Chapter 4

Parsing

Course "Compiler Construction"
Martin Steffen
Spring 2018

Section

Introduction to parsing

Chapter 4 "Parsing"
Course "Compiler Construction"
Martin Steffen
Spring 2018

What's a parser generally doing

task of parser $=$ syntax analysis

- input: stream of tokens from lexer
- output:
- abstract syntax tree
- or meaningful diagnosis of source of syntax error
- the full "power" (i.e., expressiveness) of CFGs not used
- thus:
- consider restrictions of CFGs, i.e., a specific subclass, and/or
- represented in specific ways (no left-recursion, left-factored ...)

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Lexer, parser, and the rest

INF5110 -
Compiler
Construction

Top-down vs. bottom-up

- all parsers (together with lexers): left-to-right
- remember: parsers operate with trees
- parse tree (concrete syntax tree): representing grammatical derivation
- abstract syntax tree: data structure
- 2 fundamental classes
- while parser eats through the token stream, it grows, i.e., builds up (at least conceptually) the parse tree:

Bottom-up

Parse tree is being grown from the leaves to the root.

Top-down

Parse tree is being grown from the root to the leaves.

- while parse tree mostly conceptual: parsing build up the concrete data structure of AST bottom-up vs. top-down.

Parsing restricted classes of CFGs

- parser: better be "efficient"
- full complexity of CFLs: not really needed in practice ${ }^{1}$
- classification of CF languages vs. CF grammars, e.g.:

NF110
Compiler
Construction

- left-recursion-freedom: condition on a grammar
- ambiguous language vs. ambiguous grammar
- classification of grammars \Rightarrow classification of languages
- a CF language is (inherently) ambiguous, if there's no unambiguous grammar for it
- a CF language is top-down parseable, if there exists a grammar that allows top-down parsing ...
- in practice: classification of parser generating tools:
" based on accepted notation for grammars: (BNF or some form of EBNF etc.)
${ }^{1}$ Perhaps: if a parser has trouble to figure out if a program has a syntax error or not (perhaps using back-tracking), probably humans will have similar problems. So better keep it simple. And time in a compiler may be better spent elsewhere (optimization, semantical analysis).

Classes of CFG grammars/languages

- maaaany have been proposed \& studied, including their relationships
- lecture concentrates on
- top-down parsing, in particular
- LL(1)
- recursive descent
- bottom-up parsing
- LR(1)
- SLR
- LALR(1) (the class covered by yacc-style tools)

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

- grammars typically written in pure BNF

Relationship of some grammar (not language) classes

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Section

Top-down parsing

Chapter 4 "Parsing"
Course "Compiler Construction"
Martin Steffen
Spring 2018

General task (once more)

- Given: a CFG (but appropriately restricted)
- Goal: "systematic method" s.t.

1. for every given word w : check syntactic correctness
2. [build AST/representation of the parse tree as side effect]
3. [do reasonable error handling]

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Schematic view on "parser machine"

Note: sequence of tokens (not characters)

Derivation of an expression

Overlay

factors and terms

$$
\begin{align*}
& \exp \rightarrow \text { term exp }{ }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term }{ }^{\prime} \\
& \text { term }{ }^{\prime} \rightarrow \text { mulop factor term }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { mulon } \rightarrow \text { * }
\end{align*}
$$

Derivation of an expression

Overlay

factors and terms

$$
\begin{align*}
& \exp \rightarrow \text { term exp }{ }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term exp }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term }{ }^{\prime} \\
& \text { term }{ }^{\prime} \rightarrow \text { mulop factor term }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { mulon } \rightarrow \text { * }
\end{align*}
$$

Derivation of an expression

Overlay

factor term ${ }^{\prime}{ }^{\prime 2 p^{\prime}}$
factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow \text { termexp }{ }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term }{ }^{\prime} \\
& \text { term }{ }^{\prime} \rightarrow \text { mulop factor term }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { mulon } \rightarrow \text { * }
\end{align*}
$$

Derivation of an expression

Overlay

number term' ${ }^{\prime} \exp ^{\prime}$
factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow \text { term exp }{ }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term exp }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term }{ }^{\prime} \\
& \text { term }{ }^{\prime} \rightarrow \text { mulop factor term }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { mulon } \rightarrow \text { * }
\end{align*}
$$

Derivation of an expression

Overlay

factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow \text { termexp }{ }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term exp }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term' } \\
& \text { term }{ }^{\prime} \rightarrow \text { mulop factor term }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { mulon } \rightarrow \text { * }
\end{align*}
$$

Derivation of an expression

Overlay

factors and terms

$$
\begin{align*}
& \exp \rightarrow \text { term exp }{ }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term }{ }^{\prime} \\
& \text { term }{ }^{\prime} \rightarrow \text { mulop factor term }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { mulon } \rightarrow \text { * }
\end{align*}
$$

Derivation of an expression

Overlay

factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow \text { termexp }{ }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term }{ }^{\prime} \\
& \text { term }{ }^{\prime} \rightarrow \text { mulop factor term }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { mulon } \rightarrow \text { * }
\end{align*}
$$

Derivation of an expression

Overlay

number addop term exp ${ }^{\prime}$
factors and terms

$$
\begin{align*}
& \exp \rightarrow \text { term exp }{ }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term exp }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term' } \\
& \text { term }{ }^{\prime} \rightarrow \text { mulop factor term }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { mulon } \rightarrow \text { * }
\end{align*}
$$

Derivation of an expression

Overlay

factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow \text { termexp }{ }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term exp }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term }{ }^{\prime} \\
& \text { term }{ }^{\prime} \rightarrow \text { mulop factor term }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { mulon } \rightarrow \text { * }
\end{align*}
$$

Derivation of an expression

Overlay

factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow \text { termexp }{ }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term exp }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term' } \\
& \text { term }{ }^{\prime} \rightarrow \text { mulop factor term }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { mulon } \rightarrow \text { * }
\end{align*}
$$

Derivation of an expression

Overlay

number + factor term' ${ }^{\prime}$ exp $^{\prime}$
factors and terms

$$
\begin{align*}
& \exp \rightarrow \text { term exp }{ }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term' } \\
& \text { term }{ }^{\prime} \rightarrow \text { mulop factor term }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { mulon } \rightarrow \text { * }
\end{align*}
$$

Derivation of an expression

Overlay

number + number term' exp^{\prime}

factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow{\text { term } \text { exp }^{\prime}}^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
&
\end{align*}
$$

Derivation of an expression

Overlay

number + numberterm ${ }^{\prime}$ exp $^{\prime}$

factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow{\text { term } \text { exp }^{\prime}}^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
&
\end{align*}
$$

Derivation of an expression

Overlay

number + number mulop factor term' exp $^{\prime}$

factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow{\text { term } \text { exp }^{\prime}}^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
&
\end{align*}
$$

Derivation of an expression

Overlay

number + number* factor term' exp $^{\prime}$

factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow{\text { term } \text { exp }^{\prime}}^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addopterm } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
&
\end{align*}
$$

Derivation of an expression

Overlay

$$
\text { number + number * (exp) term}{ }^{\prime} e x p^{\prime}
$$

factors and terms

$$
\begin{align*}
\text { exp } & \rightarrow \text { term exp }^{\prime} \tag{1}\\
\text { exp }^{\prime} & \rightarrow \text { addopterm } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term } \\
\text { torm } & \rightarrow
\end{align*}
$$

Derivation of an expression

Overlay

number + number * (exp) term' exp $^{\prime}$
factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow{\text { term } \text { exp }^{\prime}}^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
&
\end{align*}
$$

Derivation of an expression

Overlay

$$
\text { number + number * (} \underline{\text { exp }}) \text { term}{ }^{\prime} e x p^{\prime}
$$

factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow \text { term exp }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
&
\end{align*}
$$

Derivation of an expression

Overlay

number + number * ($\underline{\text { term }}$ exp $^{\prime}$) term $^{\prime}$ exp $^{\prime}$

factors and terms

$$
\begin{align*}
\text { exp } & \rightarrow \text { term exp }^{\prime} \tag{1}\\
\text { exp }^{\prime} & \rightarrow \text { addopterm } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term } \\
\text { torm } & \rightarrow
\end{align*}
$$

Derivation of an expression

Overlay

number + number * ($\underline{\text { factor }}$ term $^{\prime}$ exp $\left.^{\prime}\right)$ term $^{\prime}$ exp $^{\prime}$
factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow{\text { term } \text { exp }^{\prime}}^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
&
\end{align*}
$$

Derivation of an expression

Overlay

number + number * (number term' exp $^{\prime}$) term' exp $^{\prime}$

factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow{\text { term } \text { exp }^{\prime}}^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
&
\end{align*}
$$

Derivation of an expression

Overlay

number +number * (numberterm${ }^{\prime}$ exp $\left.^{\prime}\right)$ term' exp $^{\prime}$

factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow \text { term exp }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
&
\end{align*}
$$

Derivation of an expression

Overlay

number + number * (number ϵ exp $^{\prime}$) term' ${ }^{\prime}$ exp $^{\prime}$

factors and terms

$$
\begin{align*}
\text { exp } & \rightarrow \text { term exp }^{\prime} \tag{1}\\
\text { exp }^{\prime} & \rightarrow \text { addop term exp }^{\prime} \mid \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term }
\end{align*}
$$

Derivation of an expression

Overlay

number +number * (number exp' $)$ term' ${ }^{\prime}$ exp $^{\prime}$

factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow \text { term exp }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
&
\end{align*}
$$

Derivation of an expression

Overlay

number +number * (number $\underline{\text { addop }}$ term $\exp ^{\prime}$) term

factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow{\text { term } \text { exp }^{\prime}}^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
&
\end{align*}
$$

Derivation of an expression

Overlay

number + number * (number+ term exp $\left.{ }^{\prime}\right)$ term ${ }^{\prime}$ exp
factors and terms

$$
\begin{align*}
\text { exp } & \rightarrow \text { term exp }^{\prime} \tag{1}\\
\text { exp }^{\prime} & \rightarrow \text { addopterm } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term }
\end{align*}
$$

Derivation of an expression

Overlay

factors and terms

$$
\begin{align*}
\text { exp } & \rightarrow \text { term exp }^{\prime} \tag{1}\\
\text { exp }^{\prime} & \rightarrow \text { addopterm } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term } \\
\text { torm } & \rightarrow
\end{align*}
$$

