

Course Script

 INF 5110: Compiler constructionINF5110, spring 2018

Martin Steffen

Contents

4 Parsing 1
4.1 Introduction to parsing 1
4.2 Top-down parsing 4
4.3 First and follow sets 13
4.4 LL-parsing (mostly LL(1)) 35
4.5 Bottom-up parsing 60
5 References 115

Chapter Parsing

4

Learning Targets of this Chapter

1. (context-free) grammars + BNF
2. ambiguity and other properties
3. terminology: tokens, lexemes,
4. different trees connected to grammars/parsing
5. derivations, sentential forms

The chapter corresponds to [5, Section 3.1-3.2] (or [6, Chapter 3]).

4.1 Introduction to parsing

What's a parser generally doing

task of parser $=$ syntax analysis

- input: stream of tokens from lexer
- output:
- abstract syntax tree
- or meaningful diagnosis of source of syntax error
- the full "power" (i.e., expressiveness) of CFGs not used
- thus:
- consider restrictions of CFGs, i.e., a specific subclass, and/or
- represented in specific ways (no left-recursion, left-factored ...)

Syntax errors (and other errors)

Since almost by definition, the syntax of a language are those aspects covered by a context-free grammar, a syntax error thereby is a violation of the grammar, something the parser has to detect. Given a CFG, typically given in BNF resp. implemented by a tool supporting a BNF variant, the parser (in combination with the lexer) must generate an AST exactly for those programs that adhere to the grammar and must reject all others. One says, the parser recognizes the given grammar. An important practical part when rejecting a program is to generate a meaningful error message, giving hints about potential location of the error and potential reasons. In the most minimal way, the parser should inform the programmer where the parser tripped, i.e., telling how far, from left to right, it was able to proceed and informing where it stumbled: "parser error in line xxx/at character position yyy"). One typically has higher expectations for a real parser than just the line number, but that's the basics.

It may be noted that also the subsequent phase, the semantic analysis, which takes the abstract syntax tree as input, may report errors, which are then no longer syntax errors but more complex kind of errors. One typical kind of error in the semantic phase is a type error. Also there, the minimal requirement is to indicate the probable location(s) where the error occurs. To do so, in basically all compilers, the nodes in an abstract syntax tree will contain information concerning the position in the original file, the resp. node corresponds to (like line-numbers, character positions). If the parser would not add that information into the AST, the semantic analysis would have no way to relate potential errors it finds to the original, concrete code in the input. Remember: the compiler goes in phases, and once the parsing phase is over, there's no going back to scan the file again.

Lexer, parser, and the rest

Top-down vs. bottom-up

- all parsers (together with lexers): left-to-right
- remember: parsers operate with trees
- parse tree (concrete syntax tree): representing grammatical derivation
- abstract syntax tree: data structure
- 2 fundamental classes
- while parser eats through the token stream, it grows, i.e., builds up (at least conceptually) the parse tree:

Bottom-up

Parse tree is being grown from the leaves to the root.

Top-down

Parse tree is being grown from the root to the leaves.

AST

- while parse tree mostly conceptual: parsing build up the concrete data structure of AST bottom-up vs. top-down.

Parsing restricted classes of CFGs

- parser: better be "efficient"
- full complexity of CFLs: not really needed in practice ${ }^{1}$
- classification of CF languages vs. CF grammars, e.g.:
- left-recursion-freedom: condition on a grammar
- ambiguous language vs. ambiguous grammar
- classification of grammars \Rightarrow classification of languages
- a CF language is (inherently) ambiguous, if there's no unambiguous grammar for it
- a CF language is top-down parseable, if there exists a grammar that allows top-down parsing ...
- in practice: classification of parser generating tools:

[^0]- based on accepted notation for grammars: (BNF or some form of EBNF etc.)

Classes of CFG grammars/languages

- maaaany have been proposed \& studied, including their relationships
- lecture concentrates on
- top-down parsing, in particular
* LL(1)
* recursive descent
- bottom-up parsing
* LR(1)
* SLR
* LALR(1) (the class covered by yacc-style tools)
- grammars typically written in pure BNF

Relationship of some grammar (not language) classes

taken from [4]

4.2 Top-down parsing

General task (once more)

- Given: a CFG (but appropriately restricted)
- Goal: "systematic method" s.t.

1. for every given word w : check syntactic correctness
2. [build AST/representation of the parse tree as side effect]
3. [do reasonable error handling]

Schematic view on "parser machine"

Note: sequence of tokens (not characters)

Derivation of an expression

Derivation

The slides contain some big series of overlays, showing the derivation. This derivation process is not reprodiced here (resp. only a few slides later as some big array of steps).

factors and terms

$$
\begin{align*}
\text { exp } & \rightarrow{\text { term } \text { exp }^{\prime}} \tag{4.1}\\
\text { exp }^{\prime} & \rightarrow \text { addop term exp } \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term }^{\prime} \\
\text { term } & \rightarrow \text { mulop factor term } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\text { exp }) \mid \mathbf{n}
\end{align*}
$$

Remarks concerning the derivation

Note:

- input $=$ stream of tokens
- there: $\mathbf{1} \ldots$ stands for token class number (for readability/concreteness), in the grammar: just number
- in full detail: pair of token class and token value \langle number, 1\rangle

Notation:

- underline: the place (occurrence of non-terminal where production is used)
- erossed out:
- terminal $=$ token is considered treated
- parser "moves on"
- later implemented as match or eat procedure

Not as a "film" but at a glance: reduction sequence

exp	\Rightarrow
$\underline{\text { term } \exp ^{\prime}}$	
factor term' ${ }^{\prime}$ exp $^{\prime}$	
number term' ${ }^{\text {exp }}$	
numberterm ${ }^{\prime}$ exp $^{\prime}$	
number $e^{\text {exp }}{ }^{\prime}$	
number $e x p^{\prime}$	
number addop term exp ${ }^{\prime}$	
number+term exp ${ }^{\prime}$	
number + $\underline{\text { term }}$ exp ${ }^{\prime}$	
number + factor term' ${ }^{\text {exp }}{ }^{\prime}$	
number + number erm $^{\prime} \mathrm{exp}^{\prime}$	
number + numberterm' ${ }^{\text {exp }}{ }^{\prime}$	\Rightarrow
number + number mulop factor term ${ }^{\prime}$ exp $^{\prime}$	
number + number* factor term' ${ }^{\text {exp }}{ }^{\prime}$	
number + number * $\overline{(\exp)}$ term' ${ }^{\prime} \exp ^{\prime}$	
number + number * (exp) term' ${ }^{\prime}$ exp $^{\prime}$	
number + number * (exp) term' ${ }^{\prime}$ exp ${ }^{\prime}$	
number + number * ($\overline{\text { term }} \mathrm{exp}^{\prime}$) term' exp^{\prime}	
number + number * (factor term' exp $^{\prime}$) term' exp $^{\prime}$	
number + number * (ntmber term' exp $^{\prime}$) term $^{\prime}$ exp $^{\prime}$	
number + number * (numberterm' exp ${ }^{\text {() }}$ term' exp $^{\prime}$	
number + number * (number exp^{\prime}) term' exp^{\prime}	
number + number * (number exp ${ }^{\text {d }}$) term $^{\prime} \mathrm{exp}^{\prime}$	
number + number * (number ${ }_{\text {addop }}$ term exp ${ }^{\prime}$) term ${ }^{\prime}$ exp $^{\prime}$	
number + number * (number+term exp ${ }^{\prime}$) term $^{\prime}$ exp $^{\prime}$	
number + number * (number + term exp ${ }^{\text {d }}$) term' ${ }^{\prime}$ exp $^{\prime}$	
number + number * (number + + factor term $^{\prime}$ exp $^{\prime}$) term' exp $^{\prime}$	
number + number * (number + number term ${ }^{\prime}$ exp $^{\prime}$) term ${ }^{\prime}$ exp $^{\prime}$	
number + number * (number + numberterm' ${ }^{\text {exp }}{ }^{\prime}$) term' exp $^{\prime}$	\Rightarrow
number + number * (number + number exp $^{\prime}$) term $^{\prime}$ exp $^{\prime}$	
number + number * (number + number exp $^{\prime}$) term $^{\prime}$ exp ${ }^{\prime}$	
number + number * (number + number) term' exp $^{\prime}$	\Rightarrow
number + number * (number + number) term $^{\prime}$ exp $^{\prime}$	\Rightarrow
number + number * (number + number) \in exp ${ }^{\prime}$	
number + number * (number + number) exp ${ }^{\prime}$	\Rightarrow
number + number * (number + number) ϵ	\Rightarrow
number + number * (number + number)	

Besides this derivation sequence, the slide version contains also an "overlay" version, expanding the sequence step by step. The derivation is a left-most derivation.

Best viewed as a tree

The tree does no longer contain information, which parts have been expanded first. In particular, the information that we have concretely done a left-most derivation when building up the tree in a top-down fashion is not part of the tree (as it is not important). The tree is an example of a parse tree as it contains information about the derivation process using rules of the grammar.

Non-determinism?

- not a "free" expansion/reduction/generation of some word, but - reduction of start symbol towards the target word of terminals

$$
e x p \Rightarrow^{*} 1+2 *(3+4)
$$

- i.e.: input stream of tokens "guides" the derivation process (at least it fixes the target)
- but: how much "guidance" does the target word (in general) gives?

Oracular derivation

$$
\begin{aligned}
\exp & \rightarrow \text { exp }+ \text { term } \mid \text { exp }- \text { term } \mid \text { term } \\
\text { term } & \rightarrow \text { term * factor } \mid \text { factor } \\
\text { factor } & \rightarrow(\exp) \mid \text { number }
\end{aligned}
$$

exp	$\Rightarrow 1$	$\downarrow 1+2$ * 3
exp + term	$\Rightarrow 3$	$\downarrow 1+2$ * 3
$\underline{\text { term }}+$ term	$\Rightarrow 5$	$\downarrow 1+2$ * 3
factor + term	$\rightarrow 7$	$\downarrow 1+2$ * 3
number + term		$\downarrow 1+2$ * 3
number + term		$1 \downarrow+2$ * 3
number + term	$\Rightarrow 4$	$1+\downarrow 2 * 3$
number + term $*$ factor	$\Rightarrow 5$	$1+\downarrow 2 * 3$
number + factor $*$ factor	$\Rightarrow 7$	$1+\downarrow 2$ * 3
number + number $*$ factor		$1+\downarrow 2 * 3$
number + number $*$ factor		$1+2 \downarrow$ * 3
number + number $* \underline{\text { factor }}$	$\Rightarrow 7$	$1+2 * \downarrow 3$
number + number * number		$1+2 * \downarrow 3$
number + number * numbe		$1+2$ *

The derivation shows a left-most derivation. Again, the "redex" is underlined. In addition, we show on the right-hand column the input and the progress which is being done on that input. The subscripts on the derivation arrows indicate which rule is chosen in that particular derivation step.

The point of the example is the following: Consider lines 7 and 8 , and the steps the parser does. In line 7 , it is about to expand term which is the leftmost terminal. Looking into the "future" the unparsed part is 2 * 3 . In that situation, the parser chooses production 4 (indicated by \Rightarrow_{4}). In the next line, the left-most non-terminal is term again and also the non-processed input has not changed. However, in that situation, the "oracular" parser chooses \Rightarrow_{5}.

What does that mean? It means, that the look-ahead did not help the parser! It used all look-head there is, namely until the end of the word. and it can still not make the right decision with all the knowledge available at that given point. Note also: choosing wrongly (like \Rightarrow_{5} instead of \Rightarrow_{4} or the other way around) would lead to a failed parse (which would require backtracking). That means, it's unparseable without backtracking (and not amount of look-ahead will help), at least we need backtracking, if we do left-derivations and topdown.

Right-derivations are not really an option, as typically we want to eat the input left-to-right. Secondly, right-most derivations will suffer from the same problem (perhaps not for the very grammar but in general, so nothing would even be gained.)

On the other hand: bottom-up parsing later works on different principles, so the particular problem illustrate by this example will not bother that style of parsing (but there are other challenges then).

So, what is the problem then here? The reason why the parser could not make a uniform decision (for example comparing line 7 and 8) comes from the fact that these two particular lines are connected by \Rightarrow_{4}, which corresponds to the production

$$
\text { term } \rightarrow \text { term } * \text { factor }
$$

there the derivation step replaces the left-most term by term again without moving ahead with the input. This form of rule is said to be left-recursive (with recursion on term). This is something that recursive descent parsers cannot deal with (or at least not without doing backtracking, which is not an option).

Note also: the grammar is not ambigious (without proof). If a grammar is ambiguous, also then parsing won't work properly (in this case neither will bottom-up parsing), so that is not the problem.

We will learn how to transform grammars automatically to remove left-recursion. It's an easy construction. Note, however, that the construction not necessarily results in a grammar that afterwards is top-down parsable. It simple removes a "feature" of the grammar which definitely cannot be treated by top-down parsing.

Side remark, for being super-precise: If a grammar contains left-recursion on a non-terminal which is "irrelevant" (i.e., no word will ever lead to a parse invovling that particular non-terminal), in that case, obvously, the left-recursion does not hurt. Of course, the grammar in that case would be "silly". We in general do not consider grammars which contain such irrelevant symbols (or have other such obviously meaningless defects). But unless we exclude such silly grammars, it's not 100% true that grammars with left-recursion cannot be treated via top-down parsing. But apart from that, it's the case:
left-recursion destroys top-down parseability
(when based on left-most derivations as it is always done).

Two principle sources of non-determinism here

Using production $A \rightarrow \beta$

$$
S \Rightarrow^{*} \alpha_{1} A \alpha_{2} \Rightarrow \alpha_{1} \beta \alpha_{2} \Rightarrow^{*} w
$$

Conventions

- $\alpha_{1}, \alpha_{2}, \beta$: word of terminals and nonterminals
- w: word of terminals, only
- A : one non-terminal

2 choices to make

1. where, i.e., on which occurrence of a non-terminal in $\alpha_{1} A \alpha_{2}$ to apply a production ${ }^{2}$
2. which production to apply (for the chosen non-terminal).

Left-most derivation

- that's the easy part of non-determinism
- taking care of "where-to-reduce" non-determinism: left-most derivation
- notation \Rightarrow_{l}
- some of the example derivations earlier used that

Non-determinism vs. ambiguity

- Note: the "where-to-reduce"-non-determinism \neq ambiguitiy of a grammar 3
- in a way ("theoretically"): where to reduce next is irrelevant:
- the order in the sequence of derivations does not matter
- what does matter: the derivation tree (aka the parse tree)

Lemma 4.2.1 (Left or right, who cares). $S \Rightarrow_{l}^{*} w \quad$ iff $\quad S \Rightarrow_{r}^{*} w \quad$ iff $S \Rightarrow^{*}$ w.

- however ("practically"): a (deterministic) parser implementation: must make a choice

Using production $A \rightarrow \beta$

$$
\begin{aligned}
& S \Rightarrow^{*} \alpha_{1} A \alpha_{2} \Rightarrow \alpha_{1} \beta \alpha_{2} \Rightarrow^{*} w \\
& S \Rightarrow_{l}^{*} w_{1} A \alpha_{2} \Rightarrow w_{1} \beta \alpha_{2} \Rightarrow_{l}^{*} w
\end{aligned}
$$

What about the "which-right-hand side" non-determinism?

$$
A \rightarrow \beta \mid \gamma
$$

[^1]
Is that the correct choice?

$$
S \Rightarrow_{l}^{*} w_{1} A \alpha_{2} \Rightarrow w_{1} \beta \alpha_{2} \Rightarrow_{l}^{*} w
$$

- reduction with "guidance": don't loose sight of the target w
- "past" is fixed: $w=w_{1} w_{2}$
- "future" is not:

$$
A \alpha_{2} \Rightarrow_{l} \beta \alpha_{2} \Rightarrow_{l}^{*} w_{2} \quad \text { or else } A \alpha_{2} \Rightarrow_{l} \gamma \alpha_{2} \Rightarrow_{l}^{*} w_{2} ?
$$

Needed (minimal requirement):

In such a situation, "future target" w_{2} must determine which of the rules to take!

Deterministic, yes, but still impractical

$$
A \alpha_{2} \Rightarrow_{l} \beta \alpha_{2} \Rightarrow_{l}^{*} w_{2} \quad \text { or else } A \alpha_{2} \Rightarrow_{l} \gamma \alpha_{2} \Rightarrow_{l}^{*} w_{2} ?
$$

- the "target" w_{2} is of unbounded length!
\Rightarrow impractical, therefore:

Look-ahead of length k

resolve the "which-right-hand-side" non-determinism inspecting only fixedlength prefix of w_{2} (for all situations as above)

LL(k) grammars

CF-grammars which can be parsed doing that. ${ }^{4}$

[^2]
4.3 First and follow sets

We had a general look of what a look-ahead is, and how it helps in topdown parsing. We also saw that left-recursion is bad for top-down parsing (in particular, there can't be any look-ahead to help the parser). The definition discussed so far, being based on arbitrary derivations, were impractical. What is needed is a criterion not for derivations, but on grammars that can be used to check, whether the grammar is parseable in a top-down manner with a lookahead of, say k. Actually we will concentrate on a look-ahead of $k=1$, which is practically a decent thing to do.

The considerations leading to a useful criterion for top-down parsing with backtracking will involve the definition of the so-called "first-sets". In connection with that definition, there will be also the (related) definition of follow-sets.

The definitions, as mentioned, will help to figure out if a grammar is top-down parseable. Such a grammar will then be called an LL(1) grammar. One could generalize the definition to $\operatorname{LL}(\mathrm{k})$ (which would include generalizations of the first and follow sets), but that's not part of the pensum. Note also: the first and follow set definition will also later be used when discussing bottom-up parsing.

Besides that, in this section we will also discuss what to do if the grammar is not LL(1). That will lead to a transformation removing left-recursion. That is not the only defect that one wants to transform away. A second problem that is a show-stopper for LL(1)-parsing is known as "common left factors". If a grammar suffers from that, there is another transformation called left factorization which can remedy that.

First and Follow sets

- general concept for grammars
- certain types of analyses (e.g. parsing):
- info needed about possible "forms" of derivable words,

First-set of A

which terminal symbols can appear at the start of strings derived from a given nonterminal A

Follow-set of A

Which terminals can follow A in some sentential form.

Remarks

- sentential form: word derived from grammar's starting symbol
- later: different algos for first and follow sets, for all non-terminals of a given grammar
- mostly straightforward
- one complication: nullable symbols (non-terminals)
- Note: those sets depend on grammar, not the language

First sets

Definition 4.3.1 (First set). Given a grammar G and a non-terminal A. The first-set of A, written First $_{G}(A)$ is defined as

$$
\begin{equation*}
\operatorname{First}_{G}(A)=\left\{a \mid A \Rightarrow_{G}^{*} a \alpha, \quad a \in \Sigma_{T}\right\}+\left\{\epsilon \mid A \Rightarrow_{G}^{*} \epsilon\right\} . \tag{4.2}
\end{equation*}
$$

Definition 4.3.2 (Nullable). Given a grammar G. A non-terminal $A \in \Sigma_{N}$ is nullable, if $A \Rightarrow^{*} \epsilon$.

Nullable

The definition here of being nullable refers to a non-terminal symbol. When concentrating on context-free grammars, as we do for parsing, that's basically the only interesting case. In principle, one can define the notion of being nullable analogously for arbitrary words from the whole alphabet $\Sigma=\Sigma_{T}+\Sigma_{N}$. The form of productions in CFGs makes it obvious, that the only words which actually may be nullable are words containing only non-terminals. Once a terminal is derived, it can never be "erased". It's equally easy to see, that a word $\alpha \in \Sigma_{N}^{*}$ is nullable iff all its non-terminal symbols are nullable. The same remarks apply to context-sensitive (but not general) grammars.

For level-0 grammars in the Chomsky-hierarchy, also words containing terminal symbols may be nullable, and nullability of a word, like most other properties in that stetting, becomes undecidable.

First and follow set

One point worth noting is that the first and the follow sets, while seemingly quite similar, differ in one important aspect (the follow set definition will come later). The first set is about words derivable from a given non-terminal A. The follow set is about words derivable from the starting symbol! As a consequence, non-terminals A which are not reachable from the grammar's
starting symbol have, by definition, an empty follow set. In contrast, nonterminals unreachable from a/the start symbol may well have a non-empty first-set. In practice a grammar containing unreachable non-terminals is illdesigned, so that distinguishing feature in the definition of the first and the follow set for a non-terminal may not matter so much. Nonetheless, when implementing the algo's for those sets, those subtle points do matter! In general, to avoid all those fine points, one works with grammars satisfying a number of common-sense restructions. One are so called reduced grammars, where, informally, all symbols "play a role" (all are reachable, all can derive into a word of terminals).

