normal
3 $0a1b203BUg7 h $

o first pop, until in state 3
e then jump over input
— until next input g

— since f and ) cannot be treated
o choose to goto v (shift in that state)

Panic mode may loop forever

parse stack input action
1 $ (nn)$
2 8$o(g nn)$
3 $o(gns n)$
4 $o(gfactor, n)$
6 S$o(gterms n)$
7 $o(gerpyg n)$ panic!
8  $o(gfactor, n)$ been there before: stage 4!

Typical yacc parser table

some variant of the expression grammar again

command — exp
exp — term= factor | factor
term — term* factor | factor
factor — n | (exp)
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Z

/ State Input Goto
NUMBER ( + - - ) $ command | exp | term | factor

0 s5 s6 1 2 3 4
1 accept
2 rl rl s7 s8 rl rl rl
3 r4 4 4 r4 s9 rd 4

ng 4 6 6 | 6 | 6| 6 6 r6

--> 5 7 7 7 r7 r7 7 17
6 s5 s6 10 3 4
7 s5 s6 11 4
8 s5 s6 12 4
9 s5 s 13
10 s7 s8 s14
11 r2 r2 2 2 s9 r2 12
12 r3 r3 r3 r3 <9 r3 3

-> 13 rs rs s 5 | 5 s S

- 14 r8 r8 r8 r8 r8 r8 8

Panicking and looping

parse stack input action
1 $ (nn)$
2 $o(g nn)$
3 $o(gns n)$
4 $g(gfactory n)$
6 S$o(gterms n)$
7 $o(gerpio n)$ panic!
8 $o(gfactor, n)$ Dbeen there before: stage 4!

 error raised in stage 7, no action possible
e panic:

1. pop-off exp,

2. state 6: 3 goto’s

exp term factor
goto to 10 3 4
with n next: action there —  reduce r4 reduce rg

3. no shift, so we need to decide between the two reduces
4. factor: less general, we take that one

How to deal with looping panic?

» make sure to detec loop (i.e. previous “configurations”)

« if loop detected: doen’t repeat but do something special, for instance
— pop-off more from the stack, and try again
— pop-off and insist that a shift is part of the options

Left out (from the book and the pensum)

e more info on error recovery
e expecially: more on yacc error recovery
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e it’s not pensum, and for the oblig: need to deal with CUP-specifics (not classic

yacc specifics even if similar) anyhow, and error recovery is not part of the
oblig (halfway decent error handling is).
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