Derivation of an expression

Overlay

number + number $*\left(\begin{array}{l}\text { number }+ \text { factor }^{t e r m}\end{array}{ }^{\prime} e x p^{\prime}\right)$
factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow \text { term exp }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
&
\end{align*}
$$

Derivation of an expression

Overlay

number +number * (number + number term' ex

factors and terms

$$
\begin{align*}
\text { exp } & \rightarrow \text { term exp }^{\prime} \tag{1}\\
\text { exp }^{\prime} & \rightarrow \text { addopterm } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term } \\
\text { torm } & \rightarrow
\end{align*}
$$

Derivation of an expression

Overlay

number + number * (number + number term ${ }^{\prime}$ e
factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow \text { term exp }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
&
\end{align*}
$$

Derivation of an expression

Overlay

number + number * (number + number $\left.\epsilon e x p^{\prime}\right)$
factors and terms

$$
\begin{align*}
\text { exp } & \rightarrow \text { term exp' }^{\prime} \tag{1}\\
\text { exp }^{\prime} & \rightarrow \text { addopterm exp } \mid \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term } \\
\text { torm } & \rightarrow \text { mun }
\end{align*}
$$

Derivation of an expression

Overlay

number + number * (number + number exp $\left.{ }^{\prime}\right)$

factors and terms

$$
\begin{align*}
\text { exp } & \rightarrow \text { term exp }^{\prime} \tag{1}\\
\text { exp }^{\prime} & \rightarrow \text { addopterm } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term } \\
\text { torm } & \rightarrow
\end{align*}
$$

Derivation of an expression

Overlay

number +number * (number + number $\epsilon)$ ter
factors and terms

$$
\begin{align*}
\text { exp } & \rightarrow \text { term exp' }^{\prime} \tag{1}\\
\text { exp }^{\prime} & \rightarrow \text { addopterm exp } \mid \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term } \\
\text { torm } & \rightarrow \text { mun }
\end{align*}
$$

Derivation of an expression

Overlay

number + number * (number + number) ter
factors and terms

$$
\begin{align*}
\text { exp } & \rightarrow \text { term exp }^{\prime} \tag{1}\\
\text { exp }^{\prime} & \rightarrow \text { addopterm } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term } \\
\text { torm } & \rightarrow
\end{align*}
$$

Derivation of an expression

Overlay

number + number * (number + number) $\underline{t e}$
factors and terms

$$
\begin{align*}
\text { exp } & \rightarrow \text { term exp' }^{\prime} \tag{1}\\
\text { exp }^{\prime} & \rightarrow \text { addopterm exp } \mid \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term } \\
\text { torm } & \rightarrow \text { mun }
\end{align*}
$$

Derivation of an expression

Overlay

number + number * (number + number)
factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow{\text { term } \text { exp }^{\prime}} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
&
\end{align*}
$$

Derivation of an expression

Overlay

number + number * (number + number $)$

factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow \text { term exp }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
&
\end{align*}
$$

Derivation of an expression

Overlay

$$
\text { number + number * (number + number })
$$

factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow \text { term exp }^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
&
\end{align*}
$$

Derivation of an expression

Overlay

number + number * (number + number

factors and terms

$$
\begin{align*}
& \text { exp } \rightarrow{\text { term } \text { exp }^{\prime}}^{\prime} \tag{1}\\
& \text { exp }^{\prime} \rightarrow \text { addop term } \text { exp }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term } \\
&
\end{align*}
$$

Remarks concerning the derivation

Note:

- input $=$ stream of tokens
- there: 1... stands for token class number (for readability/concreteness), in the grammar: just number
- in full detail: pair of token class and token value〈number, 1〉
Notation:
- underline: the place (occurrence of non-terminal where production is used)
- erossed out:
- terminal $=$ token is considered treated
- parser "moves on"
- later implemented as match or eat procedure

Not as a "film" but at a glance: reduction
 sequence

exp	\Rightarrow	INF5110 - Compiler Construction
$\overline{\text { term }} \mathrm{exp}^{\prime}$	\Rightarrow	
factor term' ${ }^{\text {exp }}{ }^{\prime}$	\Rightarrow	
number erm $^{\prime}$ exp $^{\prime}$	\Rightarrow	Introduction to
numberterm' exp $^{\prime}$	\Rightarrow	parsing
number $\epsilon e x p^{\prime}$	\Rightarrow	Top-down parsing
number exp ${ }^{\prime}$	\Rightarrow	First and follow
number ${ }^{\text {addop }}$ term exp ${ }^{\prime}$	\Rightarrow	
number+term exp ${ }^{\prime}$	\Rightarrow	LL-parsing (mostly
number + term exp ${ }^{\prime}$	\Rightarrow	LL(1))
number + factor term' exp^{\prime}	\Rightarrow	
number + number term' exp^{\prime}	\Rightarrow	parsing
number + numberterm' exp $^{\prime}$	\Rightarrow	References
number + number mulop factor term' ${ }^{\text {exp }}$ '	\Rightarrow	Refer
number + number* factor term' exp $^{\prime}$	\Rightarrow	
number + number * (exp) term $^{\prime} \exp ^{\prime}$	\Rightarrow	
number + number * (exp) term' exp^{\prime}	\Rightarrow	
number + number * (exp) term' ${ }^{\text {exp }}{ }^{\prime}$	\Rightarrow	

Best viewed as a tree

Best viewed as a tree

\exp
term

Best viewed as a tree

Best viewed as a tree

Best viewed as a tree

\exp

Best viewed as a tree

Non-determinism?

- not a "free" expansion/reduction/generation of some word, but
- reduction of start symbol towards the target word of terminals

$$
\exp \Rightarrow^{*} \mathbf{1}+\mathbf{2} *(3+4)
$$

- i.e.: input stream of tokens "guides" the derivation process (at least it fixes the target)
" but: how much "guidance" does the target word (in general) gives?

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Oracular derivation

$$
\begin{aligned}
& \exp \rightarrow \exp +\text { term } \mid \text { exp - term } \mid \text { term } \\
& \text { term } \rightarrow \text { term * factor } \mid \text { factor } \\
& \text { factor } \rightarrow(\exp) \mid \text { number } \\
& \begin{array}{lll}
\frac{\text { exp }}{\text { exp }}+\text { term } & \Rightarrow_{1} & \downarrow 1+2 * 3 \\
\overline{\text { term }}+\text { term } & \Rightarrow_{3} & \downarrow 1+2 * 3 \\
\underline{\text { factor }+ \text { term }} & \Rightarrow_{5} & \downarrow 1+2 * 3 \\
\hline \text { number }+ \text { term } & \Rightarrow_{7} & \downarrow 1+2 * 3 \\
\text { number + term } & & \downarrow 1+2 * 3 \\
\text { number + term } & & 1 \downarrow+2 * 3 \\
\text { number + term } * \text { factor } & \Rightarrow_{4} & 1+\downarrow 2 * 3 \\
\text { number + factor } * \text { factor } & \Rightarrow_{5} & 1+\downarrow 2 * 3 \\
\text { number + number } * \text { factor } & & 1+\downarrow 2 * 3 \\
\text { number + number * factor } & & 1+\downarrow 2 * 3 \\
\text { number + number * factor } & \Rightarrow_{7} & 1+2 \downarrow \downarrow 3 \\
\text { number + number * number } & & 1+2 * \downarrow 3 \\
\text { number + number * number } & & 1+2 * 3 \downarrow
\end{array} \\
& \text { INF5110 - } \\
& \text { Compiler } \\
& \text { Construction } \\
& \text { Introduction to } \\
& \text { parsing } \\
& \text { Top-down parsing } \\
& \text { First and follow } \\
& \text { sets } \\
& \text { LL-parsing (mostly } \\
& \text { LL(1)) } \\
& \text { Bottom-up } \\
& \text { parsing } \\
& \text { References }
\end{aligned}
$$

Two principle sources of non-determinism

 here
Using production $A \rightarrow \beta$

INF5110 -

$$
S \Rightarrow^{*} \alpha_{1} A \alpha_{2} \Rightarrow \alpha_{1} \beta \alpha_{2} \Rightarrow^{*} w
$$

- $\alpha_{1}, \alpha_{2}, \beta$: word of terminals and nonterminals
- w : word of terminals, only
- A : one non-terminal

2 choices to make

1. where, i.e., on which occurrence of a non-terminal in $\alpha_{1} A \alpha_{2}$ to apply a production ${ }^{2}$
2. which production to apply (for the chosen non-terminal).
[^0]
Left-most derivation

- that's the easy part of non-determinism
- taking care of "where-to-reduce" non-determinism: left-most derivation
- notation \Rightarrow_{l}
- some of the example derivations earlier used that

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Non-determinism vs. ambiguity

- Note: the "where-to-reduce"-non-determinism \neq ambiguitiy of a grammar ${ }^{3}$
- in a way ("theoretically"): where to reduce next is irrelevant:
- the order in the sequence of derivations does not matter
- what does matter: the derivation tree (aka the parse tree)

Lemma (Left or right, who cares)
$S \Rightarrow_{l}^{*} w \quad$ iff $\quad S \Rightarrow_{r}^{*} w \quad$ iff $\quad S \Rightarrow^{*} w$.

- however ("practically"): a (deterministic) parser implementation: must make a choice

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Using production $A \rightarrow \beta$

$$
S \Rightarrow^{*} \alpha_{1} A \alpha_{2} \Rightarrow \alpha_{1} \beta \alpha_{2} \Rightarrow^{*} w
$$

${ }^{3} \mathrm{~A}$ CFG is ambiguous, if there exists a word (of terminals) with 2

Non-determinism vs. ambiguity

- Note: the "where-to-reduce"-non-determinism \neq ambiguitiy of a grammar ${ }^{3}$
- in a way ("theoretically"): where to reduce next is irrelevant:
- the order in the sequence of derivations does not matter
- what does matter: the derivation tree (aka the parse tree)

Lemma (Left or right, who cares)
$S \Rightarrow_{l}^{*} w \quad$ iff $\quad S \Rightarrow_{r}^{*} w \quad$ iff $\quad S \Rightarrow^{*} w$.