Examples

- Cf. the Tiny grammar
- in Tiny, as in most languages

$$
\operatorname{First}(i f-s t m t)=\{" \mathbf{i f} "\}
$$

- in many languages:

$$
\text { First }(\text { assign-stmt })=\{\text { identifier, } "("\}
$$

- typical Follow (see later) for statements:

$$
\text { Follow }(\text { stmt })=\{" ; ", " \text { end", "else","until" }\}
$$

Remarks

- note: special treatment of the empty word $\boldsymbol{\epsilon}$
- in the following: if grammar G clear from the context
$-\Rightarrow^{*}$ for \Rightarrow_{G}^{*}
- First for First $_{G}$
- ...
- definition so far: "top-level" for start-symbol, only
- next: a more general definition
- definition of First set of arbitrary symbols (and even words)
- and also: definition of First for a symbol in terms of First for "other symbols" (connected by productions)
\Rightarrow recursive definition

A more algorithmic/recursive definition

- grammar symbol X : terminal or non-terminal or $\boldsymbol{\epsilon}$

Definition 4.3.3 (First set of a symbol). Given a grammar G and grammar symbol X. The first-set of X, written $\operatorname{First}(X)$, is defined as follows:

1. If $X \in \Sigma_{T}+\{\boldsymbol{\epsilon}\}$, then $\operatorname{First}(X)=\{X\}$.
2. If $X \in \Sigma_{N}$: For each production

$$
X \rightarrow X_{1} X_{2} \ldots X_{n}
$$

a) $\operatorname{First}(X)$ contains $\operatorname{First}\left(X_{1}\right) \backslash\{\boldsymbol{\epsilon}\}$
b) If, for some $i<n$, all $\operatorname{First}\left(X_{1}\right), \ldots, \operatorname{First}\left(X_{i}\right)$ contain $\boldsymbol{\epsilon}$, then $\operatorname{First}(X)$ contains $\operatorname{First}\left(X_{i+1}\right) \backslash\{\boldsymbol{\epsilon}\}$.
c) If all $\operatorname{First}\left(X_{1}\right), \ldots, \operatorname{First}\left(X_{n}\right)$ contain $\boldsymbol{\epsilon}$, then $\operatorname{First}(X)$ contains $\{\boldsymbol{\epsilon}\}$.

Recursive definition of First?

The following discussion may be ignored if wished. Even if details and theory behind it is beyond the scope of this lecture, it is worth considering above definition more closely. One may even consider if it is a definition at all (resp. in which way it is a definition).

One naive first impression may be: it's a kind of a "functional definition", i.e., the above Definition 4.3 .3 gives a recursive definition of the function First. As discussed later, everything get's rather simpler if we would not have to deal with nullable words and ϵ-productions. For the point being explained here, let's assume that there are no such productions and get rid of the special cases, cluttering up Definition 4.3.3. Removing the clutter gives the following simplified definition:

Definition 4.3.4 (First set of a symbol (no $\boldsymbol{\epsilon}$-productions)). Given a grammar G and grammar symbol X. The First-set of $X \neq \epsilon$, written $\operatorname{First}(X)$ is defined as follows:

1. If $X \in \Sigma_{T}$, then $\operatorname{First}(X) \supseteq\{X\}$.
2. If $X \in \Sigma_{N}$: For each production

$$
X \rightarrow X_{1} X_{2} \ldots X_{n}
$$

$$
\operatorname{First}(X) \supseteq \operatorname{First}\left(X_{1}\right) .
$$

Compared to the previous condition, I did the following 2 minor adaptations (apart from cleaning up the $\boldsymbol{\epsilon}$'s): In case (2), I replaced the English word "contains" with the superset relation symbol \supseteq. In case (1), I replaced the
equality symbol = with the superset symbol \supseteq, basically for consistency with the other case.

Now, with Definition 4.3.4 as a simplified version of the original definition being made slightly more explicit and internally consistent: in which way is that a definition at all?

For being a definition for $\operatorname{First}(X)$, it seems awfully lax. Already in (1), it "defines" that First (X) should "at least contain X ". A similar remark applies to case (2) for non-terminals. Those two requirements are as such well-defined, but they don't define First (X) in a unique manner! Definition 4.3.4 defines what the set First (X) should at least contain!

So, in a nutshell, one should not consider Definition 4.3 .4 a "recursive definition of $\operatorname{First}(X)$ " but rather
"a definition of recursive conditions on $\operatorname{First}(X)$, which, when satisfied, ensures that $\operatorname{First}(X)$ contains at least all non-terminals we are after".

What we are really after is the smallest First (X) which satisfies those conditions of the definitions.

Now one may think: the problem is that definition is just "sloppy". Why does it use the word "contain" resp. the ב-relation, instead of requiring equality, i.e., =? While plausible at first sight, unfortunately, whether we use \supseteq or set equality $=$ in Definition 4.3.4 does not change anything (and remember that the original Definition 4.3.3 "mixed up" the styles by requiring equality in the case of non-terminals and requiring "contains", i.e., \supseteq for non-terminals).

Anyhow, the core of the matter is not $=$ vs. \supseteq. The core of the matter is that "Definition" 4.3.4 is circular!

Considering that definition of $\operatorname{First}(X)$ as a plain functional and recursive definition of a procedure missed the fact that grammar can, of course, contain "loops". Actually, it's almost a characterizing feature of reasonable contextfree grammars (or even regular grammars) that they contain "loops" - that's the way they can describe infinite languages.

In that case, obviously, considering Definition 4.3 .3 with $=$ instead of \supseteq as the recursive definition of a function leads immediately to an "infinite regress", the recurive function won't terminate. So again, that's not helpful.

Technically, such a definition can be called a recursive constraint (or a constraint system, if one considers the whole definition to consist of more than one constraint, namely for different terminals and for different productions).

For words

Definition 4.3.5 (First set of a word). Given a grammar G and word α. The first-set of

$$
\alpha=X_{1} \ldots X_{n},
$$

written First (α) is defined inductively as follows:

1. First (α) contains $\operatorname{First}\left(X_{1}\right) \backslash\{\epsilon\}$
2. for each $i=2, \ldots n$, if $\operatorname{First}\left(X_{k}\right)$ contains $\boldsymbol{\epsilon}$ for all $k=1, \ldots, i-1$, then First (α) contains $\operatorname{First}\left(X_{i}\right) \backslash\{\boldsymbol{\epsilon}\}$
3. If all First $\left(X_{1}\right), \ldots, \operatorname{First}\left(X_{n}\right)$ contain $\boldsymbol{\epsilon}$, then $\operatorname{First}(X)$ contains $\{\boldsymbol{\epsilon}\}$.

Concerning the definition of First

The definition here is of course very close to the definition of inductive case of the previous definition, i.e., the first set of a non-terminal. Whereas the previous definition was a recursive, this one is not.

Note that the word α may be empty, i.e., $n=0$, In that case, the definition gives $\operatorname{First}(\boldsymbol{\epsilon})=\{\epsilon\}$ (due to the 3rd condition in the above definition). In the definitions, the empty word $\boldsymbol{\epsilon}$ plays a specific, mostly technical role. The original, non-algorithmic version of Definition 4.3.1, makes it already clear, that the first set not precisely corresponds to the set of terminal symbols that can appear at the beginning of a derivable word. The correct intuition is that it corresponds to that set of terminal symbols together with ϵ as a special case, namely when the initial symbol is nullable.

That may raise two questions. 1) Why does the definition makes that as special case, as opposed to just using the more "straightforward" definition without taking care of the nullable situation? 2) What role does ϵ play here?

The second question has no "real" answer, it's a choice which is being made which could be made differently. What the definition from equation (4.3.1) in fact says is: "give the set of terminal symbols in the derivable word and indicate whether or not the start symbol is nullable. The information might as well be interpreted as a pair consisting of a set of terminals and a boolean (indicating nullability). The fact that the definition of First as presented here uses $\boldsymbol{\epsilon}$ to indicate that additional information is a particular choice of representation (probably due to historical reasons: "they always did it like that ..."). For instance, the influential "Dragon book" [1, Section 4.4.2] uses the $\boldsymbol{\epsilon}$-based definition. The texbooks [2] (and its variants) don't use $\boldsymbol{\epsilon}$ as indication for nullability.

In order that this definition works, it is important, obviously, that $\boldsymbol{\epsilon}$ is not a

Having clarified 2), namely that using ϵ is a matter of conventional choice, remains question 1), why bother to include nullability-information in the definition of the first-set at all, why bother with the "extra information" of nullability? For that, there is a real technical reason: For the recursive definitions to work, we need the information whether or not a symbol or word is nullable, therefore it's given back as information.

As a further point concerning the first sets: The slides give 2 definitions, Definition 4.3.1 and Definition 4.3.3. Of course they are intended to mean the same. The second version is a more recursive or algorithmic version, i.e., closer to a recursive algorithm. If one takes the first one as the "real" definition of that set, in principle we would be obliged to prove that both versions actually describe the same same (resp. that the recurive definition implements the original definition). The same remark applies also to the non-recursive/iterative code that is shown next.

Pseudo code

```
for allX \in A\cup{\epsilon} do
    First[X] := X
end;
for all non-terminals A do
    First[A] := {}
end
while there are changes to any First[A] do
    for each production }A->\mp@subsup{X}{1}{}\ldots\mp@subsup{X}{n}{}\mathrm{ do
        k := 1;
        continue := true
        while continue = true and k\leqn do
            First[A] := First[A] \cup First[ [ X | \ { {\epsilon}
            if \epsilon& First[ [X ] then continue := false
            k := k + 1
        end;
        if continue = true
        then First[A]:= First[A] \cup{\epsilon}
    end;
end
```


If only we could do away with special cases for the empty words . . .

for grammar without $\boldsymbol{\epsilon}$-productions. ${ }^{5}$

```
for all non-terminals A do
    First[A] := {} // counts as change
end
while there are changes to any First[A] do
```

[^3]```
 for each production }A->\mp@subsup{X}{1}{}\ldots\mp@subsup{X}{n}{}\mathrm{ do
 First[A] := First[A] \cup First[X []
 end;
end
```

This simplification is added for illustration, only. What makes the algorithm slightly more than just immediate is the fact that symbols can be nullable (nonterminals can be nullable). If we don't have $\boldsymbol{\epsilon}$-transitions, then no symbol is nullable. Under this simplifying assumption, the algorithm looks quite simpler. We don't need to check for nullability (i.e., we don't need to check if $\boldsymbol{\epsilon}$ is part of the first sets), and moreover, we can do without the inner while loop, walking down the right-hand side of the production as long as the symbols turn out to be nullable (since we know they are not).

## Example expression grammar (from before)

$$
\begin{align*}
\text { exp } & \rightarrow \text { exp addop term } \mid \text { term }  \tag{4.3}\\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { term mulop factor } \mid \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\text { exp }) \mid \text { number }
\end{align*}
$$

## Example expression grammar (expanded)

$$
\begin{align*}
\text { exp } & \rightarrow \text { exp addop term }  \tag{4.4}\\
\text { exp } & \rightarrow \text { term } \\
\text { addop } & \rightarrow+ \\
\text { addop } & \rightarrow- \\
\text { term } & \rightarrow \text { term mulop factor } \\
\text { term } & \rightarrow \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\text { exp }) \\
\text { factor } & \rightarrow \mathbf{n}
\end{align*}
$$

## "Run" of the algo

| nr |  | pass 1 | pass 2 |
| :--- | :--- | :--- | :--- |
| 1 | exp $\rightarrow$ exp addop term |  |  |
| 2 | exp $\rightarrow$ term |  |  |
| 3 | addop $\rightarrow+$ |  |  |
| 4 | addop $\rightarrow-$ |  |  |
| 5 | term $\rightarrow$ term mulop factor |  |  |
| 6 | term $\rightarrow$ factor |  |  |
| 7 | mulop $\rightarrow$ * |  |  |
| 8 | factor $\rightarrow \mathbf{( e x p})$ |  |  |
| 9 | factor $\rightarrow \mathbf{n}$ |  |  |

## How the algo works

The first thing to observe: the grammar does not contain $\boldsymbol{\epsilon}$-productions. That, very fortunately, simplifies matters considerably! It should also be noted that the table from above is a schematic illustration of a particular execution strategy of the pseudo-code. The pseudo-code itself leaves out details of the evaluation, notably the order in which non-deterministic choices are done by the code. The main body of the pseudo-code is given by two nested loops. Even if details (of data structures) are not given, one possible way of interpreting the code is as follows: the outer while-loop figures out which of the entries in the First-array have "recently" been changed, remembers that in a "collection" of non-terminals $A$ 's, and that collection is then worked off (i.e. iterated over) on the inner loop. Doing it like that leads to the "passes" shown in the table. In other words, the two dimensions of the table represent the fact that there are 2 nested loops.

Having said that: it's not the only way to "traverse the productions of the grammar". One could arrange a version with only one loop and a collection data structure, which contains all productions $A \rightarrow X_{1} \ldots X_{n}$ such that First [A] has "recently been changed". That data structure therefore contains all the productions that "still need to be treated". Such a collection data structure containing "all the work still to be done" is known as work-list, even if it needs not technically be a list. It can be a queue, i.e., following a FIFO
strategy, it can be a stack (realizing LIFO), or some other strategy or heuristic. Possible is also a randomized, i.e., non-deterministic strategy (which is sometimes known as chaotic iteration).

## "Run" of the algo

| Grammar rule | Pass I | Pass 2 | Pass 3 |
| :---: | :---: | :---: | :---: |
| $\exp \rightarrow \exp$ <br> addop term |  |  |  |
| $\exp \rightarrow$ term |  |  | $\begin{aligned} & \text { First }(\text { exp })= \\ & \quad\{(, \text { number }\} \end{aligned}$ |
| addop $\rightarrow$ + | $\begin{aligned} & \text { First(addop) } \\ & \qquad=\{+\} \end{aligned}$ |  |  |
| addop $\rightarrow$ - | $\begin{aligned} & \text { First(addop) } \\ & \quad=\{+,-\} \end{aligned}$ |  |  |
| $\begin{aligned} \text { term } \rightarrow & \text { term } \\ & \text { mulop factor } \end{aligned}$ |  |  |  |
| term $\rightarrow$ factor |  | $\begin{aligned} & \cdot \text { First }(\text { term })= \\ & \quad\{(, \text { number }\} \end{aligned}$ |  |
| mulop $\rightarrow$ * | First(mulop) $=\{*\}$ |  |  |
| factor $\rightarrow$ ( exp $)$ | First(factor) $=\{( \}$ |  |  |
| factor $\rightarrow$ number | First $($ factor $)=$ \{ (, number \} |  |  |

## Collapsing the rows \& final result

- results per pass:

- final results (at the end of pass 3 ):

|  | First[_] |
| :--- | :--- |
| $\exp$ | $\{\mathbf{(}, \mathbf{n}\}$ |
| addop | $\{+,-\}$ |
| term | $\{\mathbf{(}, \mathbf{n}\}$ |
| mulop | $\{*\}$ |
| factor | $\{\mathbf{(}, \mathbf{n}\}$ |

## Work-list formulation

```
for all non-terminals A do
 First[A] := {}
 WL [A] := P // all productions
end
while WL }\not=\varnothing\mathrm{ do
 remove one (}A->\mp@subsup{X}{1}{}\ldots\mp@subsup{X}{n}{})\mathrm{ from WL
 if First [A] }\not=\mathrm{ First [A] U First [X
 then First[A] := First[A] \cup First[[X]
 add all productions (}A->\mp@subsup{X}{1}{\prime}\ldots\mp@subsup{X}{m}{\prime})\mathrm{ to WL
 else skip
end
```

- worklist here: "collection" of productions
- alternatively, with slight reformulation: "collection" of non-terminals instead also possible


## Follow sets

Definition 4.3.6 (Follow set (ignoring \$) . Given a grammar $G$ with start symbol $S$, and a non-terminal $A$.

The follow-set of $A$, written Follow $_{G}(A)$, is

$$
\begin{equation*}
\text { Follow }_{G}(A)=\left\{a \mid S \Rightarrow_{G}^{*} \alpha_{1} \text { Aa } \alpha_{2}, \quad a \in \Sigma_{T}\right\} . \tag{4.5}
\end{equation*}
$$

- More generally: \$ as special end-marker

$$
S \$ \Rightarrow_{G}^{*} \alpha_{1} A a \alpha_{2}, \quad a \in \Sigma_{T}+\{\$\} .
$$

- typically: start symbol not on the right-hand side of a production


## Special symbol \$

The symbol $\$$ can be interpreted as "end-of-file" (EOF) token. It's standard to assume that the start symbol $S$ does not occur on the right-hand side of any production. In that case, the follow set of $S$ contains $\boldsymbol{\$}$ as only element. Note that the follow set of other non-terminals may well contain $\$$.

As said, it's common to assume that $S$ does not appear on the right-hand side on any production. For a start, $S$ won't occur "naturally" there anyhow in practical programming language grammars. Furthermore, with $S$ occuring only on the left-hand side, the grammar has a slightly nicer shape insofar as it makes its algorithmic treatment slightly nicer. It's basically the same reason why one sometimes assumes that for instance, control-flow graphs has one "isolated" entry node (and/or an isolated exit node), where being isolated means, that no edge in the graph goes (back) into into the entry node; for exits nodes, the condition means, no edge goes out. In other words, while the graph can of course contain loops or cycles, the enty node is not part of any such loop. That is done likewise to (slightly) simplify the treatment of such graphs. Slightly more generally and also connected to control-flow graphs: similar conditions about the shape of loops (not just for the entry and exit nodes) have been worked out, which play a role in loop optimization and intermediate representations of a compiler, such as static single assignment forms.

Coming back to the condition here concerning $\$$ : even if a grammar would not immediatly adhere to that condition, it's trivial to transform it into that form by adding another symbol and make that the new start symbol, replacing the old.

## Special symbol \$

It seems that [3] does not use the special symbol in his treatment of the follow set, but the dragon book uses it. It is used to represent the symbol (not otherwise used) "right of the start symbol", resp., the symbol right of a nonterminal which is at the right end of a derived word.

## Follow sets, recursively

Definition 4.3.7 (Follow set of a non-terminal). Given a grammar $G$ and nonterminal $A$. The Follow-set of $A$, written $\operatorname{Follow}(A)$ is defined as follows:

1. If $A$ is the start symbol, then $\operatorname{Follow}(A)$ contains $\$$.
2. If there is a production $B \rightarrow \alpha A \beta$, then $\operatorname{Follow}(A)$ contains $\operatorname{First}(\beta) \backslash\{\boldsymbol{\epsilon}\}$.
3. If there is a production $B \rightarrow \alpha A \beta$ such that $\boldsymbol{\epsilon} \in \operatorname{First}(\beta)$, then $\operatorname{Follow}(A)$ contains Follow(B).

- \$: "end marker" special symbol, only to be contained in the follow set


## More imperative representation in pseudo code