- however ("practically"): a (deterministic) parser implementation: must make a choice

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Using production $A \rightarrow \beta$

$$
S \Rightarrow{ }_{l}^{*} w_{1} A \alpha_{2} \Rightarrow w_{1} \beta \alpha_{2} \Rightarrow_{l}^{*} w
$$

${ }^{3} \mathrm{~A}$ CFG is ambiguous, if there exists a word (of terminals) with 2

What about the "which-right-hand side" non-determinism?

$$
A \rightarrow \beta \mid \gamma
$$

Is that the correct choice?

Introduction to parsing

$$
S \Rightarrow_{l}^{*} w_{1} A \alpha_{2} \Rightarrow w_{1} \beta \alpha_{2} \Rightarrow_{l}^{*} w
$$

- reduction with "guidance": don't loose sight of the target w
" "past" is fixed: $w=w_{1} w_{2}$
- "future" is not:

$$
A \alpha_{2} \Rightarrow_{l} \beta \alpha_{2} \Rightarrow_{l}^{*} w_{2} \quad \text { or else } A \alpha_{2} \Rightarrow_{l} \gamma \alpha_{2} \Rightarrow_{l}^{*} w_{2} \text { ? }
$$

Needed (minimal requirement):

In such a situation, "future target" w_{2} must determine which of the rules to take!

Deterministic, yes, but still impractical

$$
A \alpha_{2} \Rightarrow \Rightarrow_{l} \beta \alpha_{2} \Rightarrow_{l}^{*} w_{2} \quad \text { or else } A \alpha_{2} \Rightarrow_{l} \gamma \alpha_{2} \Rightarrow_{l}^{*} w_{2} \text { ? }
$$

- the "target" w_{2} is of unbounded length!
\Rightarrow impractical, therefore:

Look-ahead of length k

resolve the "which-right-hand-side" non-determinism inspecting only fixed-length prefix of w_{2} (for all situations as above)

LL(k) grammars

CF-grammars which can be parsed doing that. ${ }^{4}$
${ }^{4}$ Of course, one can always write a parser that "just makes some decision" based on looking ahead k symbols. The question is: will that allow to capture all words from the grammar and only those.

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Section

First and follow sets

Chapter 4 "Parsing"
Course "Compiler Construction"
Martin Steffen
Spring 2018

First and Follow sets

- general concept for grammars
- certain types of analyses (e.g. parsing):
" info needed about possible "forms" of derivable words,
INF5110 -
Compiler
Construction

First-set of A

which terminal symbols can appear at the start of strings derived from a given nonterminal A

Follow-set of A
Which terminals can follow A in some sentential form.

- sentential form: word derived from grammar's starting symbol
- later: different algos for first and follow sets, for all non-terminals of a given grammar
- mostly straightforward
- one complication: nullable symbols (non-terminals)
- Note: those sets depend on grammar, not the language

First sets

Definition (First set)

INF5110 -
Compiler Construction

Given a grammar G and a non-terminal A. The first-set of A, written First $_{G}(A)$ is defined as

$$
\begin{equation*}
\operatorname{First}_{G}(A)=\left\{a \mid A \Rightarrow_{G}^{*} a \alpha, \quad a \in \Sigma_{T}\right\}+\left\{\epsilon \mid A \Rightarrow_{G}^{*} \epsilon\right\} . \tag{2}
\end{equation*}
$$

Definition (Nullable)

Given a grammar G. A non-terminal $A \in \Sigma_{N}$ is nullable, if $A \Rightarrow^{*} \epsilon$.

Examples

- Cf. the Tiny grammar
- in Tiny, as in most languages

$$
\operatorname{First}(i f-s t m t)=\{" \mathbf{i f} "\}
$$

- in many languages:

$$
\text { First }(\text { assign-stmt })=\{\text { identifier }, "("\}
$$

- typical Follow (see later) for statements:

$$
\text { Follow }(\text { stmt })=\{" ; ", " \text { end","else","until" }\}
$$

Remarks

- note: special treatment of the empty word $\boldsymbol{\epsilon}$
- in the following: if grammar G clear from the context
- \Rightarrow^{*} for \Rightarrow_{G}^{*}
- First for First $_{G}$
" ...
- definition so far: "top-level" for start-symbol, only
- next: a more general definition
- definition of First set of arbitrary symbols (and even words)
- and also: definition of First for a symbol in terms of First for "other symbols" (connected by productions)
\Rightarrow recursive definition

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

A more algorithmic/recursive definition

- grammar symbol X : terminal or non-terminal or ϵ

Definition (First set of a symbol)

Given a grammar G and grammar symbol X. The first-set of X, written $\operatorname{First}(X)$, is defined as follows:

1. If $X \in \Sigma_{T}+\{\boldsymbol{\epsilon}\}$, then $\operatorname{First}(X)=\{X\}$.
2. If $X \in \Sigma_{N}$: For each production

$$
X \rightarrow X_{1} X_{2} \ldots X_{n}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References
2.1 $\operatorname{First}(X)$ contains $\operatorname{First}\left(X_{1}\right) \backslash\{\epsilon\}$
2.2 If, for some $i<n$, all $\operatorname{First}\left(X_{1}\right), \ldots, \operatorname{First}\left(X_{i}\right)$ contain ϵ, then $\operatorname{First}(X)$ contains $\operatorname{First}\left(X_{i+1}\right) \backslash\{\epsilon\}$.
2.3 If all $\operatorname{First}\left(X_{1}\right), \ldots, \operatorname{First}\left(X_{n}\right)$ contain ϵ, then First (X) contains $\{\epsilon\}$.

For words

Definition (First set of a word)

Given a grammar G and word α. The first-set of

$$
\alpha=X_{1} \ldots X_{n},
$$

written $\operatorname{First}(\alpha)$ is defined inductively as follows:

1. First (α) contains $\operatorname{First}\left(X_{1}\right) \backslash\{\boldsymbol{\epsilon}\}$
2. for each $i=2, \ldots n$, if $\operatorname{First}\left(X_{k}\right)$ contains $\boldsymbol{\epsilon}$ for all $k=1, \ldots, i-1$, then $\operatorname{First}(\alpha)$ contains $\operatorname{First}\left(X_{i}\right) \backslash\{\epsilon\}$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References
3. If all $\operatorname{First}\left(X_{1}\right), \ldots, \operatorname{First}\left(X_{n}\right)$ contain $\boldsymbol{\epsilon}$, then First (X) contains $\{\epsilon\}$.

Pseudo code

```
for alX \in }A\cup{\epsilon} d
    First[X] := X
end ;
for all non-terminals }A\mathrm{ do
    First[A] := {}
end
while there are changes to any First[A] do
    for each production }A->\mp@subsup{X}{1}{}\ldots\mp@subsup{X}{n}{}\mathrm{ do
        k := 1;
        continue := true
        while continue = true and k\leqn do
            First[A] := First[A] \cup First[ [ X ] \ {\epsilon}
            if \epsilon& First[ [X ] then continue := false
            k := k + 1
        end;
        if continue = true
        then First[A] := First[A] \cup{\epsilon}
    end ;
end
```

INF5110 -
Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

If only we could do away with special cases for the empty words ...

for grammar without ϵ-productions. ${ }^{5}$

```
for all non-terminals }A\mathrm{ do
    First[A] := {} // counts as change
end
while there are changes to any First[A] do
    for each production }A->\mp@subsup{X}{1}{}\ldots\mp@subsup{X}{n}{}\mathrm{ do
        First[A] := First[A] \cup First[ [ X1]
    end;
end
```

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References
${ }^{5}$ A production of the form $A \rightarrow \boldsymbol{\epsilon}$.

Example expression grammar (from before)

INF5110 -
Compiler
Construction

$$
\begin{align*}
\exp & \rightarrow \text { exp addop term } \mid \text { term } \tag{3}\\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { term mulop factor } \mid \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\exp) \mid \text { number }
\end{align*}
$$

Introduction to
parsing
Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Example expression grammar (expanded)

INF5110 -
Compiler
Construction

$$
\begin{align*}
\text { exp } & \rightarrow \text { exp addop term } \tag{4}\\
\text { exp } & \rightarrow \text { term } \\
\text { addop } & \rightarrow+ \\
\text { addop } & \rightarrow- \\
\text { term } & \rightarrow \text { term mulop factor } \\
\text { term } & \rightarrow \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow \mathbf{(e x p ~}) \\
\text { factor } & \rightarrow \mathbf{n}
\end{align*}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

1 exp \rightarrow exp addop term
2 exp \rightarrow term
3 addop $\rightarrow+$
4 addop \rightarrow -
5 term \rightarrow term mulop factor
6 term \rightarrow factor
7 mulop \rightarrow *
8 factor $\rightarrow(\exp)$
9 factor $\rightarrow \mathbf{n}$

"Run" of the algo

Grammar rule	Pass I	Pass 2	Pass 3
$\exp \rightarrow \exp$ addop term			
exp \rightarrow term			$\begin{aligned} & \text { First }(\text { exp })= \\ & \quad\{(, \text { number }\} \end{aligned}$
addop \rightarrow +	First(addop) $=\{+\}$		
addop \rightarrow -	First(addop) $=\{+,-\}$		
$\text { term } \rightarrow \text { term }$mulop factor			
term \rightarrow factor		$\begin{aligned} & \text { First }(\text { term })= \\ & \quad\{(, \text { number }\} \end{aligned}$	
mulop \rightarrow *	$\begin{aligned} & \text { First(mulop) } \\ & \qquad=\{*\} \end{aligned}$		
factor \rightarrow (exp $)$	$\begin{aligned} & \text { First }(\text { factor }) \\ &=\{1\} \end{aligned}$		
factor \rightarrow number	First $($ factor $)=$ \{ (, number \}		

Collapsing the rows \& final result

- results per pass:

	1	2	3
\exp			$\{\mathbf{(}, \mathbf{n}\}$
addop	$\{+,-\}$		
term		$\{\mathbf{(}, \mathbf{n}\}$	
mulop	$\{*\}$		
factor	$\{\mathbf{(}, \mathbf{n}\}$		

- final results (at the end of pass 3):

	First[_]
exp	$\{\mathbf{(}, \mathbf{n}\}$
addop	$\{+,-\}$
term	$\{\mathbf{(}, \mathbf{n}\}$
mulop	$\{*\}$
factor	$\{\mathbf{(}, \mathbf{n}\}$

INF5110 -
Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Work-list formulation

```
for all non-terminals A do
    First[A] := {}
    WL }\quad:=P // all production
end
while WL # \varnothing do
    remove one ( }A->\mp@subsup{X}{1}{}\ldots\mp@subsup{X}{n}{})\mathrm{ from WL
    if First[A] # First[A] \cup First[ [X ]
    then First[A] := First[A] \cup First[ [X ]
        add all productions ( }A->\mp@subsup{X}{1}{\prime}\ldots\mp@subsup{X}{m}{\prime})\mathrm{ to WL
    else skip
end
```

INF5110 -
Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

- worklist here: "collection" of productions
" alternatively, with slight reformulation: "collection" of non-terminals instead also possible

Follow sets

Definition (Follow set (ignoring \$))

Given a grammar G with start symbol S, and a non-terminal A.
The follow-set of A, written Follow $_{G}(A)$, is

$$
\text { Follow }_{G}(A)=\left\{a \mid S \Rightarrow_{G}^{*} \alpha_{1} A a \alpha_{2}, \quad a \in \Sigma_{T}\right\}
$$

- More generally: \$ as special end-marker

$$
S \$ \Rightarrow_{G}^{*} \alpha_{1} A a \alpha_{2}, \quad a \in \Sigma_{T}+\{\$\}
$$

- typically: start symbol not on the right-hand side of a production

Follow sets, recursively

Definition (Follow set of a non-terminal)

INF5110 -
Compiler
Construction

Given a grammar G and nonterminal A. The Follow-set of A, written $\operatorname{Follow}(A)$ is defined as follows:

1. If A is the start symbol, then Follow (A) contains $\$$.
2. If there is a production $B \rightarrow \alpha A \beta$, then $\operatorname{Follow}(A)$ contains $\operatorname{First}(\beta) \backslash\{\boldsymbol{\epsilon}\}$.
3. If there is a production $B \rightarrow \alpha A \beta$ such that $\boldsymbol{\epsilon} \in \operatorname{First}(\beta)$, then Follow (A) contains Follow (B).

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

- \$: "end marker" special symbol, only to be contained in the follow set

More imperative representation in pseudo code

```
Follow [S] := \{\$\}
for all non-terminals \(A \neq S\) do
    Follow \([A]:=\{ \}\)
end
while there are changes to any Follow-set do
    for each production \(A \rightarrow X_{1} \ldots X_{n}\) do
        for each \(X_{i}\) which is a non-terminal do
            Follow \(\left[X_{i}\right]:=\) Follow \(\left[X_{i}\right] \cup\left(\right.\) First \(\left.\left(X_{i+1} \ldots X_{n}\right) \vee\{\boldsymbol{\epsilon}\}\right)\)
            if \(\epsilon \in\) First \(\left(X_{i+1} X_{i+2} \ldots X_{n}\right)\)
            then Follow \(\left[X_{i}\right]:=\) Follow \(\left[X_{i}\right] \cup\) Follow \([A]\)
        end
    end
end
```

Note! $\operatorname{First}()=\{\epsilon\}$

Example expression grammar (expanded)

INF5110 -
Compiler
Construction

$$
\begin{align*}
\text { exp } & \rightarrow \text { exp addop term } \tag{4}\\
\text { exp } & \rightarrow \text { term } \\
\text { addop } & \rightarrow+ \\
\text { addop } & \rightarrow- \\
\text { term } & \rightarrow \text { term mulop factor } \\
\text { term } & \rightarrow \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow \mathbf{(e x p ~}) \\
\text { factor } & \rightarrow \mathbf{n}
\end{align*}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References
nr pass 1 pass 2

1 exp \rightarrow exp addop term

2 exp \rightarrow term

5 term \rightarrow term mulop factor

6 term \rightarrow factor

8 factor \rightarrow (exp)

Grammar rule	Pass 1	Pass 2
exp \rightarrow exp addop term	$\begin{gathered} \text { Follow }(\text { exp })= \\ \{\$,+,-\} \\ \text { Follow }(\text { addop })= \\ \{(\mathbb{\text { n }} \text { number }\} \\ \text { Follow }(\text { term })= \\ \{\$,+,-\} \end{gathered}$	$\begin{aligned} & \operatorname{Follow}(\text { term })= \\ & \{\$,+,-, \star,)\} \end{aligned}$
$\exp \rightarrow$ term		
term \rightarrow term mulop factor	Follow $($ term $)=$ $\{\$,+,-, *\}$ Follow(mulop) $=$ \{(, number\} Follow (factor $)=$ $\{\$,+,-, *\}$	$\begin{aligned} & \text { Follow }(\text { factor })= \\ & \{\$,+,-, *,)\} \end{aligned}$
term \rightarrow factor		
factor \rightarrow (exp)	```Follow(exp)= {$, +, -,)}```	

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Illustration of first/follow sets

$a \in \operatorname{First}(A)$

$$
a \in \text { Follow }(A)
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

- red arrows: illustration of information flow in the algos
- run of Follow:
- relies on First
- in particular $a \in \operatorname{First}(E)$ (right tree)
- \$ $\in \operatorname{Follow}(B)$

More complex situation (nullability)

$$
a \in \operatorname{First}(A)
$$

$$
a \in \text { Follow }(A)
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Some forms of grammars are less desirable than others

- left-recursive production:

$$
A \rightarrow A \alpha
$$

more precisely: example of immediate left-recursion

- 2 productions with common "left factor":

$$
A \rightarrow \alpha \beta_{1} \mid \alpha \beta_{2} \quad \text { where } \alpha \neq \boldsymbol{\epsilon}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Some simple examples for both

- left-recursion

$$
\exp \rightarrow \exp +\text { term }
$$

- classical example for common left factor: rules for conditionals

$$
\begin{array}{rll}
i f-s t m t & \rightarrow & \text { if }(\exp) \text { stmt end } \\
& \left\lvert\, \begin{array}{l}
\text { if }(\exp) \text { stmt } \text { else } s t m t \text { end }
\end{array}\right.
\end{array}
$$

INF5110 -
Compiler Construction

Transforming the expression grammar

$$
\begin{aligned}
\exp & \rightarrow \text { exp addop term } \mid \text { term } \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { term mulop factor } \mid \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\exp) \mid \text { number }
\end{aligned}
$$

- obviously left-recursive
- remember: this variant used for proper associativity!

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

After removing left recursion

$$
\begin{aligned}
\text { exp } & \rightarrow \text { term exp }^{\prime} \\
\text { exp }^{\prime} & \rightarrow \text { addopterm exp } \mid \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term } \\
\text { term' } & \rightarrow \text { mulop factor term } \\
\text { mulop } & \rightarrow \boldsymbol{\epsilon} \\
\text { factor } & \rightarrow(\text { exp }) \mid \mathbf{n}
\end{aligned}
$$

- still unambiguous
- unfortunate: associativity now different!
- note also: $\boldsymbol{\epsilon}$-productions \& nullability

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Left-recursion removal

Left-recursion removal

A transformation process to turn a CFG into one without left recursion

- price: $\boldsymbol{\epsilon}$-productions
- 3 cases to consider
- immediate (or direct) recursion
- simple
- general
- indirect (or mutual) recursion

Left-recursion removal: simplest case

Before

$$
A \rightarrow A \alpha \mid \beta
$$

After

$$
\begin{aligned}
A & \rightarrow \beta A^{\prime} \\
A^{\prime} & \rightarrow \alpha A^{\prime} \mid \boldsymbol{\epsilon}
\end{aligned}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Schematic representation

INF5110 -
 Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Remarks

- both grammars generate the same (context-free) language (= set of words over terminals)
- in EBNF:

$$
A \rightarrow \beta\{\alpha\}
$$

- two negative aspects of the transformation

1. generated language unchanged, but: change in resulting structure (parse-tree), i.a.w. change in associativity, which may result in change of meaning
2. introduction of ϵ-productions

- more concrete example for such a production: grammar for expressions

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Left-recursion removal: immediate recursion (multiple)

Before

Note: can be written in EBNF as:

After

$$
\begin{array}{rll|l|l}
A & \rightarrow & \beta_{1} A^{\prime} & \ldots & \beta_{m} A^{\prime} \\
A^{\prime} & \rightarrow & \alpha_{1} A^{\prime} & \ldots & \alpha_{n} A^{\prime} \\
& \mid & \boldsymbol{\epsilon}
\end{array}
$$

$$
A \rightarrow\left(\beta_{1}|\ldots| \beta_{m}\right)\left(\alpha_{1}|\ldots| \alpha_{n}\right)^{*}
$$

INF5110 -
Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Removal of: general left recursion

Assume non-terminals A_{1}, \ldots, A_{m}

```
for \(\mathrm{i}:=1\) to m do
    for \(j:=1\) to \(i-1\) do
        replace each grammar rule of the form \(A_{i} \rightarrow A_{j} \beta\) by \(/ / i<j\)
        rule \(A_{i} \rightarrow \alpha_{1} \beta\left|\alpha_{2} \beta\right| \ldots \mid \alpha_{k} \beta\)
            where \(A_{j} \rightarrow \alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{k}\)
            is the current rule(s) for \(A_{j} / /\) current
    end
    \(\{\) corresponds to \(i=j\}\)
    remove, if necessary, immediate left recursion for \(A_{i}\)
end
```

"current" = rule in the current stage of algo

Example (for the general case)

$$
\begin{array}{lll|l|l}
A & \rightarrow & B \mathbf{a} & A \mathbf{a} & \mathbf{c} \\
B & \rightarrow & B \mathbf{b} & A \mathbf{b} & \mathbf{d}
\end{array}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up

parsing
References

Example (for the general case)

$$
\begin{array}{lll|l|l}
A & \rightarrow & B \mathbf{a} & A \mathbf{a} \mid c \\
B & \rightarrow & B \mathbf{b} & A \mathbf{b} & \mathbf{d}
\end{array}
$$

$$
\begin{array}{rll}
A & \rightarrow & B \mathbf{a} A^{\prime} \mid \mathbf{c} A^{\prime} \\
A^{\prime} & \rightarrow & \mathbf{a} A^{\prime} \mid \epsilon \\
B & \rightarrow & B \mathbf{b}|A \mathbf{b}| \mathbf{d}
\end{array}
$$