```
Follow [S] := {$}
for all non-terminals }A\not=S\mathrm{ do
 Follow [A] := {}
end
while there are changes to any Follow-set do
 for each production A->X 左程 do
 for each }\mp@subsup{X}{i}{}\mathrm{ which is a non-terminal do
 Follow [\mp@subsup{X}{i}{}] := Follow [}\mp@subsup{X}{i}{}]\cup(\mathrm{ First (}\mp@subsup{X}{i+1}{}\ldots...\mp@subsup{X}{n}{})\{\epsilon}
 if \epsilon\in First (}\mp@subsup{X}{i+1}{}\mp@subsup{X}{i+2}{}\ldots..\mp@subsup{X}{n}{}
 then Follow [\mp@subsup{X}{i}{}]:= Follow [Xi}]\cup\mathrm{ Follow [A]
 end
 end
end
```

Note! First ()$=\{\epsilon\}$

## Expression grammar once more

## "Run" of the algo

## nr

pass 1
pass 2

1 exp $\rightarrow$ exp addop term

2 exp $\rightarrow$ term

5 term $\rightarrow$ term mulop factor

6 term $\rightarrow$ factor

8 factor $\rightarrow(\exp )$
normalsize

Recursion vs. iteration

## "Run" of the algo

| Grammar rule | Pass 1 | Pass 2 |
| :---: | :---: | :---: |
| exp $\rightarrow$ exp addop <br> term | $\begin{gathered} \text { Follow }(\text { exp })= \\ \{\$,+,-\} \\ \text { Follow }(\text { addop })= \\ \{1, \text { number }\} \\ \text { Follow }(\text { term })= \\ \{\$,+,-\} \end{gathered}$ | $\begin{aligned} & \text { Follow }(\text { term })= \\ & \qquad \$,+,-, \star,)\} \end{aligned}$ |
| exp $\rightarrow$ term |  |  |
| term $\rightarrow$ term mulop factor | Follow $($ term $)=$ $\{\$,+,-, *\}$ <br> Follow(mulop) $=$ <br> \{(, number\} <br> Follow $($ factor $)=$ <br> $\{\$,+,-, *\}$ | $\begin{aligned} & \text { Follow }(\text { factor })= \\ & \qquad\{,+,-, *,)\} \end{aligned}$ |
| term $\rightarrow$ factor |  |  |
| factor $\rightarrow$ ( exp ) | $\begin{aligned} & \text { Follow }(\text { exp })= \\ & \{\$,+,-,)\} \end{aligned}$ |  |

## Illustration of first/follow sets



- red arrows: illustration of information flow in the algos
- run of Follow:
- relies on First
- in particular $a \in \operatorname{First}(E)$ (right tree)
- $\$ \in \operatorname{Follow}(B)$

The two trees are just meant a illustrations (but still correct). The grammar itself is not given, but the tree shows relevant productions.

In case of the tree on the left (for the first sets): $A$ is the root and must therefore be the start symbol. Since the root $A$ has three children $C, D$, and $E$, there must be a production $A \rightarrow C D E$. etc.

The first-set definition would "immediately" detect that $F$ has a in its first-set, i.e., all words derivable starting from $F$ start with an $a$ (and actually with no other terminal, as $F$ is mentioned only once in that sketch of a tree). At any rate, only after determining that $\mathbf{a}$ is in the first-set of $F$, then it can enter the first-set of $C$, etc. and in this way percolating upwards the tree.

Note that the tree is insofar specific, in that all the internal nodes are different non-terminals. In more realistic settings, different nodes would represent the same non-terminal. And also in this case, one can think of the information percolating up.

It should be stressed ...

## More complex situation (nullability)



In the tree on the left, $B, M, N, C$, and $F$ are nullable. That is marked in that the resulting first sets contain $\boldsymbol{\epsilon}$. There will also be exercises about that.

## Some forms of grammars are less desirable than others

- left-recursive production:

$$
A \rightarrow A \alpha
$$

more precisely: example of immediate left-recursion

- 2 productions with common "left factor":

$$
A \rightarrow \alpha \beta_{1} \mid \alpha \beta_{2} \quad \text { where } \alpha \neq \boldsymbol{\epsilon}
$$

## Left-recursive and unfactored grammars

At the current point in the presentation, the importance of those conditions might not yet be clear. In general, it's that certain kind of parsing techniques require absence of left-recursion and of common left-factors. Note also that a left-linear production is a special case of a production with immediate left recursion. In particular, recursive descent parsers would not work with leftrecursion. For that kind of parsers, left-recursion needs to be avoided.

Why common left-factors are undesirable should at least intuitively be clear: we see this also on the next slide (the two forms of conditionals). It's intuitively clear, that a parser, when encountering an if (and the following boolean condition and perhaps the then clause) cannot decide immediately which rule applies. It should also be intiutively clear that that's what a parser does: inputting a stream of tokens and trying to figure out which sequence of rules are responsible for that stream (or else reject the input). The amout of additional information, at each point of the parsing process, to determine which rule is responsible next is called the look-ahead. Of course, if the grammar is
ambiguous, no unique decision may be possible (no matter the look-ahead). Ambiguous grammars are unwelcome as specification for parsers.

On a very high-level, the situation can be compared with the situation for regular languages/automata. Non-deterministic automata may be ok for specifying the language (they can more easily be connected to regular expressions), but they are not so useful for specifying a scanner program. There, deterministic automata are necessary. Here, grammars with left-recursion, grammars with common factors, or even ambiguous grammars may be ok for specifying a context-free language. For instance, ambiguity may be caused by unspecified precedences or non-associativity. Nonetheless, how to obtain a grammar representation more suitable to be more or less directly translated to a parser is an issue less clear cut compared to regular languages. Already the question whether or not a given grammar is ambiguous or not is undecidable. If ambiguous, there'd be no point in turning it into a practical parser. Also the question, what's an acceptable form of grammar depends on what class of parsers one is after (like a top-down parser or a bottom-up parser).

## Some simple examples for both

- left-recursion

$$
\exp \rightarrow \text { exp }+ \text { term }
$$

- classical example for common left factor: rules for conditionals

$$
\begin{aligned}
i f \text {-stmt } & \rightarrow \text { if }(\exp ) \text { stmt end } \\
& \mid \text { if (exp) stmt else stmt end }
\end{aligned}
$$

## Transforming the expression grammar

$$
\begin{aligned}
\text { exp } & \rightarrow \text { exp addop term } \mid \text { term } \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { term mulop factor } \mid \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\text { exp }) \mid \text { number }
\end{aligned}
$$

- obviously left-recursive
- remember: this variant used for proper associativity!


## After removing left recursion

$$
\begin{aligned}
\text { exp } & \rightarrow \text { term exp' }^{\prime} \\
\text { exp }^{\prime} & \rightarrow \text { addop term exp } \mid \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term }^{\prime} \\
\text { term }^{\prime} & \rightarrow \text { mulop factor term } \\
\text { mulop } \mid \boldsymbol{\epsilon} & \rightarrow * \\
\text { factor } & \rightarrow(\exp ) \mid \mathbf{n}
\end{aligned}
$$

- still unambiguous
- unfortunate: associativity now different!
- note also: $\boldsymbol{\epsilon}$-productions \& nullability


## Left-recursion removal

## Left-recursion removal

A transformation process to turn a CFG into one without left recursion

## Explanation

- price: $\boldsymbol{\epsilon}$-productions
- 3 cases to consider
- immediate (or direct) recursion
* simple
* general
- indirect (or mutual) recursion


## Left-recursion removal: simplest case

## Before

$$
A \rightarrow A \alpha \mid \beta
$$

space

After

$$
\begin{aligned}
A & \rightarrow \beta A^{\prime} \\
A^{\prime} & \rightarrow \alpha A^{\prime} \mid \boldsymbol{\epsilon}
\end{aligned}
$$

## Schematic representation

$$
A \rightarrow A \alpha \mid \beta
$$

$$
A \rightarrow \beta A^{\prime}
$$

$$
A^{\prime} \rightarrow \alpha A^{\prime} \mid \boldsymbol{\epsilon}
$$




## Remarks

- both grammars generate the same (context-free) language (= set of words over terminals)
- in EBNF:

$$
A \rightarrow \beta\{\alpha\}
$$

- two negative aspects of the transformation

1. generated language unchanged, but: change in resulting structure (parse-tree), i.a.w. change in associativity, which may result in change of meaning
2 . introduction of $\boldsymbol{\epsilon}$-productions

- more concrete example for such a production: grammar for expressions


## Left-recursion removal: immediate recursion (multiple)

## Before

$$
\begin{aligned}
A \rightarrow & A \alpha_{1}|\ldots| \\
& \left|\beta_{1}\right| \ldots \mid \beta_{m}
\end{aligned}
$$

## space

## After

$$
\begin{array}{rll|l|l}
A & \rightarrow & \beta_{1} A^{\prime} & \ldots & \beta_{m} A^{\prime} \\
A^{\prime} & \rightarrow & \alpha_{1} A^{\prime} & \ldots & \alpha_{n} A^{\prime} \\
& \mid \boldsymbol{\epsilon}
\end{array}
$$

## EBNF

Note: can be written in $E B N F$ as:

$$
A \rightarrow\left(\beta_{1}|\ldots| \beta_{m}\right)\left(\alpha_{1}|\ldots| \alpha_{n}\right)^{*}
$$

## Removal of: general left recursion

Assume non-terminals $A_{1}, \ldots, A_{m}$

```
for i := 1 to m do
 for j := 1 to i-1 do
 replace each grammar rule of the form }\mp@subsup{A}{i}{}->\mp@subsup{A}{j}{}\beta\mathrm{ by // i<j
 rule }\mp@subsup{A}{i}{}->\mp@subsup{\alpha}{1}{}\beta|\mp@subsup{\alpha}{2}{}\beta|\ldots|\mp@subsup{\alpha}{k}{}
 where }\mp@subsup{A}{j}{}->\mp@subsup{\alpha}{1}{}|\mp@subsup{\alpha}{2}{}|\ldots|\mp@subsup{\alpha}{k}{
 is the current rule(s) for }\mp@subsup{A}{j}{}// curren
 end
 { corresponds to i=j }
 remove, if necessary, immediate left recursion for }\mp@subsup{A}{i}{
end
```

"current" = rule in the current stage of algo

## Example (for the general case)

let $A=A_{1}, B=A_{2}$

$$
\begin{aligned}
& A \rightarrow \\
& B \mathbf{a}|A \mathbf{a}| \mathbf{c} \\
& B \rightarrow \\
& \\
& \\
& A \rightarrow B|A \mathbf{b}| \mathbf{d} \\
& A^{\prime} \rightarrow \\
& B \rightarrow \\
& \mathbf{a} A^{\prime} \mid \epsilon \\
& B \mathbf{b} \mid A \mathbf{c} A^{\prime} \\
&
\end{aligned}
$$

```
A 位 Ba}\mp@subsup{A}{}{\prime}|\mathbf{c}\mp@subsup{A}{}{\prime
A' }->=\mathbf{a}\mp@subsup{A}{}{\prime}|\boldsymbol{\epsilon
B 隹 B | Ba}\mp@subsup{A}{}{\prime}\mathbf{b}|\mathbf{c}\mp@subsup{A}{}{\prime}\mathbf{b}|\mathbf{d
```

| $A$ | $\rightarrow B \mathbf{a} A^{\prime} \mid \mathbf{c} A^{\prime}$ |
| ---: | :--- |
| $A^{\prime}$ | $\rightarrow \mathbf{a} A^{\prime} \mid \boldsymbol{\epsilon}$ |
| $B$ | $\rightarrow \mathbf{c} A^{\prime} \mathbf{b} B^{\prime} \mid \mathbf{d} B^{\prime}$ |
| $B^{\prime}$ | $\rightarrow \mathbf{b} B^{\prime}\left\|\mathbf{a} A^{\prime} \mathbf{b} B^{\prime}\right\| \epsilon$ |

## Left factor removal

- CFG: not just describe a context-free languages
- also: intended (indirect) description of a parser for that language
$\Rightarrow$ common left factor undesirable
- cf.: determinization of automata for the lexer


## Simple situation

1. before

$$
A \rightarrow \alpha \beta|\alpha \gamma| \ldots
$$

2. after

$$
\begin{array}{lll|l}
A & \rightarrow & \alpha A^{\prime} \mid \ldots \\
A^{\prime} & \rightarrow & \beta \mid \gamma
\end{array}
$$

## Example: sequence of statements

## sequences of statements

1. Before

$$
\begin{aligned}
\text { stmt-seq } \rightarrow & \text { stmt; stmt-seq } \\
& \text { stmt }
\end{aligned}
$$

2. After

$$
\begin{aligned}
\text { stmt-seq } & \rightarrow \text { stmt stmt-seq } q^{\prime} \\
\text { stmt-seq } & \rightarrow ; \text { stmt-seq } \mid \boldsymbol{\epsilon}
\end{aligned}
$$

## Example: conditionals

1. Before

$$
\begin{aligned}
i f \text {-stmt } & \rightarrow \text { if }(\exp ) \text { stmt-seq end } \\
& \mid \text { if }(\exp ) \text { stmt-seq else } \text { stmt-seq end }
\end{aligned}
$$

2. After

$$
\begin{aligned}
\text { if-stmt } & \rightarrow \text { if }(\exp ) \text { stmt-seq else-or-end } \\
\text { else-or-end } & \rightarrow \text { else stmt-seq end | end }
\end{aligned}
$$

## Example: conditionals (without else)

1. Before

$$
\begin{aligned}
\text { if-stmt } & \rightarrow \text { if }(\exp ) \text { stmt-seq } \\
& \mid \text { if }(\exp ) \text { stmt-seq else } s t m t-s e q
\end{aligned}
$$

2. After

$$
\begin{aligned}
\text { if-stmt } & \rightarrow \text { if }(\exp ) \text { stmt-seq else-or-empty } \\
\text { else-or-empty } & \rightarrow \text { else stmt-seq } \mid \epsilon
\end{aligned}
$$

## Not all factorization doable in "one step"

1. Starting point

$$
A \rightarrow \mathbf{a b c} B|\mathbf{a b} C| \mathbf{a} E
$$

2. After 1 step

$$
\begin{aligned}
A & \rightarrow \mathbf{a b} A^{\prime} \mid \mathbf{a} E \\
A^{\prime} & \rightarrow \mathbf{c} B \mid C
\end{aligned}
$$

3. After 2 steps

$$
\begin{aligned}
A & \rightarrow \mathbf{a} A^{\prime \prime} \\
A^{\prime \prime} & \rightarrow \mathbf{b} A^{\prime} \mid E \\
A^{\prime} & \rightarrow \mathbf{c} B \mid C
\end{aligned}
$$

4. longest left factor

- note: we choose the longest common prefix (= longest left factor) in the first step


## Left factorization

```
while there are changes to the grammar do
 for each nonterminal \(A\) do
 let \(\alpha\) be a prefix of max. length that is shared
 by two or more productions for \(A\)
 if \(\quad \alpha \neq \epsilon\)
 then
 let \(A \rightarrow \alpha_{1}|\ldots| \alpha_{n}\) be all
 prod. for \(A\) and suppose that \(\alpha_{1}, \ldots, \alpha_{k}\) share \(\alpha\)
 so that \(A \rightarrow \alpha \beta_{1}|\ldots| \alpha \beta_{k}\left|\alpha_{k+1}\right| \ldots \mid \alpha_{n}\),
 that the \(\beta_{j}\) 's share no common prefix, and
 that the \(\alpha_{k+1}, \ldots, \alpha_{n}\) do not share \(\alpha\).
 replace rule \(A \rightarrow \alpha_{1}|\ldots| \alpha_{n}\) by the rules
 \(A \rightarrow \alpha A^{\prime}\left|\alpha_{k+1}\right| \ldots \mid \alpha_{n}\)
 \(A^{\prime} \rightarrow \beta_{1}|\ldots| \beta_{k}\)
 end
 end
end
```


### 4.4 LL-parsing (mostly LL(1))

After having covered the more technical definitions of the first and follow sets and transformations to remove left-recursion resp. common left factors, we go back to top-down parsing, in particular to the specific form of LL(1) parsing.

Additionally, we discuss issues about abstract syntax trees vs. parse trees.

## Parsing LL(1) grammars

- this lecture: we don't do $\operatorname{LL}(\mathrm{k})$ with $k>1$
- LL(1): particularly easy to understand and to implement (efficiently)
- not as expressive than LR(1) (see later), but still kind of decent


## LL(1) parsing principle

Parse from 1) left-to-right (as always anyway), do a 2) left-most derivation and resolve the "which-right-hand-side" non-determinism by

1. looking 1 symbol ahead.

## Explanation

- two flavors for LL(1) parsing here (both are top-down parsers)
- recursive descent
- table-based LL(1) parser
- predictive parsers

If one wants to be very precise: it's recursive descent with one look-ahead and without back-tracking. It's the single most common case for recursive descent parsers. Longer look-aheads are possible, but less common. Technically, even allowing back-tracking can be done using recursive descent as principle (even if not done in practice).

## Sample expr grammar again

## factors and terms

$$
\begin{align*}
\text { exp } & \rightarrow \text { term exp }  \tag{4.6}\\
\text { exp }^{\prime} & \rightarrow \text { addop term exp } \\
\text { addop } & \rightarrow+\mid \boldsymbol{\epsilon} \\
\text { term } & \rightarrow \text { factor term }^{\prime} \\
\text { term } & \rightarrow \text { mulop factor term }^{\prime} \mid \boldsymbol{\epsilon} \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\text { exp }) \mid \mathbf{n}
\end{align*}
$$

## Look-ahead of 1: straightforward, but not trivial

- look-ahead of 1 :
- not much of a look-ahead, anyhow
- just the "current token"
$\Rightarrow$ read the next token, and, based on that, decide
- but: what if there's no more symbols?
$\Rightarrow$ read the next token if there is, and decide based on the token or else the fact that there's none left ${ }^{6}$


## Example: 2 productions for non-terminal factor

$$
\text { factor } \rightarrow(\exp ) \mid \text { number }
$$

[^4]
## Remark

that situation is trivial, but that's not all to $\operatorname{LL}(1) \ldots$

## Recursive descent: general set-up

1. global variable, say tok, representing the "current token" (or pointer to current token)
2. parser has a way to advance that to the next token (if there's one)

## Idea

For each non-terminal nonterm, write one procedure which:

- succeeds, if starting at the current token position, the "rest" of the token stream starts with a syntactically correct word of terminals representing nonterm
- fail otherwise
- ignored (for right now): when doing the above successfully, build the $A S T$ for the accepted nonterminal.


## Recursive descent

method factor for nonterminal factor

```
final int LPAREN = 1,RPAREN = 2,NUMBER = 3,
PLUS}=4,\textrm{MINUS}=5,\textrm{TIMES}=6
```

```
void factor () {
 switch (tok) {
 case LPAREN: eat (LPAREN); expr (); eat (RPAREN);
 case NUMBER: eat (NUMBER);
 }
}
```


## Recursive descent

```
qtype token = LPAREN | RPAREN | NUMBER
 | PLUS | MINUS | TIMES
```

```
let factor () = (* function for factors *)
 match !tok with
 LPAREN -> eat(LPAREN); expr(); eat (RPAREN)
 | NUMBER -> eat (NUMBER)
```


## Slightly more complex

- previous 2 rules for factor: situation not always as immediate as that


## LL(1) principle (again)

given a non-terminal, the next token must determine the choice of right-hand side $^{7}$

## First

$\Rightarrow$ definition of the First set
Lemma 4.4.1 (LL(1) (without nullable symbols)). A reduced contextfree grammar without nullable non-terminals is an LL(1)-grammar iff for all non-terminals $A$ and for all pairs of productions $A \rightarrow \alpha_{1}$ and $A \rightarrow \alpha_{2}$ with $\alpha_{1} \neq \alpha_{2}$.

$$
\operatorname{First}_{1}\left(\alpha_{1}\right) \cap \operatorname{First}_{1}\left(\alpha_{2}\right)=\varnothing .
$$

## Common problematic situation

- often: common left factors problematic

$$
\begin{aligned}
i f \text {-stmt } & \rightarrow \text { if }(\exp ) \text { stmt } \\
& \mid \text { if }(\exp ) \text { stmt else } \text { stmt }
\end{aligned}
$$

- requires a look-ahead of (at least) 2
- $\Rightarrow$ try to rearrange the grammar

1. Extended BNF ([6] suggests that)

$$
\text { if-stmt } \rightarrow \text { if (exp) stmt [ else stmt] }
$$

1. left-factoring:

[^5]\[

$$
\begin{aligned}
\text { if-stmt } & \rightarrow \text { if }(\text { exp }) \text { stmt else-part } \\
\text { else-part } & \rightarrow \boldsymbol{\epsilon} \mid \text { else stmt }
\end{aligned}
$$
\]

## Recursive descent for left-factored $i f$-stmt

```
procedure ifstmt()
 begin
 match (" if ");
 match (" (");
 exp();
 match (")");
 stmt();
 if token = " else"
 then match (" else");
 stmt ()
 end
 end;
```


## Left recursion is a no-go

## factors and terms

$$
\begin{aligned}
\exp & \rightarrow \text { exp addop term } \mid \text { term } \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { term mulop factor } \mid \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\exp ) \mid \text { number }
\end{aligned}
$$

## Left recursion explanation

- consider treatment of exp: First (exp)?
- whatever is in First(term), is in First (exp) ${ }^{8}$
- even if only one (left-recursive) production $\Rightarrow$ infinite recursion.


## Left-recursion

Left-recursive grammar never works for recursive descent.

[^6]
## Removing left recursion may help

## Pseudo code

$$
\begin{aligned}
\text { exp } & \rightarrow \text { term exp }^{\prime} \\
\text { exp }^{\prime} & \rightarrow \text { addop term exp } \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term }^{\prime} \\
\text { term }^{\prime} & \rightarrow \text { mulop factor term } \\
\text { mulop } & \rightarrow \boldsymbol{\epsilon} \\
\text { factor } & \rightarrow(\exp ) \mid \mathbf{n}
\end{aligned}
$$

```
procedure exp()
begin
 term();
 exp'()
end
```

```
procedure exp'()
begin
 case token of
 "+": match(" +");
 term ();
 exp'()
 " - ": match(" - ");
 term ();
 exp'()
 end
end
```


## Recursive descent works, alright, but ...


... who wants this form of trees?

## The two expression grammars again

## factors and terms

1. Precedence \& assoc.

$$
\begin{aligned}
\exp & \rightarrow \text { exp addop term } \mid \text { term } \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { term mulop factor } \mid \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\text { exp }) \mid \text { number }
\end{aligned}
$$

2. explanation

- clean and straightforward rules
- left-recursive
no left recursion

1. no left-rec.

$$
\begin{aligned}
\text { exp } & \rightarrow \text { term } \text { exp }^{\prime} \\
\text { exp }^{\prime} & \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term }^{\prime} \\
\text { term } & \rightarrow \text { mulop factor term } \\
\text { mulop } & \rightarrow \boldsymbol{\epsilon} \\
\text { factor } & \rightarrow(\exp ) \mid \mathbf{n}
\end{aligned}
$$

2. Explanation

- no left-recursion
- assoc. / precedence ok
- rec. descent parsing ok
- but: just "unnatural"
- non-straightforward parse-trees


## Left-recursive grammar with nicer parse trees

$$
1+2 *(3+4)
$$



## The simple "original" expression grammar (even nicer)

## Flat expression grammar

$$
\begin{aligned}
\exp & \rightarrow \exp \text { op exp }|(\exp )| \text { number } \\
o p & \rightarrow+|-| *
\end{aligned}
$$

Nice tree

$$
1+2 *(3+4)
$$



## Associtivity problematic

Precedence \& assoc.

$$
\begin{aligned}
\exp & \rightarrow \text { exp addop term } \mid \text { term } \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { term mulop factor } \mid \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\exp ) \mid \text { number }
\end{aligned}
$$

## Example plus and minus

1. Formula

$$
\begin{gathered}
3+4+5 \\
\text { parsed "as" } \\
(3+4)+5 \\
3-4-5 \\
\text { parsed "as" } \\
(3-4)-5
\end{gathered}
$$

2. Tree


## Now use the grammar without left-rec (but right-rec instead)

No left-rec.

| exp | $\rightarrow$ term exp |
| ---: | :--- |
| exp $^{\prime}$ | $\rightarrow$ addop term exp $^{\prime} \mid \boldsymbol{\epsilon}$ |
| addop | $\rightarrow+\mid-$ |
| term | $\rightarrow$ factor term |
| term |  |
| mulop | $\rightarrow$ mulop factor term |
| factor | $\rightarrow$ |
|  |  |
|  | $(\exp ) \mid \mathbf{n}$ |

Example minus

1. Formula

$$
\begin{gathered}
3-4-5 \\
\text { parsed "as" }
\end{gathered}
$$

$$
3-(4-5)
$$

2. Tree


But if we need a "left-associative" AST?

- we want $(3-4)-5$, not $3-(4-5)$



## Code to "evaluate" ill-associated such trees correctly

```
function exp' (valsofar: int): int;
begin
 if token = '+' or token = ' -'
 then
 case token of
 '+': match ('+');
 valsofar := valsofar + term;
 '-': match (' - ');
 valsofar := valsofar - term;
 end case;
 return exp'(valsofar);
 else return valsofar
end;
```

- extra "accumulator" argument valsofar
- instead of evaluating the expression, one could build the AST with the appropriate associativity instead:
- instead of valueSoFar, one had rootOfTreeSoFar


## "Designing" the syntax, its parsing, \& its AST

- trade offs:

1. starting from: design of the language, how much of the syntax is left "implicit" ${ }^{4}$

[^7]2. which language class? Is LL(1) good enough, or something stronger wanted?
3. how to parse? (top-down, bottom-up, etc.)
4. parse-tree/concrete syntax trees vs. ASTs

## AST vs. CST

- once steps 1.-3. are fixed: parse-trees fixed!
- parse-trees $=$ essence of grammatical derivation process
- often: parse trees only "conceptually" present in a parser
- AST:
- abstractions of the parse trees
- essence of the parse tree
- actual tree data structure, as output of the parser
- typically on-the fly: AST built while the parser parses, i.e. while it executes a derivation in the grammar


## AST vs. CST/parse tree

Parser "builds" the AST data structure while "doing" the parse tree

## AST: How "far away" from the CST?

- AST: only thing relevant for later phases $\Rightarrow$ better be clean ...
- AST "=" CST?
- building AST becomes straightforward
- possible choice, if the grammar is not designed "weirdly",

parse-trees like that better be cleaned up as AST

slightly more reasonable looking as AST (but underlying grammar not directly useful for recursive descent)


That parse tree looks reasonable clear and intuitive


Certainly minimal amount of nodes, which is nice as such. However, what is missing (which might be interesting) is the fact that the 2 nodes labelled "-" are expressions!

## This is how it's done (a recipe)

## Assume, one has a "non-weird" grammar

```
exp -> exp op exp | (exp) | number
 op }->+|-1*
```


## Explanation

- typically that means: assoc. and precedences etc. are fixed outside the non-weird grammar
- by massaging it to an equivalent one (no left recursion etc.)
- or (better): use parser-generator that allows to specify assoc ... like " "*" binds stronger than " + ", it associates to the left ..."
"without cluttering the grammar.
- if grammar for parsing is not as clear: do a second one describing the ASTs


## Remember (independent from parsing)

BNF describe trees

## This is how it's done (recipe for $\mathbf{O O}$ data structures)

## Recipe

- turn each non-terminal to an abstract class
- turn each right-hand side of a given non-terminal as (non-abstract) subclass of the class for considered non-terminal
- chose fields \& constructors of concrete classes appropriately
- terminal: concrete class as well, field/constructor for token's value


## Example in Java

```
exp -> exp op exp | (exp)| number
 op -> + | - *
abstract public class Exp {
}
```

```
public class BinExp extends Exp { // exp -> exp op exp
 public Exp left, right;
 public Op op;
 public BinExp(Exp l, Op o, Exp r) {
 left=l; op=o; right=r;}
}
```

```
public class ParentheticExp extends Exp { // exp -> (op)
 public Exp exp;
 public ParentheticExp(Exp e) { exp = l;}
}
```

```
public class NumberExp extends Exp { // exp -> NUMBER
 public number; // token value
 public Number(int i) {number = i;}
}
```

```
abstract public class Op { // non-terminal = abstract
```

\}

```
public class Plus extends Op { // op -> "+"
```

\}

```
public class Minus extends Op { // op -> " -"
```

\}

```
public class Times extends Op { // op -> "*"
```

\}
$3-(4-5)$

```
Exp e = new BinExp(
 new NumberExp(3),
 new Minus(),
 new BinExp(new ParentheticExpr(
 new NumberExp(4),
 new Minus(),
 new NumberExp(5))))
```


## Pragmatic deviations from the recipe

- it's nice to have a guiding principle, but no need to carry it too far ...
- To the very least: the ParentheticExpr is completely without purpose: grouping is captured by the tree structure
$\Rightarrow$ that class is not needed
- some might prefer an implementation of

$$
o p \rightarrow+|-| *
$$

as simply integers, for instance arranged like

```
public class BinExp extends Exp { // exp -> exp op exp
 public Exp left, right;
 public int op;
 public BinExp(Exp l, int o, Exp r) {pos=p; left=l; oper=o; right=r;}
 public final static int PLUS=0, MINUS=1, TIMES=2;
}
```

and used as BinExpr.PLUS etc.

## Recipe for ASTs, final words:

- space considerations for AST representations are irrelevant in most cases
- clarity and cleanness trumps "quick hacks" and "squeezing bits"
- some deviation from the recipe or not, the advice still holds:


## Do it systematically

A clean grammar is the specification of the syntax of the language and thus the parser. It is also a means of communicating with humans (at least with pros who (of course) can read BNF) what the syntax is. A clean grammar is a very systematic and structured thing which consequently can and should be systematically and cleanly represented in an AST, including judicious and systematic choice of names and conventions (nonterminal exp represented by class Exp, non-terminal stmt by class Stmt etc)

## Louden

- a word on [6]: His C-based representation of the AST is a bit on the "bit-squeezing" side of things ...


## Extended BNF may help alleviate the pain

## BNF

$$
\begin{aligned}
\text { exp } & \rightarrow \text { exp addop term } \mid \text { term } \\
\text { term } & \rightarrow \text { term mulop factor } \mid \text { factor }
\end{aligned}
$$

## EBNF

$$
\begin{aligned}
\exp & \rightarrow \text { term }\{\text { addop term }\} \\
\text { term } & \rightarrow \text { factor }\{\text { mulop factor }\}
\end{aligned}
$$

## Explanation

but remember:

- EBNF just a notation, just because we do not see (left or right) recursion in $\{\ldots\}$, does not mean there is no recursion.
- not all parser generators support EBNF
- however: often easy to translate into loops- ${ }^{10}$
- does not offer a general solution if associativity etc. is problematic


## Pseudo-code representing the EBNF productions

```
procedure exp;
begin
 term ; {recursive call }
 while token = " +" or token = "-"
 do
 match(token);
 term; // recursive call
 end
end
```

```
procedure term;
begin
 factor; {recursive call }
 while token = "*"
 do
 match(token);
 factor; // recursive call
 end
end
```


## How to produce "something" during RD parsing?

## Recursive descent

So far: $\mathrm{RD}=$ top-down (parse-)tree traversal via recursive procedure. ${ }^{11}$ Possible outcome: termination or failure.

[^8]
## Rest

- Now: instead of returning "nothing" (return type void or similar), return some meaningful, and build that up during traversal
- for illustration: procedure for expressions:
- return type int,
- while traversing: evaluate the expression


## Evaluating an $\exp$ during RD parsing

```
function exp() : int;
var temp: int
begin
 temp := term (); { recursive call }
 while token = " +" or token = " -"
 case token of
 "+": match (" +");
 temp := temp + term();
 " - ": match (" - ")
 temp := temp - term();
 end
 end
 return temp;
end
```


## Building an AST: expression

```
function exp() : syntaxTree;
var temp, newtemp: syntaxTree
begin
 temp := term (); {recursive call }
 while token = "+" or token = " -"
 case token of
 "+": match (" +");
 newtemp := makeOpNode(" +");
 leftChild(newtemp) := temp;
 rightChild(newtemp) := term();
 temp := newtemp;
 " - ": match (" - ")
 newtemp := makeOpNode(" - ");
 leftChild(newtemp) := temp;
 rightChild(newtemp) := term();
 temp := newtemp;
 end
 end
 return temp;
end
```

- note: the use of temp and the while loop


## Building an AST: factor

$$
\text { factor } \rightarrow(\exp ) \mid \text { number }
$$

```
function factor() : syntaxTree;
var fact: syntaxTree
begin
 case token of
 "(": match (" (")
 fact := exp();
 match (")");
 number:
 match (number)
 fact := makeNumberNode(number);
 else : error ... // fall through
 end
 return fact;
end
```


## Building an AST: conditionals

$$
\text { if-stmt } \rightarrow \text { if ( exp) stmt }[\text { else stmt }]
$$

```
function ifStmt() : syntaxTree;
var temp: syntaxTree
begin
 match (" if ");
 match (" (");
 temp := makeStmtNode(" if ")
 testChild(temp) := \operatorname{exp();}
 match (")");
 thenChild(temp) := stmt();
 if token = "else"
 then match " else";
 elseChild(temp) := stmt();
 else elseChild(temp) := nil;
 end
 return temp;
end
```


## Building an AST: remarks and "invariant"

- LL(1) requirement: each procedure/function/method (covering one specific non-terminal) decides on alternatives, looking only at the current token
- call of function A for non-terminal $A$ :
- upon entry: first terminal symbol for $A$ in token
- upon exit: first terminal symbol after the unit derived from $A$ in token
- match ("a") : checks for "a" in token and eats the token (if matched).


## LL(1) parsing

- remember LL(1) grammars \& LL(1) parsing principle:


## LL(1) parsing principle

1 look-ahead enough to resolve "which-right-hand-side" non-determinism.

## Further remarks

- instead of recursion (as in RD): explicit stack
- decision making: collated into the $\mathbf{L L}(\mathbf{1})$ parsing table
- LL(1) parsing table:
- finite data structure $M$ (for instance 2 dimensional array) ${ }^{12}$

$$
M: \Sigma_{N} \times \Sigma_{T} \rightarrow\left(\left(\Sigma_{N} \times \Sigma^{*}\right)+\text { error }\right)
$$

$$
-M[A, a]=w
$$

- we assume: pure BNF


## Construction of the parsing table

## Table recipe

1. If $A \rightarrow \alpha \in P$ and $\alpha \Rightarrow^{*} \mathbf{a} \beta$, then add $A \rightarrow \alpha$ to table entry $M[A, \mathbf{a}]$
2. If $A \rightarrow \alpha \in P$ and $\alpha \Rightarrow^{*} \boldsymbol{\epsilon}$ and $S \$ \Rightarrow^{*} \beta A \mathbf{a} \gamma$ (where $\mathbf{a}$ is a token (=non-terminal) or $\$$ ), then add $A \rightarrow \alpha$ to table entry $M[A, \mathbf{a}]$

## Table recipe (again, now using our old friends First and Follow)

Assume $A \rightarrow \alpha \in P$.

1. If $\mathbf{a} \in \operatorname{First}(\alpha)$, then add $A \rightarrow \alpha$ to $M[A, \mathbf{a}]$.
2. If $\alpha$ is nullable and $\mathbf{a} \in \operatorname{Follow}(A)$, then add $A \rightarrow \alpha$ to $M[A, \mathbf{a}]$.

## Example: if-statements

- grammars is left-factored and not left recursive

$$
\begin{aligned}
\text { stmt } & \rightarrow \text { if-stmt | other } \\
\text { if-stmt } & \rightarrow \text { if }(\text { exp }) \text { stmt else-part } \\
\text { else-part } & \rightarrow \text { else stmt } \mid \epsilon \\
\exp & \rightarrow \mathbf{0} \mid \mathbf{1}
\end{aligned}
$$

[^9]|  | First | Follow |
| :--- | :--- | :--- |
| stmt | other, if | \$, else |
| if-stmt | if | $\boldsymbol{\$}$, else |
| else-part | else, $\boldsymbol{\epsilon}$ | $\boldsymbol{\$}$, else |
| exp | $\mathbf{0}, \mathbf{1}$ | ) |

## Example: if statement: "LL(1) parse table"

| $M[N, T]$ | if | other | else | 0 | 1 | $\$$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| statement | statement <br> $\rightarrow$ if-stmt | statement <br> $\rightarrow$ other |  |  |  |  |
| if-stmt | if-stmt $\rightarrow$ <br> if (exp) <br> statement <br> else-part |  | else-part $\rightarrow$ <br> else <br> statement <br> else-part $\rightarrow \varepsilon$ |  |  |  |
| else-part |  |  |  | $\exp \rightarrow 0$ | $\exp \rightarrow \mathbf{1}$ |  |
| exp |  |  |  |  |  |  |

- 2 productions in the "red table entry"
- thus: it's technically not an LL(1) table (and it's not an LL(1) grammar)
- note: removing left-recursion and left-factoring did not help!


## LL(1) table based algo

```
while the top of the parsing stack }\not=
 if the top of the parsing stack is terminal a
 and the next input token = a
 then
 pop the parsing stack;
 advance the input; // '`match''
 else if the top the parsing is non-terminal }
 and the next input token is a terminal or $$
 and parsing table }M[A,\mathbf{a}] contain
 production }A->\mp@subsup{X}{1}{}\mp@subsup{X}{2}{}\ldots\mp@subsup{X}{n}{
 then (* generate *)
 pop the parsing stack
 for }i:=n to 1 d
```


## push $X$ onto the stack;

else error
if the top of the stack $=\mathbf{\$}$
then accept
end

## $\operatorname{LL}(1)$ : illustration of run of the algo

| $\mu(1)$ parsing actions for | Parsing stack | Input | Action |
| :---: | :---: | :---: | :---: |
| if.statements using the most | \$ S | i(0)i(1)oeo\$ |  |
| dosely nested | \$ 1 | i(0)i(1)oeo\$ | $I \rightarrow \mathbf{i}(E) S L$ <br> match |
| rule | \$LS)E(i | i(0)i(1)oeos |  |
|  | \$ LS ) E ( | (0)i(1)oeos | match |
|  | \$ $L S$ ) $E$ | $0) \mathrm{i}(1) \mathrm{e}$ o\$ | $E \rightarrow 0$ |
|  | \$ $L$ S) 0 | $0) \mathrm{i}(1) \mathrm{e}$ o \$ | match |
|  | \$ $L S$ ) | $) \mathrm{i}(1) \mathrm{oeo}$ | match |
|  | \$ LS | i(1)oeo\$ | $S \rightarrow 1$ |
|  | \$ LI | i(1)oeo\$ | $I \rightarrow \mathbf{i}(E) S L$ |
|  | \$LLS) E(i | i(1)oeo\$ | match |
|  | \$LLS) E( | (1)0eos | match |
|  | \$LLS) | 1) 0 e ${ }^{\text {d }}$ | $E \rightarrow 1$ |
|  | \$ $L$ LS ) 1 | 1) 0 e ${ }^{\text {d }}$ | match |
|  | \$ LLS) | loeo\$ | match |
|  | \$LLS | - e\% | $S \rightarrow 0$ |
|  | \$LLO | oeos | match |
|  | \$ LL | eos | $L \rightarrow$ eS |
|  | \$LSe | eos | $\mathrm{mame}_{\text {m }}$ |
|  | \$LS | 0 - | $S \rightarrow 0$ |
|  | \$ Lo | -\$ | match <br> $L \rightarrow \varepsilon$ |
|  | \$ $L$ | \$ | accept |
|  | \$ | \$ |  |

* 


## Remark

The most interesting steps are of course those dealing with the dangling else, namely those with the non-terminal else-part at the top of the stack. That's where the LL(1) table is ambiguous. In principle, with else-part on top of the stack (in the picture it's just L), the parser table allows always to make the decision that the "current statement" resp "current conditional" is done.

## Expressions

$$
\begin{aligned}
\exp & \rightarrow \text { exp addop term } \mid \text { term } \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { term mulop factor } \mid \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\exp ) \mid \text { number }
\end{aligned}
$$

left-recursive $\Rightarrow$ not LL(k)

$$
\begin{aligned}
& \text { exp } \rightarrow \text { term exp } \\
& \text { exp }^{\prime} \rightarrow \text { addop term exp } \\
& \text { addop } \rightarrow \boldsymbol{\epsilon} \\
& \text { term } \rightarrow \text { factor term } \\
& \text { term } \\
& \text { mulop } \rightarrow \text { mulop factor term } \\
& \text { mat } \mid \boldsymbol{\epsilon} \\
& \text { factor } \rightarrow(\text { exp }) \mid \mathbf{n}
\end{aligned}
$$

|  | First | Follow |
| :---: | :---: | :---: |
| exp | (, number | \$, ) |
| $e x p^{\prime}$ | $+,-, \epsilon$ | \$, |
| addop | +, - | (, number |
| term | (, number | \$, ), +, - |
| term ${ }^{\prime}$ | *, $\epsilon$ | \$, ), +, - |
| mulop | * | (, number |
| factor | (, number | \$, ), +, - * |

## Expressions: LL(1) parse table

| M $[\mathrm{N}, \mathrm{T}]$ | $($ | number | ) | + | - | * | \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| exp | $\begin{aligned} & \exp \rightarrow \\ & \quad \text { term } \exp ^{\prime} \end{aligned}$ | $\begin{array}{r} \exp \rightarrow \\ \text { term exp } \end{array}$ |  |  |  |  |  |
| $\exp ^{\prime}$ |  |  | $\exp ^{\prime} \rightarrow \varepsilon$ | $\exp ^{\prime} \rightarrow$ <br> addop <br> term exp' | exp $^{\prime} \rightarrow$ <br> addop <br> term exp' |  | $\exp ^{\prime} \rightarrow \varepsilon$ |
| addop |  |  |  | addop $\rightarrow+$ | addop $\rightarrow$ |  |  |
| term | term $\rightarrow$ factor term' | term $\rightarrow$ factor term' |  |  |  |  |  |
| term ${ }^{\prime}$ |  |  | $\text { term }^{\prime} \rightarrow_{\varepsilon}$ | term $^{\prime} \rightarrow \varepsilon$ | term $^{\prime} \rightarrow \varepsilon$ | term $^{\prime} \rightarrow$ mulop factor $t^{\prime} \mathrm{trm}^{\prime}$ | $\text { term }^{\prime} \rightarrow$ |
| mulop |  |  |  |  |  | mulop ${ }_{\text {* }}$ |  |
| factor | $\begin{array}{r} \text { factor } \rightarrow \\ \quad(\exp ) \end{array}$ | factor $\rightarrow$ number |  |  |  |  |  |

## Error handling

- at the least: do an understandable error message
- give indication of line / character or region responsible for the error in the source file
- potentially stop the parsing
- some compilers do error recovery
- give an understandable error message (as minimum)
- continue reading, until it's plausible to resume parsing $\Rightarrow$ find more errors
- however: when finding at least 1 error: no code generation
- observation: resuming after syntax error is not easy


## Error messages

- important:
- try to avoid error messages that only occur because of an already reported error!
- report error as early as possible, if possible at the first point where the program cannot be extended to a correct program.
- make sure that, after an error, one doesn't end up in a infinite loop without reading any input symbols.
- What's a good error message?
- assume: that the method factor () chooses the alternative (exp) but that it, when control returns from method $\exp ()$, does not find a )
- one could report: left paranthesis missing
- But this may often be confusing, e.g. if what the program text is: (a + b c )
- here the $\exp$ () method will terminate after ( $a+b$, as c cannot extend the expression). You should therefore rather give the message error in expression or left paranthesis missing.


## Handling of syntax errors using recursive descent

## Method: «Panic mode» with use of «Synchronizing set»



## Syntax errors with sync stack

From the sketch at the previous page we can easily find:

- Which call should continue the execution?
- What input symbol should this method search for before resuming?
- We assume that \$ is added to the synch. stack only by the outermost method (for the start symbol)
- The union of everything on the stack is called the "synch. set", SS

The algorithm for this goes is as follows:
For each coming input symbol, test if it is a member of SS
If so:

- Look through the SS stack from newest to oldest, and find the newest method
- that are willing to resume at one of these symbol
- This method will itself know how to resume after the actual input symbol

What is not easy is to program this without destroing the nich program structure occuring from pure recursive descent.

## Procedures for expression with "error recovery"

procedure factor (synchset );
begin
checkinput ( { (, number }, synchset );
if not (token in synchset) then
case token of
(: match(();
exp({)});\longleftarrowWWy not the full"synchset"?
match());
number:
match(number);
else error;
end case ;
checkinput ( synchset, { (, number });
end if ;
end factor;