Example (for the general case)

$$
\begin{array}{lll|l|l}
A & \rightarrow & B \mathbf{a}|A \mathbf{a}| c \\
B & \rightarrow & B \mathbf{b} & A \mathbf{b} & \mathbf{d}
\end{array}
$$

$$
\begin{aligned}
A & \rightarrow B \mathbf{a} A^{\prime} \mid \mathbf{c} A^{\prime} \\
A^{\prime} & \rightarrow \mathbf{a} A^{\prime} \mid \epsilon \\
B & \rightarrow B \mathbf{b}|A \mathbf{b}| \mathbf{d}
\end{aligned}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

$$
\begin{aligned}
A & \rightarrow B \mathbf{a} A^{\prime} \mid \mathbf{c} A^{\prime} \\
A^{\prime} & \rightarrow \mathbf{a} A^{\prime} \mid \boldsymbol{\epsilon} \\
B & \rightarrow B \mathbf{b}\left|B \mathbf{a} A^{\prime} \mathbf{b}\right| \mathbf{c} A^{\prime} \mathbf{b} \mid \mathbf{d}
\end{aligned}
$$

Bottom-up parsing

References

Example (for the general case)

$$
\begin{array}{lll|l|l}
A & \rightarrow & B \mathbf{a} & A \mathbf{a} \mid c \\
B & \rightarrow & B \mathbf{b} & A \mathbf{b} & \mathbf{d}
\end{array}
$$

$$
\begin{aligned}
& A \rightarrow \\
& A^{\prime} \rightarrow \mathbf{a} A^{\prime} \mid \mathbf{c} A^{\prime} \\
& B \rightarrow \\
& A^{\prime} \mid \epsilon \\
& B \mathbf{b}|A \mathbf{b}| \mathbf{d}
\end{aligned}
$$

$$
\begin{aligned}
A & \rightarrow B \mathbf{a} A^{\prime} \mid \mathbf{c} A^{\prime} \\
A^{\prime} & \rightarrow \mathbf{a} A^{\prime} \mid \boldsymbol{\epsilon} \\
B & \rightarrow B \mathbf{b}\left|B \mathbf{a} A^{\prime} \mathbf{b}\right| \mathbf{c} A^{\prime} \mathbf{b} \mid \mathbf{d}
\end{aligned}
$$

$$
\begin{aligned}
A & \rightarrow B \mathbf{a} A^{\prime} \mid \mathbf{c} A^{\prime} \\
A^{\prime} & \rightarrow \mathbf{a} A^{\prime} \mid \epsilon \\
B & \rightarrow \mathbf{c} A^{\prime} \mathbf{b} B^{\prime} \mid \mathbf{d} B^{\prime} \\
B^{\prime} & \rightarrow \mathbf{b} B^{\prime}\left|\mathbf{a} A^{\prime} \mathbf{b} B^{\prime}\right| \epsilon
\end{aligned}
$$

Left factor removal

- CFG: not just describe a context-free languages
- also: intended (indirect) description of a parser for that language
\Rightarrow common left factor undesirable
- cf.: determinization of automata for the lexer

Simple situation

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Example: sequence of statements

After

Before

$\begin{array}{lll}\text { stmt-seq } & \rightarrow & \text { stmt } ; \text { stmt-seq } \\ & \left\lvert\, \begin{array}{l}\text { stmt }\end{array}\right.\end{array}$

Introduction to parsing

Top-down parsing
First and follow
sets
LL-parsing (mostly LL(1))

Bottom-up parsing

References

Example: conditionals

Before

$$
\begin{aligned}
\text { if-stmt } & \rightarrow \text { if }(\exp) \text { stmt-seq end } \\
& \mid \text { if }(\exp) \text { stmt-seq else } \text { stmt-seq end }
\end{aligned}
$$

After

$$
\begin{aligned}
\text { if-stmt } & \rightarrow \text { if }(\exp) \text { stmt-seq else-or-end } \\
\text { else-or-end } & \rightarrow \text { else stmt-seq end | end }
\end{aligned}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Example: conditionals (without else)

Before

$$
\begin{aligned}
\text { if-stmt } & \rightarrow \text { if }(\exp) \text { stmt-seq } \\
& \mid \text { if }(\exp) \text { stmt-seq else stmt-seq }
\end{aligned}
$$

After

$$
\begin{aligned}
i f \text {-stmt } & \rightarrow \text { if }(\text { exp }) \text { stmt-seq else-or-empty } \\
\text { else-or-empty } & \rightarrow \text { else stmt-seq } \mid \boldsymbol{\epsilon}
\end{aligned}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Not all factorization doable in "one step"

Starting point

$$
A \rightarrow \mathbf{a b c} B|\mathbf{a b} C| \mathbf{a} E
$$

After 1 step

$$
\begin{aligned}
A & \rightarrow \mathbf{a b} A^{\prime} \mid \mathbf{a} E \\
A^{\prime} & \rightarrow \mathbf{c} B \mid C
\end{aligned}
$$

After 2 steps

$$
\begin{aligned}
A & \rightarrow \mathbf{a} A^{\prime \prime} \\
A^{\prime \prime} & \rightarrow \mathbf{b} A^{\prime} \mid E \\
A^{\prime} & \rightarrow \mathbf{c} B \mid C
\end{aligned}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References
note. we choose the lonoest common nrefix (= longest

Left factorization

```
while there are changes to the grammar do
    for each nonterminal \(A\) do
        let \(\alpha\) be a prefix of max. length that is shared
                                    by two or more productions for \(A\)
        if \(\quad \alpha \neq \epsilon\)
        then
            let \(A \rightarrow \alpha_{1}|\ldots| \alpha_{n}\) be all
                        prod. for \(A\) and suppose that \(\alpha_{1}, \ldots, \alpha_{k}\) share \(\alpha\)
                        so that \(A \rightarrow \alpha \beta_{1}|\ldots| \alpha \beta_{k}\left|\alpha_{k+1}\right| \ldots \mid \alpha_{n}\),
                        that the \(\beta_{j}\) 's share no common prefix, and
                        that the \(\alpha_{k+1}, \ldots, \alpha_{n}\) do not share \(\alpha\).
        replace rule \(A \rightarrow \alpha_{1}|\ldots| \alpha_{n}\) by the rules
        \(A \rightarrow \alpha A^{\prime}\left|\alpha_{k+1}\right| \ldots \mid \alpha_{n}\)
        \(A^{\prime} \rightarrow \beta_{1}|\ldots| \beta_{k}\)
        end
    end
end
```


Section

LL-parsing (mostly LL(1))

Chapter 4 "Parsing"
Course "Compiler Construction"
Martin Steffen
Spring 2018

Parsing LL(1) grammars

- this lecture: we don't do $\operatorname{LL}(\mathrm{k})$ with $k>1$
- LL(1): particularly easy to understand and to implement (efficiently)
- not as expressive than $\operatorname{LR}(1)$ (see later), but still kind of decent

LL(1) parsing principle

Parse from 1) left-to-right (as always anyway), do a 2) left-most derivation and resolve the "which-right-hand-side" non-determinism by

1. looking 1 symbol ahead.

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

- two flavors for $\operatorname{LL}(1)$ parsing here (both are top-down parsers)
- recursive descent
- table-based LL(1) parser
- predictive parsers

Sample expr grammar again

factors and terms

Introduction to

$$
\begin{align*}
\text { exp } & \rightarrow \text { term }^{\prime} \text { exp }^{\prime} \tag{6}\\
\text { exp }^{\prime} & \rightarrow \text { addop term exp }^{\prime} \mid \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term } \\
\text { term }^{\prime} & \rightarrow \text { mulop factor term }^{\prime} \mid \boldsymbol{\epsilon} \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\exp) \mid \mathbf{n}
\end{align*}
$$

parsing
Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up

 parsingReferences

Look-ahead of 1: straightforward, but not trivial

- look-ahead of 1 :
- not much of a look-ahead, anyhow
" just the "current token"
\Rightarrow read the next token, and, based on that, decide
- but: what if there's no more symbols?
\Rightarrow read the next token if there is, and decide based on the token or else the fact that there's none left ${ }^{6}$

Example: 2 productions for non-terminal factor

$$
\text { factor } \rightarrow(\exp) \mid \text { number }
$$

that situation is trivial, but that's not all to $\operatorname{LL}(1)$...

[^1]
Recursive descent: general set-up

1. global variable, say tok, representing the "current token" (or pointer to current token)
2. parser has a way to advance that to the next token (if there's one)

Idea

For each non-terminal nonterm, write one procedure which:

- succeeds, if starting at the current token position, the "rest" of the token stream starts with a syntactically correct word of terminals representing nonterm
- fail otherwise

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

- ignored (for right now): when doing the above successfully, build the AST for the accepted nonterminal.

Recursive descent

method factor for nonterminal factor

```
final int LPAREN=1,RPAREN=2,NUMBER=3,
PLUS=4,MINUS=5,TIMES=6;
```

```
void factor () {
    switch (tok) {
    case LPAREN: eat(LPAREN); expr(); eat(RPAREN);
    case NUMBER: eat(NUMBER);
    }
}
```

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Recursive descent

INF5110 -
Compiler

Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Slightly more complex

- previous 2 rules for factor: situation not always as immediate as that

LL(1) principle (again)

given a non-terminal, the next token must determine the choice of right-hand side ${ }^{7}$
\Rightarrow definition of the First set

Lemma (LL(1) (without nullable symbols))

A reduced context-free grammar without nullable non-terminals is an LL(1)-grammar iff for all non-terminals A and for all pairs of productions $A \rightarrow \alpha_{1}$ and $A \rightarrow \alpha_{2}$ with $\alpha_{1} \neq \alpha_{2}$:

$$
\operatorname{First}_{1}\left(\alpha_{1}\right) \cap \operatorname{First}_{1}\left(\alpha_{2}\right)=\varnothing .
$$

[^2]
Common problematic situation

- often: common left factors problematic

$$
\begin{aligned}
\text { if-stmt } & \rightarrow \text { if (exp) stmt } \\
& \mid \text { if (exp) stmt else stmt }
\end{aligned}
$$

- requires a look-ahead of (at least) 2
- \Rightarrow try to rearrange the grammar

1. Extended BNF ([2] suggests that)

$$
\text { if-stmt } \rightarrow \text { if (exp) stmt }[\text { else } s t m t]
$$

1. left-factoring:

$$
\begin{aligned}
\text { if-stmt } & \rightarrow \text { if }(\text { exp }) \text { stmt else-part } \\
\text { else-part } & \rightarrow \boldsymbol{\epsilon} \mid \text { else } \text { stmt }
\end{aligned}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Recursive descent for left-factored if-stmt

INF5110 -
Compiler
\section*{Construction}

```
procedure ifstmt()
    begin
        match (" if ");
        match ("(");
        exp ();
        match (")");
        stmt();
        if token = "else"
        then match ("else");
            stmt()
        end
    end;
```


Left recursion is a no-go

factors and terms

$$
\begin{align*}
\exp & \rightarrow \text { exp addop term } \mid \text { term } \tag{7}\\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { term mulop factor } \mid \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\exp) \mid \text { number }
\end{align*}
$$

- consider treatment of exp: First(exp)?
- whatever is in First(term), is in First (exp) $)^{8}$
- even if only one (left-recursive) production \Rightarrow infinite recursion.

Left-recursion

Left-recursive grammar never works for recursive descent.

[^3]
Removing left recursion may help

procedure exp()
procedure exp()
begin
begin
term();
term();
exp'()
exp'()
exp \rightarrow termexp ${ }^{\prime}$
exp $^{\prime} \rightarrow$ addop term exp ${ }^{\prime}$
addop $\rightarrow+1-$
term \rightarrow factor term ${ }^{\prime}$
term $^{\prime} \rightarrow$ mulop factor term ${ }^{\prime}$
mulop \rightarrow *
factor $\rightarrow(\exp) \mid \mathbf{n}$
procedure exp'()
procedure exp'()
begin
begin
case token of
case token of
"+": match("+");
"+": match("+");
term();
term();
exp'()
exp'()
" -": match(" - ");
" -": match(" - ");
term();
term();
exp'()
exp'()
end
end
end
end

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Recursive descent works, alright, but ...

... who wants this form of trees?

The two expression grammars again

no left-rec.

Precedence \& assoc.

```
exp -> exp addop term | term
addop }->+|
    term }->\mathrm{ term mulop factor | fact
mulop -> *
factor }->\mathrm{ ( exp) | number
```

- clean and straightforward rules
- left-recursive

exp \rightarrow term exp ${ }^{\prime}$	INF5110 Compiler Construction
exp $^{\prime} \rightarrow$ addop termexp ${ }^{\prime} \mid \boldsymbol{\epsilon}$	
addop $\rightarrow+\mid-$	
term \rightarrow factor term ${ }^{\prime}$	parsing
term $^{\prime} \rightarrow$ mulop factor term ${ }^{\prime} \mid \boldsymbol{\epsilon}$	
mulop \rightarrow *	Top-down parsing
factor $\rightarrow(\exp) \mid \mathbf{n}$	First and follow sets
	LL-parsing (mostly LL(1))
- no left-recursion	Bottom-up parsing
- assoc. / precedence ok	References
- rec. descent parsing ok	
- but: just "unnatural"	
- non-straightforward	4-76

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly

Bottom-up parsing

Left-recursive grammar with nicer parse trees

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

The simple "original" expression grammar (even nicer)

Flat expression grammar

$$
\begin{aligned}
\exp & \rightarrow \exp \text { op } \exp |(\exp)| \text { number } \\
o p & \rightarrow+|-| *
\end{aligned}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Associtivity problematic

Precedence \& assoc.

$$
\begin{aligned}
\exp & \rightarrow \text { exp addop term | term } \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { term mulop factor } \mid \text { factor } \\
\text { mulop } & \rightarrow \\
\text { factor } & \rightarrow(\text { exp }) \mid \text { number }
\end{aligned}
$$

$$
3+4+5
$$

parsed "as"

Associtivity problematic

Precedence \& assoc.

$$
\begin{aligned}
\exp & \rightarrow \text { exp addop term } \mid \text { term } \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { term mulop factor } \mid \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\exp) \mid \text { number }
\end{aligned}
$$

$$
3-4-5
$$

parsed "as"

Now use the grammar without left-rec (but right-rec instead)

No left-rec.

$$
\begin{aligned}
\text { exp } & \rightarrow \text { term } \text { exp }^{\prime} \\
\text { exp }^{\prime} & \rightarrow \text { addop term exp } \mid \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term } \\
\text { term } & \rightarrow \text { mulop factor term } \\
\text { mulop } & \rightarrow \epsilon^{*} \\
\text { factor } & \rightarrow(\text { exp }) \mid \mathbf{n}
\end{aligned}
$$

Now use the grammar without left-rec (but right-rec instead)

No left-rec.

$$
\begin{aligned}
\text { exp } & \rightarrow \text { term } \text { exp }^{\prime} \\
\text { exp }^{\prime} & \rightarrow \text { addop term exp } \mid \boldsymbol{\epsilon} \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { factor term } \\
\text { term } & \rightarrow \text { mulop factor term } \\
\text { mulop } & \rightarrow \epsilon^{*} \\
\text { factor } & \rightarrow(\text { exp }) \mid \mathbf{n}
\end{aligned}
$$

$3-4-5$
parsed "as"

$$
3-(4-5)
$$

But if we need a "left-associative" AST?

- we want $(3-4)-5$, not $3-(4-5)$

Code to "evaluate" ill-associated such trees correctly

```
```

function exp' (valsofar: int): int;

```
```

function exp' (valsofar: int): int;
begin
begin
if token = '+' or token = '_'
if token = '+' or token = '_'
then
then
case token of
case token of
'+': match ('+');
'+': match ('+');
valsofar := valsofar + term;
valsofar := valsofar + term;
'_': match (' - ');
'_': match (' - ');
valsofar := valsofar - term;
valsofar := valsofar - term;
end case;
end case;
return exp'(valsofar);
return exp'(valsofar);
else return valsofar
else return valsofar
end;

```
```

end;

```
```

INF5110 Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

- extra "accumulator" argument valsofar
- instead of evaluating the expression, one could build the AST with the appropriate associativity instead:
- instead of valueSoFar, one had rootOfTreeSoFar

"Designing" the syntax, its parsing, \& its AST

- trade offs:

1. starting from: design of the language, how much of the syntax is left "implicit" ${ }^{9}$
2. which language class? Is $\operatorname{LL}(1)$ good enough, or something stronger wanted?
3. how to parse? (top-down, bottom-up, etc.)
4. parse-tree/concrete syntax trees vs. ASTs

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References
${ }^{9}$ Lisp is famous/notorious in that its surface syntax is more or less an explicit notation for the ASTs. Not that it was originally planned like this...

AST vs. CST

- once steps 1.-3. are fixed: parse-trees fixed!
- parse-trees $=$ essence of grammatical derivation process
- often: parse trees only "conceptually" present in a parser
- AST:
- abstractions of the parse trees
- essence of the parse tree
- actual tree data structure, as output of the parser
- typically on-the fly: AST built while the parser parses, i.e. while it executes a derivation in the grammar

AST vs. CST/parse tree

Parser "builds" the AST data structure while "doing" the parse tree

AST: How "far away" from the CST?

- AST: only thing relevant for later phases \Rightarrow better be clean ...
- AST "=" CST?
- building AST becomes straightforward
- possible choice, if the grammar is not designed "weirdly",

AST: How "far away" from the CST?

- AST: only thing relevant for later phases \Rightarrow better be clean...
- AST "=" CST?
- building AST becomes straightforward
- possible choice, if the grammar is not designed "weirdly",

number
slightly more reasonable looking as AST (but underlying grammar not directly useful for recursive descent)

AST: How "far away" from the CST?

- AST: only thing relevant for later phases \Rightarrow better be clean...
- AST "=" CST?
- building AST becomes straightforward
- possible choice, if the grammar is not designed "weirdly",

That parse tree looks reasonable clear and intuitive

AST: How "far away" from the CST?

- AST: only thing relevant for later phases \Rightarrow better be clean...
- AST " =" CST?
- building AST becomes straightforward
- possible choice, if the grammar is not designed "weirdly",

Wouldn't that be the best AST here?

AST: How "far away" from the CST?

- AST: only thing relevant for later phases \Rightarrow better be clean ...
- AST "=" CST?
" building AST becomes straightforward
- possible choice, if the grammar is not designed "weirdly",

Wouldn't that be the best AST here?

Certainly minimal amount of nodes, which is nice as such. However, what is missing (which might be interesting) is the fact that the 2 nodes labelled "-" are expressions!

AST: How "far away" from the CST?

- AST: only thing relevant for later phases \Rightarrow better be clean ...
- AST " =" CST?
- building AST becomes straightforward
- possible choice, if the grammar is not designed "weirdly",

Wouldn't that be the best AST here?

Certainly minimal amount of nodes, which is nice as such. However, what is missing (which might be interesting) is the fact that the 2 nodes labelled "-" are expressions!

This is how it's done (a recipe)

Assume, one has a "non-weird" grammar

$$
\begin{aligned}
\exp & \rightarrow \exp \text { op } \exp |(\exp)| \text { number } \\
o p & \rightarrow+|-| *
\end{aligned}
$$

- typically that means: assoc. and precedences etc. are fixed outside the non-weird grammar
- by massaging it to an equivalent one (no left recursion etc.)
- or (better): use parser-generator that allows to specify assoc...
,, without cluttering the grammar.
- if grammar for parsing is not as clear: do a second one describing the ASTs

Remember (independent from parsing)
BNF describe trees

This is how it's done (recipe for OO data structures)

Recipe

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

- terminal: concrete class as well, field/constructor for token's value

Example in Java

```
    exp -> exp op exp | (exp)| number
    op }->+|-1
    abstract public class Exp {
}
public class BinExp extends Exp { // exp -> exp op exp
        public Exp left, right;
    public Op op;
    public BinExp(Exp l, Op o, Exp r) {
        left=l; op=o; right=r;}
}
```

public class Parenthetic Exp extends Exp \{ // exp -> (
public Exp exp;
public ParentheticExp(Exp e) $\{\exp =1 ;\}$
\}
public number; // token value
public Number(int i) \{number $=\mathrm{i} ;\}$

Example in Java

$$
\begin{aligned}
\exp & \rightarrow \exp \text { op exp }|(\exp)| \text { number } \\
o p & \rightarrow+|-| *
\end{aligned}
$$

```
abstract public class Op { // non-terminal = abstract
}
```

```
    public class Plus extends Op { // op -> "+"
```

\}
public class Minus extends Op \{ // op -> "-" \}

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

```
public class Times extends Op { // op -> "*"
}
```


$3-(4-5)$

$$
\begin{aligned}
& \text { INF5110 - } \\
& \text { Compiler } \\
& \text { Construction }
\end{aligned}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Pragmatic deviations from the recipe

- it's nice to have a guiding principle, but no need to carry it too far...
- To the very least: the ParentheticExpr is