```
```

```
procedure exp (synchset);
```

```
procedure exp (synchset);
begin
begin
 checkinput ({ (, number }, synchset);
 checkinput ({ (, number }, synchset);
 if not (token in synchset) then
 if not (token in synchset) then
 term(synchset);
 term(synchset);
 while token = + or token = - do
 while token = + or token = - do
 match (token);
 match (token);
 term (synchset); Also {+,-} ?
 checkinput (synchset, { (, number });
 checkinput (synchset, { (, number });
end if;
end if;
end exp;
```

end exp;

```

Main philosophy
The method "checkinput" is called twice: First to check that the construction starts correctly, and secondly to check that the symbol after the construction is legal.
```

if token in $\{($,number $\}$ then ...

```

Uses parameters, not a stack
The procedures must themselves resume execution at the right place inside themselves when they get the control back,
or it must terminate immediately if it cannot resume execution on the current symbol.
```

procedure scanto ( synchset) ;
checkinput ( $\{$ (, number \}, synchset );
begin
if not (token in synchset) then
while not ( token in synchset $\cup\{\$\}$ ) do getToken ;
end scanto ;
procedure checkinput (firstset, followset ) ;

```

\section*{begin}
```

if not (token in firstset) then
error;
scanto ( firstset $\cup$ followset $)$;
end if ;
end;

### 4.5 Bottom-up parsing

## Bottom-up parsing: intro

" R " stands for right-most derivation.

LR(0) - only for very simple grammars

- approx. 300 states for standard programming languages
- only as intro to $\operatorname{SLR}(1)$ and $\operatorname{LALR}(1)$

SLR(1) - expressive enough for most grammars for standard PLs

- same number of states as $\operatorname{LR}(0)$
- main focus here

LALR(1) - slightly more expressive than $\operatorname{SLR}(1)$

- same number of states as $\operatorname{LR}(0)$
- we look at ideas behind that method as well
$\mathbf{L R}(\mathbf{1})$ covers all grammars, which can in principle be parsed by looking at the next token


## Remarks

There seems to be a contradiction in the explanation of $\operatorname{LR}(0)$ : if $\operatorname{LR}(0)$ is so weak that it works only for unreasonably simple language, how can one speak about that standard languages have 300 states? The answer is, the other more expressive parsers (SLR(1) and LALR(1)) use the same construction of states, so that's why one can estimate the number of states, even if standard languages don't have a $\operatorname{LR}(0)$ parser; they may have an LALR(1)-parser, which has, it its core, $\mathrm{LR}(0)$-states.

## Grammar classes overview (again)



## LR-parsing and its subclasses

- right-most derivation (but left-to-right parsing)
- in general: bottom-up parsing more powerful than top-down
- typically: tool-supported (unlike recursive descent, which may well be handcoded)
- based on parsing tables + explicit stack
- thankfully: left-recursion no longer problematic
- typical tools: yacc and its descendants (like bison, CUP, etc)
- another name: shift-reduce parser



## Example grammar

$$
\begin{array}{rll}
S^{\prime} & \rightarrow & S \\
S & \rightarrow & A B \mathbf{t}_{\mathbf{7}} \\
S & \ldots & \\
A & \rightarrow & \mathbf{t}_{\mathbf{4}} \mathbf{t}_{\mathbf{5}} \\
B & \rightarrow & \mathbf{t}_{\mathbf{1}} B \\
\mathbf{t}_{\mathbf{2}} \mathbf{t}_{\mathbf{3}} & A \mathbf{t}_{\mathbf{6}} & \ldots
\end{array}
$$

- assume: grammar unambiguous
- assume word of terminals $\mathbf{t}_{\mathbf{1}} \mathbf{t}_{\mathbf{2}} \ldots \mathbf{t}_{\mathbf{7}}$ and its (unique) parse-tree
- general agreement for bottom-up parsing:
- start symbol never on the right-hand side or a production
- routinely add another "extra" start-symbol (here $\left.S^{\prime}\right)^{13}$


## Parse tree for $t_{1} \ldots t_{7}$



Remember: parse tree independent from left- or right-most-derivation

## LR: left-to right scan, right-most derivation?

## Potentially puzzling question at first sight:

How does the parser right-most derivation, when parsing left-to-right?

[^10]
## Discussion

- short answer: parser builds the parse tree bottom-up
- derivation:
- replacement of nonterminals by right-hand sides
- derivation: builds (implicitly) a parse-tree top-down
- sentential form: word from $\Sigma^{*}$ derivable from start-symbol


## Right-sentential form: right-most derivation

$$
S \Rightarrow_{r}^{*} \alpha
$$

## Slighly longer answer

LR parser parses from left-to-right and builds the parse tree bottom-up. When doing the parse, the parser (implicitly) builds a right-most derivation in reverse (because of bottom-up).

## Example expression grammar (from before)

$$
\begin{align*}
\text { exp } & \rightarrow \text { exp addop term } \mid \text { term }  \tag{4.8}\\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { term mulop factor } \mid \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\text { exp }) \mid \text { number }
\end{align*}
$$



## Bottom-up parse: Growing the parse tree



$$
\begin{aligned}
\text { number } * \text { number } & \rightarrow \underline{\text { factor } * \text { number }} \\
& \rightarrow \overline{\text { term } *} \underline{\text { number }} \\
& \leftrightarrow \overline{\text { term } * \text { factor }} \\
& \rightarrow \overline{\text { term }} \\
& \rightarrow \overline{\text { exp }}
\end{aligned}
$$

## Reduction in reverse $=$ right derivation

## Reduction

$$
\begin{aligned}
\underline{\mathbf{n} * \mathbf{n}} & \rightarrow \underline{\text { factor } * \mathbf{n}} \\
& \hookrightarrow \underline{\text { term } *} \underline{\mathbf{n}} \\
& \hookrightarrow \\
& \hookrightarrow \underline{\text { term }} * \underline{\text { term }} \\
& \rightarrow \exp
\end{aligned}
$$

## Right derivation

$$
\begin{aligned}
\mathbf{n} * \mathbf{n} & \Leftarrow_{r} \quad \underline{\text { factor } * \mathbf{n}} \\
& \Leftarrow_{r} \quad \underline{\text { term }} * \mathbf{n} \\
& \Leftarrow_{r} \quad \text { term } * \text { factor } \\
& \Leftarrow_{r} \quad \underline{\text { term }} \\
& \Leftarrow_{r} \quad \underline{\text { exp }}
\end{aligned}
$$

## Underlined entity

- underlined part:
- different in reduction vs. derivation
- represents the "part being replaced"
* for derivation: right-most non-terminal
* for reduction: indicates the so-called handle (or part of it)
- consequently: all intermediate words are right-sentential forms


## Handle

Definition 4.5.1 (Handle). Assume $S \Rightarrow_{r}^{*} \alpha A w \Rightarrow_{r} \alpha \beta w$. A production $A \rightarrow \beta$ at position $k$ following $\alpha$ is a handle of $\alpha \beta w$ We write $\langle A \rightarrow \beta, k\rangle$ for such a handle.

Note:

- $w$ (right of a handle) contains only terminals
- $w$ : corresponds to the future input still to be parsed!
- $\alpha \beta$ will correspond to the stack content ( $\beta$ the part touched by reduction step).
- the $\Rightarrow_{r}$-derivation-step in reverse:
- one reduce-step in the LR-parser-machine
- adding (implicitly in the LR-machine) a new parent to children $\beta(=$ bottom-up!)
- "handle"-part $\beta$ can be empty $(=\boldsymbol{\epsilon})$


## Schematic picture of parser machine (again)



## General LR "parser machine" configuration

- Stack:
- contains: terminals + non-terminals $(+\boldsymbol{\$})$
- containing: what has been read already but not yet "processed"
- position on the "tape" (= token stream)
- represented here as word of terminals not yet read
- end of "rest of token stream": \$, as usual
- state of the machine
- in the following schematic illustrations: not yet part of the discussion
- later: part of the parser table, currently we explain without referring to the state of the parser-engine
- currently we assume: tree and rest of the input given
- the trick ultimately will be: how do achieve the same without that tree already given (just parsing left-to-right)


## Schematic run (reduction: from top to bottom)

| $\$$ | $\mathbf{t}_{1} \mathbf{t}_{2} \mathbf{t}_{3} \mathbf{t}_{4} \mathbf{t}_{5} \mathbf{t}_{6} \mathbf{t}_{7} \$$ |
| :--- | ---: |
| $\mathbf{t}_{2} \mathbf{t}_{3} \mathbf{t}_{4} \mathbf{t}_{5} \mathbf{t}_{6} \mathbf{t}_{7} \$$ |  |
| $\$ \mathbf{t}_{1}$ | $\mathbf{t}_{3} \mathbf{t}_{4} \mathbf{t}_{5} \mathbf{t}_{6} \mathbf{t}_{7} \$$ |
| $\$ \mathbf{t}_{1} \mathbf{t}_{2}$ | $\mathbf{t}_{4} \mathbf{t}_{5} \mathbf{t}_{6} \mathbf{t}_{7} \$$ |
| $\$ \mathbf{t}_{1} \mathbf{t}_{2} \mathbf{t}_{3}$ | $\mathbf{t}_{4} \mathbf{t}_{5} \mathbf{t}_{6} \mathbf{t}_{7} \$$ |
| $\$ \mathbf{t} \mathbf{t}_{1} B$ | $\mathbf{t}_{4} \mathbf{t}_{5} \mathbf{t}_{6} \mathbf{t}_{7} \$$ |
| $\$ A$ | $\mathbf{t}_{5} \mathbf{t}_{6} \mathbf{t}_{7} \$$ |
| $\$ A \mathbf{t}_{4} \mathbf{t}_{5}$ | $\mathbf{t}_{6} \mathbf{t}_{7} \$$ |
| $\$ A A$ | $\mathbf{t}_{6} \mathbf{t}_{7} \$$ |
| $\$ A A \mathbf{t}_{6}$ | $\mathbf{t}_{7} \$$ |
| $\$ A B$ | $\mathbf{t}_{7} \$$ |
| $\$ A B \mathbf{t}_{7}$ | $\$ S$ |
| $\$ S^{\prime}$ | $\$$ |
|  | $\$$ |

## 2 basic steps: shift and reduce

- parsers reads input and uses stack as intermediate storage
- so far: no mention of look-ahead (i.e., action depending on the value of the next token(s)), but that may play a role, as well


## Shift

Move the next input symbol (terminal) over to the top of the stack ("push")

## Reduce

Remove the symbols of the right-most subtree from the stack and replace it by the non-terminal at the root of the subtree (replace = "pop + push").

## Remarks

- easy to do if one has the parse tree already!
- reduce step: popped resp. pushed part $=$ right- resp. left-hand side of handle


## Example: LR parsing for addition (given the tree)

$$
\begin{aligned}
E^{\prime} & \rightarrow E \\
E & \rightarrow E+\mathbf{n} \mid \mathbf{n}
\end{aligned}
$$

## CST



## Run

|  | parse stack | input | action |
| :--- | :--- | ---: | :--- |
| 1 | $\$$ | $\mathbf{n + \mathbf { n } \$}$ | shift |
| 2 | $\$ \mathbf{n}$ | $+\mathbf{n} \$$ | red: $E \rightarrow \mathbf{n}$ |
| 3 | $\$ E$ | $+\mathbf{n} \$$ | shift |
| 4 | $\$ E+$ | $\mathbf{n} \$$ | shift |
| 5 | $\$ E+\mathbf{n}$ | $\$$ | reduce $E \rightarrow E+\mathbf{n}$ |
| 6 | $\$ E$ | $\$$ | red.: $E^{\prime} \rightarrow E$ |
| 7 | $\$ E^{\prime}$ | $\mathbf{\$}$ | accept |

note: line 3 vs line $6!$; both contain $E$ on top of stack

## (right) derivation: reduce-steps "in reverse"

$$
\underline{E^{\prime}} \Rightarrow \underline{E} \Rightarrow \underline{E}+\mathbf{n} \Rightarrow \mathbf{n}+\mathbf{n}
$$

## Example with $\epsilon$-transitions: parentheses

$$
\begin{aligned}
S^{\prime} & \rightarrow S \\
S & \rightarrow(S) S \mid \epsilon
\end{aligned}
$$

side remark: unlike previous grammar, here:

- production with two non-terminals in the right
$\Rightarrow$ difference between left-most and right-most derivations (and mixed ones)


## Parentheses: tree, run, and right-most derivation

CST


## Run

|  | parse stack | input | action |
| :--- | :--- | ---: | :--- |
| 1 | $\$$ | ()$\$$ | shift |
| 2 | $\$($ | $) \$$ | reduce $S \rightarrow \boldsymbol{\epsilon}$ |
| 3 | $\$(S$ | $) \$$ | shift |
| 4 | $\$(S)$ | $\$$ | reduce $S \rightarrow \boldsymbol{\epsilon}$ |
| 5 | $\$(S) S$ | $\$$ | reduce $S \rightarrow(S) S$ |
| 6 | $\$ S$ | $\$$ | reduce $S^{\prime} \rightarrow S$ |
| 7 | $\$ S^{\prime}$ | $\$$ | accept |

Note: the 2 reduction steps for the $\boldsymbol{\epsilon}$ productions

Right-most derivation and right-sentential forms

$$
\underline{S^{\prime}} \Rightarrow_{r} \underline{S} \Rightarrow_{r}(S) \underline{S} \Rightarrow_{r}(\underline{S}) \Rightarrow_{r}()
$$

## Right-sentential forms \& the stack

- sentential form: word from $\Sigma^{*}$ derivable from start-symbol

Right-sentential form: right-most derivation

$$
S \Rightarrow_{r}^{*} \alpha
$$

## Explanation

- right-sentential forms:
- part of the "run"

Run

- but: split between stack and input

|  | parse stack | input | action |
| :--- | :--- | ---: | :--- |
| 1 | $\$$ | $\mathbf{n + \mathbf { n } \$}$ | shift |
| 2 | $\$ \mathbf{n}$ | $+\mathbf{n} \$$ | red:. $E \rightarrow \mathbf{n}$ |
| 3 | $\$ E$ | $\mathbf{+ n \$}$ | shift |
| 4 | $\$ E+$ | $\mathbf{n} \$$ | shift |
| 5 | $\$ E+\mathbf{n}$ | $\$$ | reduce $E \rightarrow E+\mathbf{n}$ |
| 6 | $\$ E$ | $\$$ | red.: $E^{\prime} \rightarrow E$ |
| 7 | $\$ E^{\prime}$ | $\mathbf{\$}$ | accept |

## Derivation and split

$$
\begin{gathered}
\underline{E}^{\prime} \Rightarrow_{r} \underline{E} \Rightarrow_{r} \underline{E}+\mathbf{n} \Rightarrow_{r} \mathbf{n}+\mathbf{n} \\
\underline{\mathbf{n}}+\mathbf{n} \hookrightarrow \underline{E+\mathbf{n}} \hookrightarrow \underline{E} \hookrightarrow E^{\prime}
\end{gathered}
$$

## Rest

$$
\underline{E^{\prime}} \Rightarrow_{r} \underline{E} \Rightarrow_{r} \underline{E}+\mathbf{n}\|\sim \underline{E}+\| \mathbf{n} \sim \underline{E}\left\|+\mathbf{n} \Rightarrow_{r} \mathbf{n}\right\|+\mathbf{n} \sim \| \mathbf{n}+\mathbf{n}
$$

## Viable prefixes of right-sentential forms and handles

- right-sentential form: $E+\mathbf{n}$
- viable prefixes of RSF
- prefixes of that RSF on the stack
- here: 3 viable prefixes of that RSF: $E, E+, E+\mathbf{n}$
- handle: remember the definition earlier
- here: for instance in the sentential form $\mathbf{n}+\mathbf{n}$
- handle is production $E \rightarrow \mathbf{n}$ on the left occurrence of $\mathbf{n}$ in $\mathbf{n}+\mathbf{n}$ (let's write $\mathbf{n}_{1}+\mathbf{n}_{2}$ for now)
- note: in the stack machine:
* the left $\mathbf{n}_{1}$ on the stack
$*$ rest $+\mathbf{n}_{2}$ on the input (unread, because of $\operatorname{LR}(0)$ )
- if the parser engine detects handle $\mathbf{n}_{1}$ on the stack, it does a reduce-step
- However (later): reaction depends on current state of the parser engine


## A typical situation during LR-parsing



## General design for an LR-engine

- some ingredients clarified up-to now:
- bottom-up tree building as reverse right-most derivation,
- stack vs. input,
- shift and reduce steps
- however: 1 ingredient missing: next step of the engine may depend on
- top of the stack ("handle")
- look ahead on the input (but not for LL(0))
- and: current state of the machine (same stack-content, but different reactions at different stages of the parse)


## But what are the states of an LR-parser?

## General idea:

Construct an NFA (and ultimately DFA) which works on the stack (not the input). The alphabet consists of terminals and non-terminals $\Sigma_{T} \cup \Sigma_{N}$. The language

$$
\operatorname{Stacks}(G)=\left\{\alpha \left\lvert\, \begin{array}{l}
\alpha \text { may occur on the stack during } \\
\text { LR-parsing of a sentence in } \mathcal{L}(G)
\end{array}\right.\right\}
$$

is regular!

## LR(0) parsing as easy pre-stage

- $\operatorname{LR}(0)$ : in practice too simple, but easy conceptual step towards $\operatorname{LR}(1)$, SLR(1) etc.
- LR(1): in practice good enough, $\operatorname{LR}(\mathrm{k})$ not used for $k>1$


## LR(0) item

production with specific "parser position" . in its right-hand side

## Rest

- . is, of course, a "meta-symbol" (not part of the production)
- For instance: production $A \rightarrow \alpha$, where $\alpha=\beta \gamma$, then


## LR(0) item

$$
A \rightarrow \beta \cdot \gamma
$$

## complete and initial items

- item with dot at the beginning: initial item
- item with dot at the end: complete item


## Example: items of LR-grammar

Grammar for parentheses: 3 productions

$$
\begin{aligned}
S^{\prime} & \rightarrow S \\
S & \rightarrow(S) S \mid \epsilon
\end{aligned}
$$

## 8 items

$$
\begin{array}{lll}
S^{\prime} & \rightarrow . S \\
S^{\prime} & \rightarrow & S . \\
S & \rightarrow & .(S) S \\
S & \rightarrow & (. S) S \\
S & \rightarrow & (S .) S \\
S & \rightarrow & (S) . S \\
S & \rightarrow & (S) S . \\
S & \rightarrow & .
\end{array}
$$

## Remarks

- note: $S \rightarrow \boldsymbol{\epsilon}$ gives $S \rightarrow$. as item (not $S \rightarrow \boldsymbol{\epsilon}$. and $S \rightarrow \boldsymbol{\epsilon}$ )
- side remark: see later, it will turn out: grammar not $L R(0)$


## Another example: items for addition grammar

## Grammar for addition: 3 productions

$$
\begin{aligned}
E^{\prime} & \rightarrow E \\
E & \rightarrow E+\mathbf{n} \mid \mathbf{n}
\end{aligned}
$$

(coincidentally also:) 8 items

$$
\begin{array}{ll}
E^{\prime} & \rightarrow \\
E^{\prime} & \rightarrow \\
E & \\
E & \rightarrow \\
E+\mathbf{n} \\
E & \rightarrow E .+\mathbf{n} \\
E & \rightarrow E+. \mathbf{n} \\
E & \rightarrow E+\mathbf{n} . \\
E & \rightarrow \mathbf{n} \\
E & \rightarrow \mathbf{n} .
\end{array}
$$

Remarks: no LR(0)

- also here: it will turn out: not $L R(0)$ grammar


## Finite automata of items

- general set-up: items as states in an automaton
- automaton: "operates" not on the input, but the stack
- automaton either
- first NFA, afterwards made deterministic (subset construction), or
- directly DFA


## States formed of sets of items

In a state marked by/containing item

$$
A \rightarrow \beta \cdot \gamma
$$

- $\beta$ on the stack
- $\gamma$ : to be treated next (terminals on the input, but can contain also nonterminals)


## State transitions of the NFA

- $X \in \Sigma$
- two kind of transitions


## Terminal or non-terminal

$$
A \rightarrow \alpha . X \eta \xrightarrow{X} A \rightarrow \alpha X . \eta
$$

## Epsilon ( $X$ : non-terminal here)

$$
A \rightarrow \alpha \cdot X \eta \xrightarrow{\epsilon} X \rightarrow . \beta
$$

## Explanation

- In case $X=$ terminal (i.e. token) $=$
- the left step corresponds to a shift step ${ }^{14}$
- for non-terminals (see next slide):

[^11]- interpretation more complex: non-terminals are officially never on the input
- note: in that case, item $A \rightarrow \alpha \cdot X \eta$ has two (kinds of) outgoing transitions


## Transitions for non-terminals and $\epsilon$

- so far: we never pushed a non-terminal from the input to the stack, we replace in a reduce-step the right-hand side by a left-hand side
- however: the replacement in a reduce steps can be seen as

1. pop right-hand side off the stack,
2. instead, "assume" corresponding non-terminal on input \&
3. eat the non-terminal an push it on the stack.

- two kind of transitions

1. the $\boldsymbol{\epsilon}$-transition correspond to the "pop" half
2. that $X$ transition (for non-terminals) corresponds to that "eat-andpush" part

- assume production $X \rightarrow \beta$ and initial item $X \rightarrow . \beta$


## Terminal or non-terminal



## Epsilon ( $X$ : non-terminal here)

Given production $X \rightarrow \beta$ :


## Initial and final states

## initial states:

- we make our lives easier
- we assume (as said): one extra start symbol say $S^{\prime}$ (augmented grammar)
$\Rightarrow$ initial item $S^{\prime} \rightarrow . S$ as (only) initial state


## final states:

- NFA has a specific task, "scanning" the stack, not scanning the input
- acceptance condition of the overall machine: a bit more complex
- input must be empty
- stack must be empty except the (new) start symbol
- NFA has a word to say about acceptence
* but not in form of being in an accepting state
* so: no accepting states
* but: accepting action (see later)


## NFA: parentheses



## Remarks on the NFA

- colors for illustration
- "reddish": complete items
- "blueish": init-item (less important)
- "violet'tish": both
- init-items
- one per production of the grammar
- that's where the $\boldsymbol{\epsilon}$-transistions go into, but
- with exception of the initial state (with $S^{\prime}$-production)
no outgoing edges from the complete items


## NFA: addition



## Determinizing: from NFA to DFA

- standard subset-construction ${ }^{15}$
- states then contains sets of items
- especially important: $\epsilon$-closure
- also: direct construction of the DFA possible


## DFA: parentheses



[^12]
## DFA: addition

## Direct construction of an LR(0)-DFA

- quite easy: simply build in the closure already


## $\epsilon$-closure

- if $A \rightarrow \alpha . B \gamma$ is an item in a state where
- there are productions $B \rightarrow \beta_{1} \mid \beta_{2} \ldots \Rightarrow$
- add items $B \rightarrow . \beta_{1}, B \rightarrow . \beta_{2} \ldots$ to the state
- continue that process, until saturation


## initial state

$\rightarrow \begin{array}{r}\begin{array}{r}S^{\prime} \rightarrow . S \\ \text { plus closure }\end{array} \\ \hline\end{array}$

## Direct DFA construction: transitions

$$
\begin{array}{|ll|}
\hline \ldots & \\
A_{1} \rightarrow & \alpha_{1} \cdot X \beta_{1} \\
\ldots & \\
A_{2} \rightarrow & \alpha_{2} \cdot X \beta_{2} \\
\ldots & \\
\hline X & \begin{array}{rr}
A_{1} \rightarrow & \alpha_{1} X \cdot \beta_{1} \\
A_{2} \rightarrow & \alpha_{2} X \cdot \beta_{2} \\
& \text { plus closure }
\end{array} \\
\end{array}
$$

- $X$ : terminal or non-terminal, both treated uniformely
- All items of the form $A \rightarrow \alpha . X \beta$ must be included in the post-state
- and all others (indicated by "...") in the pre-state: not included
- re-check the previous examples: outcome is the same


## How does the DFA do the shift/reduce and the rest?

- we have seen: bottom-up parse tree generation
- we have seen: shift-reduce and the stack vs. input
- we have seen: the construction of the DFA


## But: how does it hang together?

We need to interpret the "set-of-item-states" in the light of the stack content and figure out the reaction in terms of

- transitions in the automaton
- stack manipulations (shift/reduce)
- acceptance
- input (apart from shifting) not relevant when doing $\operatorname{LR}(0)$


## Determinism

and the reaction better be uniquely determined ....

## Stack contents and state of the automaton

- remember: at any given intermediate configuration of stack/input in a run

1. stack contains words from $\Sigma^{*}$
2. DFA operates deterministically on such words

- the stack contains the "past": read input (potentially partially reduced)
- when feeding that "past" on the stack into the automaton
- starting with the oldest symbol (not in a LIFO manner)
- starting with the DFA's initial state
$\Rightarrow$ stack content determines state of the DFA
- actually: each prefix also determines uniquely a state
- top state:
- state after the complete stack content
- corresponds to the current state of the stack-machine
$\Rightarrow$ crucial when determining reaction


## State transition allowing a shift

- assume: top-state (= current state) contains item

$$
X \rightarrow \alpha \cdot \mathbf{a} \beta
$$

- construction thus has transition as follows

- shift is possible
- if shift is the correct operation and $\mathbf{a}$ is terminal symbol corresponding to the current token: state afterwards $=t$


## State transition: analogous for non-terminals

## Production

$$
X \rightarrow \alpha . B \beta
$$

## Transition



## Explanation

- same as before, now with non-terminal $B$
- note: we never read non-term from input
- not officially called a shift
- corresponds to the reaction followed by a reduce step, it's not the reduce step itself
- think of it as folllows: reduce and subsequent step
- not as: replace on top of the stack the handle (right-hand side) by non-term $B$,
- but instead as:

1. pop off the handle from the top of the stack
2. put the non-term $B$ "back onto the input" (corresponding to the above state $s$ )
3. eat the $B$ and shift it to the stack

- later: a goto reaction in the parse table


## State (not transition) where a reduce is possible

- remember: complete items (those with a dot . at the end)
- assume top state $s$ containing complete item $A \rightarrow \gamma$.

- a complete right-hand side ("handle") $\gamma$ on the stack and thus done
- may be replaced by right-hand side $A$
$\Rightarrow$ reduce step
- builds up (implicitly) new parent node $A$ in the bottom-up procedure
- Note: $A$ on top of the stack instead of $\gamma:{ }^{16}$
- new top state!
- remember the "goto-transition" (shift of a non-terminal)


## Remarks: states, transitions, and reduce steps

- ignoring the $\boldsymbol{\epsilon}$-transitions (for the NFA)
- there are 2 "kinds" of transitions in the DFA

1. terminals: reals shifts
2. non-terminals: "following a reduce step"

## No edges to represent (all of) a reduce step!

- if a reduce happens, parser engine changes state!
- however: this state change is not represented by a transition in the DFA (or NFA for that matter)
- especially not by outgoing errors of completed items

[^13]
## Rest

- if the (rhs of the) handle is removed from top stack: $\Rightarrow$
- "go back to the (top) state before that handle had been added": no edge for that
- later: stack notation simply remembers the state as part of its configuration


## Example: LR parsing for addition (given the tree)

$$
\begin{array}{rl|l}
E^{\prime} & \rightarrow & E \\
E & \rightarrow & E+\mathbf{n} \mid
\end{array}
$$

## CST



## Run

|  | parse stack | input | action |
| :--- | :--- | ---: | :--- |
| 1 | $\$$ | $\mathbf{n + \mathbf { n } \$}$ | shift |
| 2 | $\$ \mathbf{n}$ | $+\mathbf{n} \$$ | red:. $E \rightarrow \mathbf{n}$ |
| 3 | $\$ E$ | $+\mathbf{n} \$$ | shift |
| 4 | $\$ E+$ | $\mathbf{n} \$$ | shift |
| 5 | $\$ E+\mathbf{n}$ | $\$$ | reduce $E \rightarrow E+\mathbf{n}$ |
| 6 | $\$ E$ | $\$$ | red.: $E^{\prime} \rightarrow E$ |
| 7 | $\$ E^{\prime}$ | $\mathbf{\$}$ | accept |

note: line 3 vs line $6!$; both contain $E$ on top of stack

## DFA of addition example



- note line 3 vs. line 6
- both stacks $=E \Rightarrow$ same (top) state in the DFA (state 1)


## LR(0) grammars

## LR(0) grammar

The top-state alone determines the next step.

## No LR(0) here

- especially: no shift/reduce conflicts in the form shown
- thus: previous number-grammar is not $L R(0)$


## Simple parentheses

$$
A \rightarrow(A) \mid \mathbf{a}
$$

## DFA



## Remaks

- for shift:
- many shift transitions in 1 state allowed
- shift counts as one action (including "shifts" on non-terms)
- but for reduction: also the production must be clear


## Simple parentheses is $\operatorname{LR}(0)$

## DFA



## Remaks

| state | possible action |
| ---: | :--- |
| 0 | only shift |
| 1 | only red: $\left(\right.$ with $\left.A^{\prime} \rightarrow A\right)$ |
| 2 | only red: $($ with $A \rightarrow \mathbf{a})$ |
| 3 | only shift |
| 4 | only shift |
| 5 | only red $($ with $A \rightarrow \mathbf{( A )})$ |

## NFA for simple parentheses (bonus slide)



## Parsing table for an LR(0) grammar

- table structure: slightly different for $\operatorname{SLR}(1), \operatorname{LALR}(1)$, and $\operatorname{LR}(1)$ (see later)
- note: the "goto" part: "shift" on non-terminals (only 1 non-terminal $A$ here)
- corresponding to the $A$-labelled transitions
- see the parser run on the next slide

| state | action | rule | input |  |  | goto |
| :---: | :--- | :--- | :--- | :---: | :---: | :---: |
|  |  |  | $\mathbf{(}$ | $\mathbf{a}$ | $)$ | $A$ |
| 0 | shift |  | 3 | 2 |  | 1 |
| 1 | reduce | $A^{\prime} \rightarrow A$ |  |  |  |  |
| 2 | reduce | $A \rightarrow \mathbf{a}$ |  |  |  |  |
| 3 | shift |  | 3 | 2 |  | 4 |
| 4 | shift |  |  |  | 5 |  |
| 5 | reduce | $A \rightarrow \mathbf{( A )}$ |  |  |  |  |

## Parsing of ( (a))

| stage | parsing stack | input | action |
| :---: | :---: | :---: | :---: |
| 1 | \$0 | ( (a) ) \$ | shift |
| 2 | \$0 ${ }_{3}$ | (a) ) \$ | shift |
| 3 | $\left.\$_{0}\right)_{3}\left({ }_{3}\right.$ | a )) \$ | shift |
| 4 | $\$_{0}(3)_{3}\left({ }_{3} \mathrm{a}_{2}\right.$ | )) \$ | reduce $A \rightarrow \mathbf{a}$ |
| 5 | $\$_{0}\left({ }_{3}\left({ }_{3} A_{4}\right.\right.$ | )) \$ | shift |
| 6 | $\$_{0}\left({ }_{3}\left({ }_{3} A_{4}\right)_{5}\right.$ | ) \$ | reduce $A \rightarrow(A)$ |
| 7 | $\$_{0}\left({ }_{3} A_{4}\right.$ | ) \$ | shift |
| 8 | $\$_{0}\left({ }_{3} A_{4}\right)_{5}$ | \$ | reduce $A \rightarrow(A)$ |
| 9 | $\$_{0} A_{1}$ | \$ | accept |

- note: stack on the left
- contains top state information
- in particular: overall top state on the right-most end
- note also: accept action
- reduce wrt. to $A^{\prime} \rightarrow A$ and
- empty stack (apart from $\$, A$, and the state annotation)
$\Rightarrow$ accept


## Parse tree of the parse



- As said:
- the reduction "contains" the parse-tree
- reduction: builds it bottom up
- reduction in reverse: contains a right-most derivation (which is "topdown")
- accept action: corresponds to the parent-child edge $A^{\prime} \rightarrow A$ of the tree


## Parsing of erroneous input

- empty slots it the table: "errors"

| stage | parsing stack | input | action |
| :---: | :---: | :---: | :---: |
| 1 | \$0 | ( a ) \$ | shift |
| 2 | \$0 ${ }_{3}$ | ( a ) \$ | shift |
| 3 | $\left.\$_{0}\right)_{3}\left({ }_{3}\right.$ | a) \$ | shift |
| 4 | $\$_{0}\left({ }_{3}\left({ }_{3} \mathbf{a}_{2}\right.\right.$ | ) \$ | reduce $A \rightarrow \mathbf{a}$ |
| 5 | $\$_{0}\left({ }_{3}\left({ }_{3} A_{4}\right.\right.$ | ) \$ | shift |
| 6 | $\$_{0}\left({ }_{3}\left({ }_{3} A_{4}\right)_{5}\right.$ | \$ | reduce $A \rightarrow(A)$ |
| 7 | \$0 ${ }_{3} A_{4}$ | \$ | ???? |


| stage | parsing stack | input | action |
| :--- | :--- | ---: | :--- |
| 1 | $\$_{0}$ | () \$ | shift |
| 2 | $\$_{0}\left(_{3}\right.$ | $) \$$ | ????? |

## Invariant

important general invariant for LR-parsing: never shift something "illegal" onto the stack

## LR(0) parsing algo, given DFA

let $s$ be the current state, on top of the parse stack

1. $s$ contains $A \rightarrow \alpha . X \beta$, where $X$ is a terminal

- shift $X$ from input to top of stack. the new state pushed on the stack: state $t$ where $s \xrightarrow{X} t$
- else: if $s$ does not have such a transition: error

2. $s$ contains a complete item (say $A \rightarrow \gamma$.): reduce by rule $A \rightarrow \gamma$ :

- A reduction by $S^{\prime} \rightarrow S$ : accept, if input is empty; else error:
- else:
pop: remove $\gamma$ (including "its" states from the stack)
back up: assume to be in state $u$ which is now head state
push: push $A$ to the stack, new head state $t$ where $u \xrightarrow{A} t$ (in the DFA)


## $\operatorname{LR}(0)$ parsing algo remarks

- in [6]: slightly differently formulated
- instead of requiring (in the first case):
- push state $t$ were $s \xrightarrow{X} t$ or similar, book formulates
- push state containing item $A \rightarrow \alpha \cdot X \beta$
- analogous in the second case
- algo (= deterministic) only if $\mathrm{LR}(0)$ grammar
- in particular: cannot have states with complete item and item of form $A \alpha . X \beta$ (otherwise shift-reduce conflict)
- cannot have states with two $X$-successors (known as reduce-reduce conflict)


## DFA parentheses again: $\operatorname{LR}(0)$ ?

$$
\begin{aligned}
S^{\prime} & \rightarrow S \\
S & \rightarrow(S) S \mid \epsilon
\end{aligned}
$$



Look at states 0,2 , and 4

## DFA addition again: LR(0)?



How to make a decision in state 1?

## Decision? If only we knew the ultimate tree already ...

... especially the parts still to come

## CST



## Run

|  | parse stack | input | action |
| :--- | :--- | ---: | :--- |
| 1 | $\$$ | $\mathbf{n + \mathbf { n } \$}$ | shift |
| 2 | $\$ \mathbf{n}$ | $+\mathbf{n} \$$ | red: $E \rightarrow \mathbf{n}$ |
| 3 | $\$ E$ | $+\mathbf{n} \$$ | shift |
| 4 | $\$ E+$ | $\mathbf{n} \$$ | shift |
| 5 | $\$ E+\mathbf{n}$ | $\$$ | reduce $E \rightarrow E+\mathbf{n}$ |
| 6 | $\$ E$ | $\$$ | red.: $E^{\prime} \rightarrow E$ |
| 7 | $\$ E^{\prime}$ | $\$$ | accept |

## Explanation

- current stack: represents already known part of the parse tree
- since we don't have the future parts of the tree yet:
$\Rightarrow$ look-ahead on the input (without building the tree as yet)
- LR(1) and its variants: look-ahead of 1 (= look at the current type of the token)


## Addition grammar (again)



- How to make a decision in state 1? (here: shift vs. reduce)
$\Rightarrow$ look at the next input symbol (in the token)


## One look-ahead

- $\operatorname{LR}(0)$, not useful, too weak
- add look-ahead, here of 1 input symbol (= token)
- different variations of that idea (with slight difference in expresiveness)
- tables slightly changed (compared to $\operatorname{LR}(0)$ )
- but: still can use the $\mathrm{LR}(0)$-DFAs


## Resolving $\operatorname{LR}(0)$ reduce/reduce conflicts

LR(0) reduce/reduce conflict:

$$
\begin{array}{|r}
\hline \ldots \\
A \rightarrow \alpha . \\
\ldots \\
B \rightarrow \beta .
\end{array}
$$

## $\operatorname{SLR}(1)$ solution: use follow sets of non-terms

- If Follow $(A) \cap \operatorname{Follow}(B)=\varnothing$
$\Rightarrow$ next symbol (in token) decides!
- if token $\in$ Follow $(\alpha)$ then reduce using $A \rightarrow \alpha$
- if token $\in \operatorname{Follow}(\beta)$ then reduce using $B \rightarrow \beta$
$\qquad$


## Resolving LR(0) shift/reduce conflicts

LR(0) shift/reduce conflict:


SLR(1) solution: again: use follow sets of non-terms

- If $\operatorname{Follow}(A) \cap\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \ldots\right\}=\varnothing$
$\Rightarrow$ next symbol (in token) decides!
- if token $\in \operatorname{Follow}(A)$ then reduce using $A \rightarrow \alpha$, non-terminal $A$ determines new top state
- if token $\in\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \ldots\right\}$ then shift. Input symbol $\mathbf{b}_{\mathbf{i}}$ determines new top state
- ...


## SLR(1) requirement on states (as in the book)

- formulated as conditions on the states (of $\operatorname{LR}(0)$-items)
- given the LR(0)-item DFA as defined


## SLR(1) condition, on all states $s$

1. For any item $A \rightarrow \alpha \cdot X \beta$ in $s$ with $X$ a terminal, there is no complete item $B \rightarrow \gamma$. in $s$ with $X \in \operatorname{Follow(B)}$.