INF5110 -
Compiler
Construction completely without purpose: grouping is captured by the tree structure
\Rightarrow that class is not needed

- some might prefer an implementation of

$$
o p \rightarrow+\mid-1 *
$$

as simply integers, for instance arranged like

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

```
public class BinExp extends Exp { // exp -> exp op exp
    public Exp left, right;
    public int op;
    public BinExp(Exp I, int o, Exp r) {pos=p; left=l; oper=o; right=r
    public final static int PLUS=0, MINUS=1, TIMES=2;
}
```


Recipe for ASTs, final words:

- space considerations for AST representations are irrelevant in most cases
- clarity and cleanness trumps "quick hacks" and "squeezing bits"
- some deviation from the recipe or not, the advice still holds:

Do it systematically

A clean grammar is the specification of the syntax of the language and thus the parser. It is also a means of communicating with humans (at least with pros who (of course) can read BNF) what the syntax is. A clean grammar is a very systematic and structured thing which consequently can and should be systematically and cleanly represented in an AST, including judicious and systematic choice of names and conventions (nonterminal exp represented by class Exp, non-terminal stmt by class Stmt etc)

Introduction to
parsing

Top-down parsing First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References parsing

INF5110 -
Compiler
Construction

Extended BNF may help alleviate the pain

BNF

EBNF

INF5110 -
Compiler
$\begin{array}{rl}\exp & \rightarrow \text { exp addop term | term exp } \\ \text { term } & \rightarrow \text { term }\{\text { addop term }\} \\ & \text { term mulop factor } \mid \text { fac term }\end{array} \rightarrow$ factor\{ mulop factor $\}_{\substack{\text { Introduction to } \\ \text { parsing }}}$
but remember:
Top-down parsing

- EBNF just a notation, just because we do not see (left First and follow sets or right) recursion in $\{\ldots\}$, does not mean there is no recursion.
- not all parser generators support EBNF
- however: often easy to translate into loops- ${ }^{10}$

LL-parsing (mostly LL(1))

Bottom-up parsing

References

- does not offer a general solution if associativity etc. is problematic
${ }^{10}$ That results in a parser which is somehow not "pure recursive descent". It's "recusive descent, but sometimes, let's use a while-loop, if more convenient concerning, for instance, associativity"

Pseudo-code representing the EBNF productions

```
procedure exp;
begin
    term ; { recursive call }
    while token = "+" or token = "-"
    do
        match(token);
        term; // recursive call
    end
end
```

```
procedure term;
begin
    factor; {recursive call }
    while token = "*"
    do
        match(token);
        factor; // recursive call
    end
end
```

INF5110 Compiler Construction

Bottom-up

 parsing
References

Introduction to parsing
 Top-down parsing
 First and follow sets
 LL-parsing (mostly LL(1))

How to produce "something" during RD parsing?

Recursive descent

So far: RD = top-down (parse-)tree traversal via recursive procedure. ${ }^{11}$ Possible outcome: termination or failure.
" Now: instead of returning "nothing" (return type void or similar), return some meaningful, and build that up during traversal

- for illustration: procedure for expressions:
- return type int,
- while traversing: evaluate the expression

[^4]
Evaluating an \exp during RD parsing

```
function exp() : int;
var temp: int
begin
    temp := term (); {recursive call }
    while token = "+" or token = "-"
        case token of
            "+": match ("+");
                            temp := temp + term();
            " -": match (" -")
                        temp := temp - term();
            end
    end
    return temp;
end
```


INF5110 -
 Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up

 parsing
References

Building an AST: expression

```
function exp() : syntaxTree;
var temp, newtemp: syntaxTree
begin
    temp := term (); {recursive call }
    while token="+" or token=" "
        case token of
        "+": match ("+");
            newtemp := makeOpNode("+");
            leftChild(newtemp) := temp;
            rightChild(newtemp) := term();
            temp := newtemp;
            "_": match (" - ")
            newtemp := makeOpNode(" - ");
            leftChild(newtemp) := temp;
            rightChild(newtemp) := term();
            temp := newtemp;
        end
    end
    return temp;
end
```

- note: the use of temp and the while loop

Building an AST: factor

$$
\text { factor } \rightarrow(\exp) \mid \text { number }
$$

INF5110 -
Compiler Construction

```
function factor() : syntaxTree;
var fact: syntaxTree
begin
    case token of
        "(": match ("(");
            fact := exp();
            match (")");
        number:
            match (number)
            fact := makeNumberNode(number);
            else : error ... // fall through
    end
    return fact;
end
```


Building an AST: conditionals

$$
i f-s t m t \rightarrow \text { if }(\exp) \text { stmt }[\text { else } s t m t]
$$

```
function ifStmt() : syntaxTree;
var temp: syntaxTree
begin
    match (" if ");
    match ("(");
    temp := makeStmtNode("if ")
    testChild(temp) := exp();
    match (")");
    thenChild(temp) := stmt();
    if token = "else"
    then match "else";
        elseChild(temp) := stmt();
    else elseChild(temp) := nil;
    end
    return temp;
end
```

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Building an AST: remarks and "invariant"

INF5110 -
Compiler
Construction

- $\mathrm{LL}(1)$ requirement: each procedure/function/method (covering one specific non-terminal) decides on alternatives, looking only at the current token
- call of function A for non-terminal A :
- upon entry: first terminal symbol for A in token
- upon exit: first terminal symbol after the unit derived from A in token
" match("a") : checks for "a" in token and eats the token (if matched).

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

LL(1) parsing

- remember $\operatorname{LL}(1)$ grammars $\& \operatorname{LL}(1)$ parsing principle:

LL(1) parsing principle

1 look-ahead enough to resolve "which-right-hand-side" non-determinism.

- instead of recursion (as in RD): explicit stack
- decision making: collated into the $\operatorname{LL}(1)$ parsing table
- LL(1) parsing table:
- finite data structure M (for instance 2 dimensional array ${ }^{12}$

$$
M: \Sigma_{N} \times \Sigma_{T} \rightarrow\left(\left(\Sigma_{N} \times \Sigma^{*}\right)+\text { error }\right)
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

- $M[A, a]=w$
- we assume: pure BNF
${ }^{12}$ Often, the entry in the parse table does not contain a full rule as here, needed is only the right-hand-side. In that case the table is of type $\Sigma_{N} \times \Sigma_{T} \rightarrow\left(\Sigma^{*}+\right.$ error $)$. We follow the convention of this book.

Construction of the parsing table

Table recipe

1. If $A \rightarrow \alpha \in P$ and $\alpha \Rightarrow^{*} \mathbf{a} \beta$, then add $A \rightarrow \alpha$ to table entry $M[A, \mathbf{a}]$
2. If $A \rightarrow \alpha \in P$ and $\alpha \Rightarrow^{*} \boldsymbol{\epsilon}$ and $S \mathbb{\$} \Rightarrow^{*} \beta A \mathbf{a} \gamma$ (where a is a token (=non-terminal) or $\$$), then add $A \rightarrow \alpha$ to table entry $M[A, \mathbf{a}]$

Table recipe (again, now using our old friends First and Follow)

Assume $A \rightarrow \alpha \in P$.

1. If $\mathbf{a} \in \operatorname{First}(\alpha)$, then add $A \rightarrow \alpha$ to $M[A, \mathbf{a}]$.
2. If α is nullable and $\mathbf{a} \in \operatorname{Follow}(A)$, then add $A \rightarrow \alpha$ to $M[A, \mathbf{a}]$.

Example: if-statements

- grammars is left-factored and not left recursive

$$
\begin{aligned}
& \text { stmt } \rightarrow \text { if-stmt } \mid \text { other } \\
& \text { if-stmt } \rightarrow \text { if }(\text { exp }) \text { stmt else-part } \\
& \text { else-part } \rightarrow \text { else stmt } \mid \epsilon \\
& \text { exp } \rightarrow \mathbf{0} \mid \mathbf{1} \\
& \\
& \\
& \hline \text { stmt } \text { First } \\
& \text { other, if } \text { Follow } \\
& \text { if-stmt } \text { if } \\
& \text { ifse } \mathbf{\$,} \text { else } \\
& \text { else-part } \text { else, } \boldsymbol{\epsilon} \\
& \text { exp } \mathbf{0}, \mathbf{e} \\
& \mathbf{e l s e} \\
& \text { else }
\end{aligned}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Example: if statement: "LL(1) parse table"

M[N,T]	if	other	else	0	1	$\$$
statement	statement \rightarrow if-stmt	statement \rightarrow other				
if-stmt	if-stmt \rightarrow if (exp) statement else-part		else-part \rightarrow else statement			
else-part						
else-part $\rightarrow \varepsilon$						

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

- 2 productions in the "red table entry"
- thus: it's technically not an LL(1) table (and it's not an LL(1) grammar)
- note: removing left-recursion and left-factoring did not help!

LL(1) table based algo

while the top of the parsing stack $\neq \$$

if the top of the parsing stack is terminal a
and the next input token $=\mathbf{a}$

then

pop the parsing stack;
advance the input; // '`match ''
else if the top the parsing is non-terminal A
and the next input token is a terminal or \$
and parsing table $M[A, \mathbf{a}]$ contains production $A \rightarrow X_{1} X_{2} \ldots X_{n}$
then (* generate *)
pop the parsing stack
for $i:=n$ to 1 do push X onto the stack;
else error
if the top of the stack $=\$$
then accept

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

LL(1): illustration of run of the algo

แ(1) parsing actions for	Parsing stack	Input	Action
itstatements using the most	\$S	i(0)i(1)oeos	$S \rightarrow 1$
dosely nested disambiguating	\$ 1	$i(0) i(1) 0$ os	$l \rightarrow \mathbf{i}(E) S L$
nule	\$LS)E(i	i(0)i(1)0eos	match
	\$ LS) E ((0)i(1)oeos	match
	\$ $L S$) E	$0) i(1) \mathrm{e}$-\$	$E \rightarrow 0$
	\$ $L S$) 0	0)i(1)oeos	match
	\$ $2 S$))i(1)oeos	match
	\$ L S	i(1) 0 e ${ }^{\text {S }}$	$S \rightarrow 1$
	\$ LI	i(1) oeo\$	$l \rightarrow \mathbf{i}(E) S L$
	\$LLS)E(i	i(1)oeos	match
	\$LLS)E ((1)0eos	match
	\$LLS) E	1) 0 e\%	$E \rightarrow 1$
	\$ $2 L S$) 1	1) ${ }^{\text {1 }}$ - \$	match
	\$LLS)	loeo\$	match
	\$LLS	oeo\$	$S \rightarrow 0$
	\$LLO	oeos	match
	\$ LL	eos	$L \rightarrow \mathrm{e} S$ match
	\$LSe	$\begin{array}{r} \text { eo\$ } \\ \text { o\$ } \end{array}$	match
	\$ LS	-\$	match
		\$	$L \rightarrow \varepsilon$
	$\begin{aligned} & \$ L \\ & \$ \end{aligned}$	\$	accept