2. For any two complete items $A \rightarrow \alpha$. and $B \rightarrow \beta$. in $s$, $\operatorname{Follow}(\alpha) \cap \operatorname{Follow}(\beta)=$ $\varnothing$

## Revisit addition one more time

- $\operatorname{Follow}\left(E^{\prime}\right)=\{\$\}$
$\Rightarrow \quad$ - shift for +
- reduce with $E^{\prime} \rightarrow E$ for $\$$ (which corresponds to accept, in case the input is empty)


## SLR(1) algo

let $s$ be the current state, on top of the parse stack

1. $s$ contains $A \rightarrow \alpha \cdot X \beta$, where $X$ is a terminal and $X$ is the next token on the input, then

- shift $X$ from input to top of stack. the new state pushed on the stack: state $t$ where $s \xrightarrow{X} t^{17}$

2. $s$ contains a complete item (say $A \rightarrow \gamma$.) and the next token in the input is in $\operatorname{Follow}(A)$ : reduce by rule $A \rightarrow \gamma$ :

- A reduction by $S^{\prime} \rightarrow S:$ accept, if input is empty ${ }^{18}$
- else:
pop: remove $\gamma$ (including "its" states from the stack)
back up: assume to be in state $u$ which is now head state
push: push $A$ to the stack, new head state $t$ where $u \xrightarrow{A} t$

3. if next token is such that neither 1. or 2. applies: error

## Repeat frame: given DFA

## Parsing table for SLR(1)



[^14]| state | input |  |  | goto |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{n}$ | + | $\$$ | $E$ |
| 0 | $s: 2$ |  |  | 1 |
| 1 |  | $s: 3$ | accept |  |
| 2 |  | $r:(E \rightarrow \mathbf{n})$ |  |  |
| 3 | $s: 4$ |  |  |  |
| 4 |  | $r:(E \rightarrow E+\mathbf{n})$ | $r:(E \rightarrow E+\mathbf{n})$ |  |

for state 2 and 4: $\mathbf{n} \notin$ Follow $(E)$

## Parsing table: remarks

- $\operatorname{SLR}(1)$ parsing table: rather similar-looking to the $\mathrm{LR}(0)$ one
- differences: reflect the differences in: LR(0)-algo vs. SLR(1)-algo
- same number of rows in the table ( $=$ same number of states in the DFA)
- only: colums "arranged differently
- LR(0): each state uniformely: either shift or else reduce (with given rule)
- now: non-uniform, dependent on the input. But that does not apply to the previous example. We'll see that in the next, then.
- it should be obvious:
- SLR(1) may resolve $\mathrm{LR}(0)$ conflicts
- but: if the follow-set conditions are not met: SLR(1) shift-shift and/or SRL(1) shift-reduce conflicts
- would result in non-unique entries in SRL(1)-table ${ }^{19}$


## SLR(1) parser run (= "reduction")

| state | input |  |  | goto |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{n}$ | + | $\$$ | $E$ |
| 0 | $s: 2$ |  |  | 1 |
| 1 |  | $s: 3$ | accept |  |
| 2 |  | $r:(E \rightarrow \mathbf{n})$ |  |  |
| 3 | $s: 4$ |  |  |  |
| 4 |  | $r:(E \rightarrow E+\mathbf{n})$ | $r:(E \rightarrow E+\mathbf{n})$ |  |

[^15]| stage | parsing stack | input | action |
| :---: | :---: | :---: | :---: |
| 1 | $\$_{0}$ | $\mathbf{n + n + n \$ ~}$ | shift: 2 |
| 2 | $\$_{0} \mathbf{n}_{2}$ | + $\mathrm{n}+\mathrm{n}$ \$ | reduce: $E \rightarrow \mathbf{n}$ |
| 3 | $\$_{0} E_{1}$ | + $\mathrm{n}+\mathrm{n}$ \$ | shift: 3 |
| 4 | $\$_{0} E_{1}+{ }_{3}$ | $\mathbf{n + n \$}$ | shift: 4 |
| 5 | $\$_{0} E_{1}+{ }_{3} \mathbf{n}_{4}$ | + n \$ | reduce: $E \rightarrow E+\mathbf{n}$ |
| 6 | $\$_{0} E_{1}$ | n \$ | shift 3 |
| 7 | $\$_{0} E_{1}+{ }_{3}$ | n\$ | shift 4 |
| 8 | $\$_{0} E_{1}+{ }_{3} \mathbf{n}_{4}$ | \$ | reduce: $E \rightarrow E+\mathbf{n}$ |
| 9 | $\$_{0} E_{1}$ | \$ | accept |

## Corresponding parse tree



## Revisit the parentheses again: SLR(1)?

## Grammar: parentheses (from before)

$$
\begin{aligned}
S^{\prime} & \rightarrow S \\
S & \rightarrow(S) S \mid \boldsymbol{\epsilon}
\end{aligned}
$$

## Follow set

Follow $(S)=\{ ), \$\}$

## DFA



## SLR(1) parse table

| state | input |  |  | goto |
| :---: | :---: | :---: | :---: | :---: |
|  | $($ | $\boldsymbol{)}$ | $\mathbf{\$}$ | $S$ |
| 0 | $s: 2$ | $r: S \rightarrow \boldsymbol{\epsilon}$ | $r: S \rightarrow \boldsymbol{\epsilon}$ | 1 |
| 1 |  |  | accept |  |
| 2 | $s: 2$ | $r: S \rightarrow \boldsymbol{\epsilon}$ | $r: S \rightarrow \boldsymbol{\epsilon}$ | 3 |
| 3 |  | $s: 4$ |  |  |
| 4 | $s: 2$ | $r: S \rightarrow \boldsymbol{\epsilon}$ | $r: S \rightarrow \boldsymbol{\epsilon}$ | 5 |
| 5 |  | $r: S \rightarrow(S) S$ | $r: S \rightarrow(S) S$ |  |

Parentheses: $\operatorname{SLR}(1)$ parser run (= "reduction")

| state | input |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $($ | $\boldsymbol{)}$ | goto |  |
| 0 | $s: 2$ | $r: S \rightarrow \boldsymbol{\epsilon}$ | $r: S \rightarrow \boldsymbol{\epsilon}$ | $S$ |
| 1 |  |  | accept |  |
| 2 | $s: 2$ | $r: S \rightarrow \boldsymbol{\epsilon}$ | $r: S \rightarrow \boldsymbol{\epsilon}$ | 3 |
| 3 |  | $s: 4$ |  |  |
| 4 | $s: 2$ | $r: S \rightarrow \boldsymbol{\epsilon}$ | $r: S \rightarrow \boldsymbol{\epsilon}$ | 5 |
| 5 |  | $r: S \rightarrow \mathbf{( S ) S}$ | $r: S \rightarrow \mathbf{( S ) S}$ |  |


| stage | parsing stack | input | action |
| :---: | :---: | :---: | :---: |
| 1 | \$0 | () () \$ | shift: 2 |
| 2 | \$0 ${ }_{2}$ | ) ()\$ | reduce: $S \rightarrow \boldsymbol{\epsilon}$ |
| 3 | $\$_{0}\left({ }_{2} S_{3}\right.$ | ) ()\$ | shift: 4 |
| 4 | $\$_{0}\left({ }_{2} S_{3}\right)_{4}$ | ()\$ | shift: 2 |
| 5 | $\$_{0}\left({ }_{2} S_{3}\right)_{4}\left({ }_{2}\right.$ | ) \$ | reduce: $S \rightarrow \boldsymbol{\epsilon}$ |
| 6 | $\$_{0}\left({ }_{2} S_{3}\right)_{4}\left({ }_{2} S_{3}\right.$ | ) \$ | shift: 4 |
| 7 | $\$_{0}\left({ }_{2} S_{3}\right)_{4}\left({ }_{2} S_{3}\right)_{4}$ | \$ | reduce: $S \rightarrow \boldsymbol{\epsilon}$ |
| 8 | $\$_{0}\left({ }_{2} S_{3}\right)_{4}\left({ }_{2} S_{3}\right)_{4} S_{5}$ | \$ | reduce: $S \rightarrow(S) S$ |
| 9 | $\$_{0}\left({ }_{2} S_{3}\right)_{4} S_{5}$ | \$ | reduce: $S \rightarrow(S) S$ |
| 10 | $\$_{0} S_{1}$ | \$ | accept |

## Remarks

Note how the stack grows, and would continue to grow if the sequence of () would continue. That's characteristic from right-recursive formulation of rules, and may constitute a problem for LR-parsing (stack-overflow).

## SLR(k)

- in principle: straightforward: $k$ look-ahead, instead of 1
- rarely used in practice, using First ${ }_{k}$ and Follow $_{k}$ instead of the $k=1$ versions
- tables grow exponentially with $k$ !

As with other parsing algorithms, the SLR(1) parsing algorithm can be extended to $\operatorname{SLR}(k)$ parsing where parsing actions are based on $k \geq 1$ symbols of lookahead. Using the sets First ${ }_{k}$ and Follow ${ }_{k}$ as defined in the previous chapter, an $\operatorname{SLR}(k)$ parser uses the following two rules:

1. If state $s$ contains an item of the form $A \rightarrow \alpha \cdot X \beta$ ( $X$ a token), and $X w \in$ $\operatorname{First}_{k}(X \beta)$ are the next $k$ tokens in the input string, then the action is to shift the current input token onto the stack, and the new state to be pushed on the stack is the state containing the item $A \rightarrow \alpha X . \beta$.
2. If state $s$ contains the complete item $A \rightarrow \alpha$., and $w \in \operatorname{Follow}_{k}(A)$ are the next $k$ tokens in the input string, then the action is to reduce by the rule $A \rightarrow \alpha$.
$\operatorname{SLR}(k)$ parsing is more powerful than $\operatorname{SLR}(1)$ parsing when $k>1$, but at a substantial cost in complexity, since the parsing table grows exponentially in size with $k$.

## Ambiguity \& LR-parsing

- in principle: $\mathrm{LR}(\mathrm{k}$ ) (and $\mathrm{LL}(\mathrm{k})$ ) grammars: unambiguous
- definition/construction: free of shift/reduce and reduce/reduce conflict (given the chosen level of look-ahead)
- However: ambiguous grammar tolerable, if (remaining) conflicts can be solved "meaningfully" otherwise:


## Additional means of disambiguation:

1. by specifying associativity / precedence "outside" the grammar
2. by "living with the fact" that LR parser (commonly) prioritizes shifts over reduces

## Rest

- for the second point ("let the parser decide according to its preferences"):
- use sparingly and cautiously
- typical example: dangling-else
- even if parsers makes a decision, programmar may or may not "understand intuitively" the resulting parse tree (and thus AST)
- grammar with many S/R-conflicts: go back to the drawing board


## Example of an ambiguous grammar

$$
\begin{aligned}
\text { stmt } & \rightarrow \text { if-stmt | other } \\
\text { if-stmt } & \rightarrow \text { if }(\exp ) \text { stmt } \\
& \mid \text { if }(\text { exp }) \text { stmt } \text { else } \text { stm } t \\
\exp & \rightarrow \mathbf{0} \mid \mathbf{1}
\end{aligned}
$$

In the following, $E$ for exp, etc.

## Simplified conditionals

## Simplified "schematic" if-then-else

$$
\begin{aligned}
S & \rightarrow I \mid \text { other } \\
I & \rightarrow \text { if } S \mid \text { if } S \text { else } S
\end{aligned}
$$

## Follow-sets

|  | Follow |
| :---: | :---: |
| $S^{\prime}$ | $\{\$\}$ |
| $S$ | $\{\$$, else $\}$ |
| $I$ | $\{\$$, else $\}$ |

## Rest

- since ambiguous: at least one conflict must be somewhere


## DFA of $\operatorname{LR}(0)$ items



## Simple conditionals: parse table

## Grammar

| $S$ | $\rightarrow$ | $I$ | $(1)$ |
| :--- | :--- | :--- | :--- |
|  | $\mid$ | other | $(2)$ |
| $I$ | $\rightarrow$ | if $S$ | (3) |
|  | $\mid$ | if $S$ else $S$ | (4) |

## SLR(1)-parse-table, conflict resolved

| state | input |  |  |  |  | goto |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | if | else | other | $\$$ | $S$ | $I$ |  |
| 0 | $s: 4$ |  | $s: 3$ |  | 1 | 2 |  |
| 1 |  |  |  | accept |  |  |  |
| 2 |  | $r: 1$ |  | $r: 1$ |  |  |  |
| 3 |  | $r: 2$ |  | $r: 2$ |  |  |  |
| 4 | $s: 4$ |  | $s: 3$ |  | 5 | 2 |  |
| 5 |  | $s: 6$ |  | $r: 3$ |  |  |  |
| 6 | $s: 4$ |  | $s: 3$ |  | 7 | 2 |  |
| 7 |  | $r: 4$ |  | $r: 4$ |  |  |  |

## Explanation

- shift-reduce conflict in state 5: reduce with rule 3 vs. shift (to state 6 )
- conflict there: resolved in favor of shift to 6
- note: extra start state left out from the table


## Parser run (= reduction)

| state | input |  |  |  | goto |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | if | else | other | $\$$ | $S$ | $I$ |
| 0 | $s: 4$ |  | $s: 3$ |  | 1 | 2 |
| 1 |  |  |  | accept |  |  |
| 2 |  | $r: 1$ |  | $r: 1$ |  |  |
| 3 |  | $r: 2$ |  | $r: 2$ |  |  |
| 4 | $s: 4$ |  | $s: 3$ |  | 5 | 2 |
| 5 |  | $s: 6$ |  | $r: 3$ |  |  |
| 6 | $s: 4$ |  | $s: 3$ |  | 7 | 2 |
| 7 |  | $r: 4$ |  | $r: 4$ |  |  |


| stage | parsing stack | input | action |
| :---: | :---: | :---: | :---: |
| 1 | $\$_{0}$ | if if other else other \$ | shift: 4 |
| 2 | $\$_{0} \mathbf{i f}_{4}$ | if other else other \$ | shift: 4 |
| 3 | $\$_{0} \mathbf{i f}_{4} \mathbf{i f}_{4}$ | other else other \$ | shift: 3 |
| 4 | $\$_{0} \mathbf{i f}_{4} \mathbf{i f}_{4}$ other $_{3}$ | else other \$ | reduce: 2 |
| 5 | $\$_{0} \mathbf{i f}_{4} \mathbf{i f}_{4} S_{5}$ | else other \$ | shift 6 |
| 6 | $\$_{0} \mathbf{i f}_{4} \mathbf{i f}_{4} S_{5}$ else $_{6}$ | other \$ | shift: 3 |
| 7 | $\$_{0} \mathbf{i f}_{4} \mathbf{i f}_{4} S_{5}$ else $_{6}$ other $_{3}$ | \$ | reduce: 2 |
| 8 | $\$_{0} \mathbf{i f}_{4} \mathbf{i f}_{4} S_{5}$ else $_{6} S_{7}$ | \$ | reduce: 4 |
| 9 | $\$_{0} \mathbf{i f}_{4} I_{2}$ | \$ | reduce: 1 |
| 10 | $\$_{0} S_{1}$ | \$ | accept |

## Parser run, different choice

| state | input |  |  |  | goto |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | if | else | other | $\$$ | $S$ | $I$ |
| 0 | $s: 4$ |  | $s: 3$ |  | 1 | 2 |
| 1 |  |  |  | accept |  |  |
| 2 |  | $r: 1$ |  | $r: 1$ |  |  |
| 3 |  | $r: 2$ |  | $r: 2$ |  |  |
| 4 | $s: 4$ |  | $s: 3$ |  | 5 | 2 |
| 5 |  | $s: 6$ |  | $r: 3$ |  |  |
| 6 | $s: 4$ |  | $s: 3$ |  | 7 | 2 |
| 7 |  | $r: 4$ |  | $r: 4$ |  |  |


| stage | parsing stack | input | action |
| :---: | :---: | :---: | :---: |
| 1 | \$0 | if if other else other \$ | shift: 4 |
| 2 | $\$_{0} \mathbf{i f ~}_{4}$ | if other else other \$ | shift: 4 |
| 3 | $\$_{0} \mathbf{i f}_{4} \mathbf{i f} \mathbf{f}_{4}$ | other else other \$ | shift: 3 |
| 4 | $\$_{0} \mathbf{i f}_{4} \mathbf{i f}_{4}$ other $_{3}$ | else other \$ | reduce: 2 |
| 5 | $\$_{0} \mathbf{i f}_{4} \mathbf{i f} \mathbf{f}_{4} S_{5}$ | else other \$ | reduce 3 |
| 6 | $\$_{0} \mathbf{i f}_{4} I_{2}$ | else other \$ | reduce 1 |
| 7 | $\$_{0} \mathbf{i f}_{4} S_{5}$ | else other \$ | shift 6 |
| 8 | $\$_{0} \mathbf{i f}_{4} S_{5}$ else $_{6}$ | other \$ | shift 3 |
| 9 | $\$_{0} \mathbf{i f}_{4} S_{5}$ else $_{6}$ other $_{3}$ | \$ | reduce 2 |
| 10 | $\$_{0} \mathbf{i f}_{4} S_{5}$ else $_{6} S_{7}$ | \$ | reduce 4 |
| 11 | $\$_{0} S_{1}$ | \$ | accept |

## Parse trees: simple conditions

## shift-precedence: conventional



## "wrong" tree



## standard "dangling else" convention

"an else belongs to the last previous, still open (= dangling) if-clause"

## Use of ambiguous grammars

- advantage of ambiguous grammars: often simpler
- if ambiguous: grammar guaranteed to have conflicts
- can be (often) resolved by specifying precedence and associativity
- supported by tools like yacc and CUP ...

$$
\begin{aligned}
E^{\prime} & \rightarrow E \\
E & \rightarrow E+E|E * E| \mathbf{n}
\end{aligned}
$$

## DFA for + and $\times$



## States with conflicts

- state 5
- stack contains $\$ \ldots \mathrm{E}+\mathrm{E} \$$
- for input \$: reduce, since shift not allowed from \$
- for input + ; reduce, as + is left-associative
- for input *: shift, as * has precedence over +
- state 6 :
- stack contains $\$ . . . E * E \$$
- for input \$: reduce, since shift not allowed from \$
- for input + ; reduce, a * has precedence over +
- for input *: shift, as * is left-associative
- see also the table on the next slide


## Parse table + and $\times$

| state | input |  |  |  | goto |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{n}$ | + | $*$ | $\$$ | $E$ |
| 0 | $s: 2$ |  | $s: 3$ | $s: 4$ | accept |
| 1 |  | $r: E \rightarrow \mathbf{n}$ | $r: E \rightarrow \mathbf{n}$ | $r: E \rightarrow \mathbf{n}$ |  |
| 2 |  |  |  |  | 5 |
| 3 | $s: 2$ |  |  |  | 6 |
| 4 | $s: 2$ |  | $r: E \rightarrow E+E$ | $s: 4$ | $r: E \rightarrow E+E$ |
| 5 |  | $r: E \rightarrow E * E$ | $r: E \rightarrow E * E$ | $r: E \rightarrow E * E$ |  |
| 6 |  | $r: E \rightarrow E$ |  |  |  |

How about exponentiation (written $\uparrow$ or $* *$ )?
Defined as right-associative. See exercise

For comparison: unambiguous grammar for + and *
Unambiguous grammar: precedence and left-assoc built in

$$
\begin{array}{rll}
E^{\prime} & \rightarrow & E \\
E & \rightarrow E+T \mid T \\
T & \rightarrow T * \mathbf{n} \mid \mathbf{n}
\end{array}
$$

|  | Follow |  |
| :---: | :---: | :---: |
| $E^{\prime}$ | $\{\$\}$ | (as always for start symbol) |
| $E$ | $\{\$,+\}$ |  |
| $T$ | $\{\$,+, *\}$ |  |

## DFA for unambiguous + and $\times$



## DFA remarks

- the DFA now is SLR(1)
- check states with complete items
state 1: $\operatorname{Follow}\left(E^{\prime}\right)=\{\$\}$
state 4: $\operatorname{Follow}(E)=\{\$,+\}$
state 6: $\operatorname{Follow}(E)=\{\$,+\}$
state 3/7: $\operatorname{Follow}(T)=\{\$,+, *\}$
- in no case there's a shift/reduce conflict (check the outgoing edges vs. the follow set)
- there's not reduce/reduce conflict either


## LR(1) parsing

- most general from of $\operatorname{LR}(1)$ parsing
- aka: canonical LR(1) parsing
- usually: considered as unecessarily "complex" (i.e. LALR(1) or similar is good enough)
- "stepping stone" towards LALR(1)


## Basic restriction of SLR(1)

Uses look-ahead, yes, but only after it has built a non-look-ahead DFA (based on LR(0)-items)

## A help to remember

$\operatorname{SRL}(1)$ "improved" $\operatorname{LR}(0)$ parsing $\operatorname{LALR}(1)$ is "crippled" $\operatorname{LR}(1)$ parsing.

## Limits of $\operatorname{SLR}(1)$ grammars

## Assignment grammar fragment ${ }^{20}$

$$
\begin{aligned}
\text { stmt } & \rightarrow \text { call-stmt } \mid \text { assign-stmt } \\
\text { call-stmt } & \rightarrow \text { identifier } \\
\text { assign-stmt } & \rightarrow \text { var }:=\exp \\
v a r & \rightarrow \exp ] \mid \text { identifier } \\
\exp & |\operatorname{var}| \mathbf{n}
\end{aligned}
$$

## Assignment grammar fragment, simplified

$$
\begin{aligned}
& S \rightarrow \text { id } \mid V:=E \\
& V \rightarrow \text { id } \\
& E \rightarrow V \mid \mathbf{n}
\end{aligned}
$$

[^16]non-SLR(1): Reduce/reduce conflict


## Situation can be saved: more look-ahead



## LALR(1) (and LR(1)): Being more precise with the follow-sets

- $\operatorname{LR}(0)$-items: too "indiscriminate" wrt. the follow sets
- remember the definition of $\operatorname{SLR}(1)$ conflicts
- LR(0)/SLR(1)-states:
- sets of items ${ }^{21}$ due to subset construction
- the items are $\operatorname{LR}(0)$-items
- follow-sets as an after-thought

[^17]
## Add precision in the states of the automaton already

Instead of using LR(0)-items and, when the LR(0) DFA is done, try to disambiguate with the help of the follow sets for states containing complete items: make more fine-grained items:

- LR(1) items
- each item with "specific follow information": look-ahead


## LR(1) items

- main idea: simply make the look-ahead part of the item
- obviously: proliferation of states ${ }^{22}$


## LR(1) items

$$
\begin{equation*}
[A \rightarrow \alpha \cdot \beta, \mathbf{a}] \tag{4.9}
\end{equation*}
$$

- a: terminal/token, including \$


## LALR(1)-DFA (or LR(1)-DFA)



[^18]
## Remarks on the DFA

- Cf. state 2 (seen before)
- in $\operatorname{SLR}(1):$ problematic (reduce/reduce), as Follow $(V)=\{:=, \$\}$
- now: diambiguation, by the added information
- LR(1) would give the same DFA


## Full LR(1) parsing

- AKA: canonical LR(1) parsing
- the best you can do with 1 look-ahead
- unfortunately: big tables
- pre-stage to LALR(1)-parsing


## SLR(1)

LR(0)-item-based parsing, with afterwards adding some extra "pre-compiled" info (about follow-sets) to increase expressivity

## LALR(1)

LR(1)-item-based parsing, but afterwards throwing away precision by collapsing states, to save space

## LR(1) transitions: arbitrary symbol

- transitions of the NFA (not DFA)


## $X$-transition

$$
\begin{array}{ll}
{[A \rightarrow} & \alpha \cdot X \beta, \mathbf{a}]
\end{array}{ }^{X} \quad\left[\begin{array}{ll}
A \rightarrow & \alpha X \cdot \beta, \mathbf{a}]
\end{array}\right.
$$

LR(1) transitions: $\epsilon$
$\epsilon$-transition
for all

$$
\begin{gathered}
B \rightarrow \beta_{1} \mid \beta_{2} \ldots \quad \text { and all } \mathbf{b} \in \operatorname{First}(\gamma \mathbf{a}) \\
\quad[A \rightarrow \alpha . B \gamma \quad, \mathbf{a}]
\end{gathered} \underset{[B \rightarrow . \beta \quad, \mathbf{b}]}{[B} \quad .
$$

including special case ( $\gamma=\boldsymbol{\epsilon}$ )

$$
\text { for all } B \rightarrow \beta_{1} \mid \beta_{2} \ldots
$$

$$
\left[\begin{array}{ll}
A \rightarrow \alpha \cdot B & , \mathbf{a}
\end{array}\right] \stackrel{\epsilon}{\rightarrow} \rightarrow(B \rightarrow . \beta \quad, \mathbf{a}]
$$

## $\operatorname{LALR}(1)$ vs $\operatorname{LR}(1)$

## LALR(1)



LR(1)


## Core of LR(1)-states

- actually: not done that way in practice
- main idea: collapse states with the same core


## Core of an $\operatorname{LR}(1)$ state

$=$ set of $L R(0)$-items (i.e., ignoring the look-ahead)

## Rest

- observation: core of the $\mathrm{LR}(1)$ item $=\mathrm{LR}(0)$ item
- $2 \mathrm{LR}(1)$ states with the same core have same outgoing edges, and those lead to states with the same core


## LALR(1)-DFA by as collapse

- collapse all states with the same core
- based on above observations: edges are also consistent
- Result: almost like a LR(0)-DFA but additionally
- still each individual item has still look ahead attached: the union of the "collapsed" items
- especially for states with complete items $[A \rightarrow \alpha, \mathbf{a}, \mathbf{b}, \ldots]$ is smaller than the follow set of $A$
$-\Rightarrow$ less unresolved conflicts compared to $\operatorname{SLR}(1)$


## Concluding remarks of LR / bottom up parsing

- all constructions (here) based on BNF (not EBNF)
- conflicts (for instance due to ambiguity) can be solved by
- reformulate the grammar, but generarate the same language ${ }^{23}$
- use directives in parser generator tools like yacc, CUP, bison (precedence, assoc.)
- or (not yet discussed): solve them later via semantical analysis
- NB: not all conflics are solvable, also not in LR(1) (remember ambiguous languages)


## LR/bottom-up parsing overview

|  | advantages | emarks |
| :---: | :---: | :---: |
| LR(0) | defines states also used by SLR and LALR | not really used, many |
| SLR(1) | clear improvement over $\mathrm{LR}(0)$ in expressiveness, even if using the same number of states. Table typically with 50 K entries | weaker than $\operatorname{LALR}(1)$. but often good enough. Ok for hand-made parsers for small grammars |
| LALR(1) | almost as expressive as LR(1), but number of states as $\operatorname{LR}(0)$ ! | method of choice for most generated LR-parsers |
| LR(1) | the method covering all bottom-up, one-look-ahead parseable grammars | large number of states (typically 11 M of entries), mostly LALR(1) preferred |

[^19]Remeber: once the table specific for $\operatorname{LR}(0), \ldots$ is set-up, the parsing algorithms all work the same

## Again: Error handling

## Error handling

## Minimal requirement

Upon "stumbling over" an error (= deviation from the grammar): give a reasonable \& understandable error message, indicating also error location. Potentially stop parsing

## Rest

- for parse error recovery
- one cannot really recover from the fact that the program has an error (an syntax error is a syntax error), but
- after giving decent error message:
* move on, potentially jump over some subsequent code,
* until parser can pick up normal parsing again
* so: meaningfull checking code even following a first error
- avoid: reporting an avalanche of subsequent spurious errors (those just "caused" by the first error)
- "pick up" again after semantic errors: easier than for syntactic errors


## Error messages

- important:
- avoid error messages that only occur because of an already reported error!
- report error as early as possible, if possible at the first point where the program cannot be extended to a correct program.
- make sure that, after an error, one doesn't end up in an infinite loop without reading any input symbols.
- What's a good error message?
- assume: that the method factor() chooses the alternative (exp) but that it, when control returns from method $\exp ()$, does not find a)
- one could report: left paranthesis missing
- But this may often be confusing, e.g. if what the program text is: ( a + b c )
- here the exp () method will terminate after ( a + b, as c cannot extend the expression). You should therefore rather give the message error in expression or left paranthesis missing.


## Error recovery in bottom-up parsing

- panic recovery in LR-parsing
- simple form
- the only one we shortly look at
- upon error: recovery $\Rightarrow$
- pops parts of the stack
- ignore parts of the input
- until "on track again"
- but: how to do that
- additional problem: non-determinism
- table: constructed conflict-free under normal operation
- upon error (and clearing parts of the stack + input): no guarantee it's clear how to continue
$\Rightarrow$ heuristic needed (like panic mode recovery)


## Panic mode idea

- try a fresh start,
- promising "fresh start" is: a possible goto action
- thus: back off and take the next such goto-opportunity


## Possible error situation

| parse stack |  | input | action |
| :--- | :--- | ---: | :--- |
| 1 | $\$_{0} \mathbf{a}_{1} \mathbf{b}_{2} \mathbf{c}_{3}\left({ }_{4} \mathbf{d}_{5} \mathbf{e}_{6}\right.$ | $\mathbf{f}) \mathbf{g h} \ldots \$$ | no entry for $\mathbf{f}$ |
| 2 | $\$_{0} \mathbf{a}_{1} \mathbf{b}_{2} \mathbf{c}_{3} B_{v}$ | gh $\ldots \$$ | back to normal |
| 3 | $\$_{0} \mathbf{a}_{1} \mathbf{b}_{2} \mathbf{c}_{3} B_{v} \mathbf{g}_{7}$ | $\mathbf{h} \ldots \$$ | $\ldots$ |


| state | input |  |  |  | goto |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\ldots$ ) | f | g | $\ldots$ | $\ldots$ | A | $B$ | ... |
| $\cdots$ 3 |  |  |  |  |  | $u$ | $v$ |  |
| 4 |  | - |  |  |  | - | - |  |
| 5 |  | - |  |  |  | - | - |  |
| 6 | - | - |  |  |  | - | - |  |
| $\ldots$ |  |  |  |  |  |  |  |  |
| $u$ | - | - | reduce... |  |  |  |  |  |
| $v$ | - | - | shift : 7 |  |  |  |  |  |
| ... |  |  |  |  |  |  |  |  |

## Panic mode recovery

## Algo

1. Pop states for the stack until a state is found with non-empty goto entries
2.     - If there's legal action on the current input token from one of the gotostates, push token on the stack, restart the parse.

- If there's several such states: prefer shift to a reduce
- Among possible reduce actions: prefer one whose associated non-terminal is least general

3. if no legal action on the current input token from one of the goto-states: advance input until there is a legal action (or until end of input is reached)

## Example again

| parse stack |  | input | action |
| :--- | :--- | ---: | :--- |
| 1 | $\$_{0} \mathbf{a}_{1} \mathbf{b}_{2} \mathbf{c}_{3}\left({ }_{4} \mathbf{d}_{5} \mathbf{e}_{6}\right.$ | $\mathbf{f}) \mathbf{g h} \ldots \$$ | no entry for $\mathbf{f}$ |
| 2 | $\$_{0} \mathbf{a}_{1} \mathbf{b}_{2} \mathbf{c}_{3} B_{v}$ | gh $\ldots \$$ | back to normal |
| 3 | $\$_{0} \mathbf{a}_{1} \mathbf{b}_{2} \mathbf{c}_{3} B_{v} \mathbf{g}_{7}$ | $\mathbf{h} \ldots \$$ | $\ldots$ |

- first pop, until in state 3
- then jump over input
- until next input $\mathbf{g}$
- since $\mathbf{f}$ and ) cannot be treated
- choose to goto $v$ (shift in that state)


## Panic mode may loop forever

|  | parse stack | input | action |
| :--- | :--- | ---: | :--- |
| 1 | $\$_{0}$ | $(\mathbf{n} \mathbf{n}) \$$ |  |
| 2 | $\$_{0}\left({ }_{6}\right.$ | $\mathbf{n} \mathbf{n}) \$$ |  |
| 3 | $\$_{0}\left({ }_{6} \mathbf{n}_{5}\right.$ | $\mathbf{n}) \$$ |  |
| 4 | $\$_{0}\left({ }_{6}\right.$ factor $_{4}$ | $\mathbf{n}) \$$ |  |
| 6 | $\$_{0}\left({ }_{6}\right.$ term $_{3}$ | $\mathbf{n}) \$$ |  |
| 7 | $\$_{0}\left({ }_{6}\right.$ exp $_{10}$ | n) \$ | panic! |
| 8 | $\$_{0}\left({ }_{6}\right.$ factor $_{4}$ | $\mathbf{n}) \$$ | been there before: stage 4! |

## Typical yacc parser table

some variant of the expression grammar again

$$
\begin{aligned}
\text { command } & \rightarrow \text { exp } \\
\text { exp } & \rightarrow \text { term } * \text { factor } \mid \text { factor } \\
\text { term } & \rightarrow \text { term } * \text { factor } \mid \text { factor } \\
\text { factor } & \rightarrow \mathbf{n} \mid(\text { exp })
\end{aligned}
$$



## Panicking and looping

| parse stack |  | input | action |
| :--- | :--- | ---: | :--- |
| 1 | $\$_{0}$ | $(\mathbf{n} \mathbf{n}) \$$ |  |
| 2 | $\$_{0}\left({ }_{6}\right.$ | $\mathbf{n} \mathbf{n}) \$$ |  |
| 3 | $\$_{0}\left({ }_{6} \mathbf{n}_{5}\right.$ | $\mathbf{n}) \$$ |  |
| 4 | $\$_{0}\left({ }_{6}\right.$ factor $_{4}$ | $\mathbf{n}) \$$ |  |
| 6 | $\$_{0}\left({ }_{6}\right.$ term $_{3}$ | $\mathbf{n}) \$$ |  |
| 7 | $\$_{0}\left({ }_{6}\right.$ exp $_{10}$ | n) $\$$ | panic! |
| 8 | $\$_{0}\left({ }_{6}\right.$ factor $_{4}$ | $\mathbf{n}) \$$ | been there before: stage 4! |

- error raised in stage 7 , no action possible
- panic:

1. pop-off $\exp _{10}$
2. state 6: 3 goto's

|  | exp | term | factor |
| :--- | :--- | :--- | :--- |
| goto to | 10 | 3 | 4 |
| with $\mathbf{n}$ next: action there | - | reduce $r_{4}$ | reduce $r_{6}$ |

3. no shift, so we need to decide between the two reduces
4. factor: less general, we take that one

## How to deal with looping panic?

- make sure to detec loop (i.e. previous "configurations")
- if loop detected: doen't repeat but do something special, for instance
- pop-off more from the stack, and try again
- pop-off and insist that a shift is part of the options


## Left out (from the book and the pensum)

- more info on error recovery
- expecially: more on yacc error recovery
- it's not pensum, and for the oblig: need to deal with CUP-specifics (not classic yacc specifics even if similar) anyhow, and error recovery is not part of the oblig (halfway decent error handling is).


## Bibliography

[1] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2007). Compilers: Principles, Techniques and Tools. Pearson,Addison-Wesley, second edition.
[2] Appel, A. W. (1998a). Modern Compiler Implementation in Java. Cambridge University Press.
[3] Appel, A. W. (1998b). Modern Compiler Implementation in ML. Cambridge University Press.
[4] Appel, A. W. (1998c). Modern Compiler Implementation in ML/Java/C. Cambridge University Press.
[5] Cooper, K. D. and Torczon, L. (2004). Engineering a Compiler. Elsevier.
[6] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

## Index

$\epsilon$-production, 19
\$ (end marker symbol), 25
abstract syntax tree, 1
ambiguity of a grammar, 11
associativity, 29, 40, 42
bottom-up parsing, 60
comlete item, 71
constraint, 17
CUP, 100
dangling-else, 96
determinization, 32
EBNF, 31, 38, 50
$\epsilon$-production, 29, 30
First set, 13
Follow set, 13
follow set, 23,64
grammar
ambiguous, 11
start symbol, 24
handle, 64
initial item, 71
item
complete, 71
initial, 71
LALR(1), 60
left factor, 29
left recursion, 29
left-factoring, 28, 38, 54
left-recursion, 27, 29, 39, 40, 54
immediate, 28
LL(1), 38
LL(1) grammars, 53
LL(1) parse table, 54
$\operatorname{LR}(0), 60,71,89$
LR(1), 60
nullable, 14
nullable symbols, 13
parse error, 110
parser, 1
predictive, 37
recursive descent, 37
parsing
bottom-up, 60
precedence, 40
predictive parser, 37
prefix
viable, 69
recursive descent parser, 37
sentential form, 13
shift-reduce parser, 61
SLR(1), 60, 89
syntax error, 1, 2
type error, 2
viable prefix, 69
worklist, 21, 23
worklist algorithm, 21, 23
yacc, 100


[^0]:    ${ }^{1}$ Perhaps: if a parser has trouble to figure out if a program has a syntax error or not (perhaps using back-tracking), probably humans will have similar problems. So better keep it simple. And time in a compiler may be better spent elsewhere (optimization, semantical analysis).

[^1]:    ${ }^{2}$ Note that $\alpha_{1}$ and $\alpha_{2}$ may contain non-terminals, including further occurrences of $A$.
    ${ }^{3} \mathrm{~A}$ CFG is ambiguous, if there exists a word (of terminals) with 2 different parse trees.

[^2]:    ${ }^{4}$ Of course, one can always write a parser that "just makes some decision" based on looking ahead $k$ symbols. The question is: will that allow to capture all words from the grammar and only those.

[^3]:    ${ }^{5}$ A production of the form $A \rightarrow \boldsymbol{\epsilon}$.

[^4]:    ${ }^{6}$ Sometimes "special terminal" $\$$ used to mark the end (as mentioned).

[^5]:    ${ }^{7}$ It must be the next token/terminal in the sense of First, but it need not be a token directly mentioned on the right-hand sides of the corresponding rules.

[^6]:    ${ }^{8}$ And it would not help to look-ahead more than 1 token either.

[^7]:    ${ }^{9}$ Lisp is famous/notorious in that its surface syntax is more or less an explicit notation for the ASTs. Not that it was originally planned like this ...

[^8]:    ${ }^{10}$ That results in a parser which is somehow not "pure recursive descent". It's "recusive descent, but sometimes, let's use a while-loop, if more convenient concerning, for instance, associativity"
    ${ }^{11}$ Modulo the fact that the tree being traversed is "conceptual" and not the input of the traversal procedure; instead, the traversal is "steered" by stream of tokens.

[^9]:    ${ }^{12}$ Often, the entry in the parse table does not contain a full rule as here, needed is only the right-hand-side. In that case the table is of type $\Sigma_{N} \times \Sigma_{T} \rightarrow$ ( $\Sigma^{*}+$ error $)$. We follow the convention of this book.

[^10]:    ${ }^{13}$ That will later be relied upon when constructing a DFA for "scanning" the stack, to control the reactions of the stack machine. This restriction leads to a unique, well-defined initial state.

[^11]:    ${ }^{14}$ We have explained shift steps so far as: parser eats one terminal ( $=$ input token) and pushes it on the stack.

[^12]:    ${ }^{15}$ Technically, we don't require here a total transition function, we leave out any error state.

[^13]:    ${ }^{16}$ Indirectly only: as said, we remove the handle from the stack, and pretend, as if the $A$ is next on the input, and thus we "shift" it on top of the stack, doing the corresponding $A$-transition.

[^14]:    ${ }^{17} \mathrm{Cf}$. to the $\operatorname{LR}(0)$ algo: since we checked the existence of the transition before, the else-part is missing now.
    ${ }^{18} \mathrm{Cf}$. to the $\operatorname{LR}(0)$ algo: This happens now only if next token is $\$$. Note that the follow set of $S^{\prime}$ in the augmented grammar is always only $\$$

[^15]:    ${ }^{19}$ by which it, strictly speaking, would no longer be an SRL(1)-table :-)

[^16]:    ${ }^{20}$ Inspired by Pascal, analogous problems in C ...

[^17]:    ${ }^{21}$ That won't change in principle (but the items get more complex)

[^18]:    ${ }^{22}$ Not to mention if we wanted look-ahead of $k>1$, which in practice is not done, though.

[^19]:    ${ }^{23}$ If designing a new language, there's also the option to massage the language itself. Note also: there are inherently ambiguous languages for which there is no unambiguous grammar.