INF5110 Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References
*

Expressions

Original grammar

$$
\begin{aligned}
\exp & \rightarrow \text { exp addop term } \mid \text { term } \\
\text { addop } & \rightarrow+\mid- \\
\text { term } & \rightarrow \text { term mulop factor } \mid \text { factor } \\
\text { mulop } & \rightarrow * \\
\text { factor } & \rightarrow(\exp) \mid \text { number }
\end{aligned}
$$

	First	Follow
exp	(, number	\$,)
$e x p^{\prime}$	$+,-, \boldsymbol{\epsilon}$	\$,)
addop	+, -	(, number
term	(, number	\$,), +, -
term'	*, $\boldsymbol{\epsilon}$	\$,), +, -
mulop	*	(, number
factor	(, number	\$,), +, -, *

INF5110 -

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Expressions

Original grammar

Expressions

Left-rec removed

$$
\begin{aligned}
& \exp \rightarrow \text { term exp }{ }^{\prime} \\
& \text { exp }^{\prime} \rightarrow \text { addop term exp }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { factor term }{ }^{\prime} \\
& \text { term }{ }^{\prime} \rightarrow \text { mulop factor term }{ }^{\prime} \mid \boldsymbol{\epsilon} \\
& \text { mulop } \rightarrow \text { * } \\
& \text { factor } \rightarrow(\exp) \mid \mathbf{n}
\end{aligned}
$$

INF5110 -

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Expressions: LL(1) parse table

$M[N, T]$	$($	number)	+	-	*	\$
\exp	$\begin{aligned} & \exp \rightarrow \\ & \text { term } \exp ^{\prime} \end{aligned}$	$\underset{\text { exp } \rightarrow}{\exp }{ }^{\prime}$					
$\exp ^{\prime}$			$\exp ^{\prime} \rightarrow \varepsilon$	$\exp ^{\prime} \rightarrow$ addop term exp'	$\exp ^{\prime} \rightarrow$ addop term exp'		$\exp ^{\prime} \rightarrow \varepsilon$
addop				addop $\rightarrow+$	addop \rightarrow		
term	$\text { term } \rightarrow$ factor term'	$\text { term } \rightarrow$ factor term $^{\prime}$					
term ${ }^{\prime}$			$\text { term }^{\prime} \rightarrow$	term $^{\prime} \rightarrow \varepsilon$	term $^{\prime} \rightarrow \varepsilon$	term $^{\prime} \rightarrow$ mulop factor term'	$\text { term }^{\prime} \rightarrow_{\varepsilon}$
mulop			.			$\begin{aligned} & \text { mulop } \rightarrow \\ & *\end{aligned}$	
factor	$\begin{array}{r} \text { factor } \rightarrow \\ \quad(\exp) \end{array}$	factor \rightarrow number					

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Error handling

- at the least: do an understandable error message
- give indication of line / character or region responsible for the error in the source file
- potentially stop the parsing
- some compilers do error recovery
- give an understandable error message (as minimum)
- continue reading, until it's plausible to resume parsing \Rightarrow find more errors
- however: when finding at least 1 error: no code generation
- observation: resuming after syntax error is not easy

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Error messages

- important:
- try to avoid error messages that only occur because of an already reported error!
- report error as early as possible, if possible at the first point where the program cannot be extended to a correct program.
- make sure that, after an error, one doesn't end up in a infinite loop without reading any input symbols.
- What's a good error message?
- assume: that the method factor () chooses the alternative (\exp) but that it, when control returns from method $\exp ()$, does not find a)
- one could report: left paranthesis missing

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

- But this may often be confusing, e.g. if what the program text is: ($\mathrm{a}+\mathrm{b} \mathrm{c}$)
- here the $\exp ()$ method will terminate after ($\mathrm{a}+\mathrm{b}$, as c cannot extend the expression). You should therefore rather give the message error in
expression or left paranthesis missing.

Handling of syntax errors using recursive descent

INF5110 Compiler Construction
Synch-set (stack or parameter):
)

+ - (tall navn

Syntax errors with sync stack

From the sketch at the previous page we can easily find:

- Which call should continue the execution?
- What input symbol should this method search for before resuming?
- We assume that \$ is added to the synch. stack only by the outermost method (for the start symbol)
- The union of everything on the stack is called the "synch. set", SS

The algorithm for this goes is as follows:
For each coming input symbol, test if it is a member of SS
If so:

- Look through the SS stack from newest to oldest, and find the newest method
- that are willing to resume at one of these symbol
- This method will itself know how to resume after the actual input symbol

What is not easy is to program this without destroing the nich program structure occuring from pure recursive descent.

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Procedures for expression with 'error recovery"

INF5110 -
Compiler
Construction

```
procedure \(\exp\) (synchset) ;
begin
    checkinput ({ (, number }, synchset );
    if not (token in synchset) then
        term (synchset );
        while token = + or token = - do
            match (token);
            term(synchset);
        end while ; Also {+,-} ?
        checkinput (synchset, { (, number });
end if;
end exp;
```


Main philosophy

The method "checkinput" is called twice: First to check that the construction starts correctly, and secondly to check that the symbol after the construction is legal.

Uses parameters, not a stack
The procedures must themselves resume execution at the right place inside themselves when they get the control back,
or it must terminate immediately if it cannot resume execution on the current symbol.
if token in $\{($, number $\}$ then ...

```
procedure factor (synchset);
begin
    checkinput ({ (, number }, synchset);
    if not (token in synchset) then
    case token of
    (: match(();
        exp({)});\longleftarrowWWyy not the full"synchset"?
        match());
    number:
                match(number);
    else error;
    end case ;
    checkinput ( synchset, { (, number });
end if ;
end factor;
```

procedure scanto (synchset) ;
begin
while not (token in synchset $\cup\{\$\}$) do
getToken;
end scanto ;
procedure checkinput (firstset, followset) ;
begin
if not (token in firstset) then
error;
scanto $($ firstset \cup followset $)$;
end if ;
end;

Introduction to parsing

Top-down parsing

First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Section

Bottom-up parsing

Chapter 4 "Parsing"
Course "Compiler Construction"
Martin Steffen
Spring 2018

Bottom-up parsing: intro

" R " stands for right-most derivation.
LR(0) - only for very simple grammars

- approx. 300 states for standard programming languages
- only as intro to $\operatorname{SLR}(1)$ and $\operatorname{LALR}(1)$

SLR(1) - expressive enough for most grammars for standard PLs

- same number of states as $\operatorname{LR}(0)$
- main focus here
$\operatorname{LALR}(1)$ - slightly more expressive than $\operatorname{SLR}(1)$
- same number of states as $\operatorname{LR}(0)$
- we look at ideas behind that method as well

LR(1) covers all grammars, which can in principle be parsed by looking at the next token

Grammar classes overview (again)

INF5110 -
Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

LR-parsing and its subclasses

- right-most derivation (but left-to-right parsing)
- in general: bottom-up parsing more powerful than top-down
- typically: tool-supported (unlike recursive descent, which may well be hand-coded)
- based on parsing tables + explicit stack
- thankfully: left-recursion no longer problematic
- typical tools: yacc and its descendants (like bison, CUP, etc)
- another name: shift-reduce parser

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Example grammar

$$
\begin{array}{rll}
S^{\prime} & \rightarrow & S \\
S & \rightarrow & A B \mathbf{t}_{7} \mid l \\
A & \ldots & \\
A & \rightarrow \mathbf{t}_{\mathbf{4}} \mathbf{t}_{\mathbf{5}} \mid \mathbf{t}_{\mathbf{1}} B & \ldots \\
B & \rightarrow & \mathbf{t}_{\mathbf{2}} \mathbf{t}_{\mathbf{3}}
\end{array}\left|A \mathbf{t}_{6}\right| \ldots
$$

- assume: grammar unambiguous
- assume word of terminals $\mathbf{t}_{\mathbf{1}} \mathbf{t}_{\mathbf{2}} \ldots \mathbf{t}_{\mathbf{7}}$ and its (unique) parse-tree
- general agreement for bottom-up parsing:
- start symbol never on the right-hand side or a production
" routinely add another "extra" start-symbol (here $\left.S^{\prime}\right)^{13}$
${ }^{13}$ That will later be relied upon when constructing a DFA for "scanning" the stack, to control the reactions of the stack machine.
This restriction leads to a unique, well-defined initial state.

Parse tree for $t_{1} \ldots t_{7}$

Remember: parse tree independent from left- or right-most-derivation

LR: left-to right scan, right-most derivation?

Potentially puzzling question at first sight:

How does the parser right-most derivation, when parsing left-to-right?

INF5110 -

- short answer: parser builds the parse tree bottom-up
- derivation:
- replacement of nonterminals by right-hand sides
- derivation: builds (implicitly) a parse-tree top-down

Right-sentential form: right-most derivation

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

$$
S \Rightarrow_{r}^{*} \alpha
$$

Slighly longer answer

LR parser parses from left-to-right and builds the parse tree bottom-up. When doing the parse, the parser (implicitly)

Example expression grammar (from before)

$$
\begin{array}{rlrl}
\exp & \rightarrow & \text { exp addop term } \mid \text { term } \\
\text { addop } & \rightarrow & +\mid- \\
\text { term } & \rightarrow & \text { term mulop factor } \mid \text { factor } \\
\text { mulop } & \rightarrow & * \\
\text { factor } & \rightarrow & (\exp) \mid \text { number } \\
& & \\
& & \text { exp } \\
& & \text { term } \\
& & \text { term } & \text { factor } \\
& & \\
& \text { factor } & \\
& & \\
& \text { number * number }
\end{array}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Bottom-up parse: Growing the parse tree

Introduction to parsing
Top-down parsing
First and follow sets
number * number
LL-parsing (mostly LL(1))
Bottom-up
parsing
References

number * number

Bottom-up parse: Growing the parse tree

	INF5110- Compiler Construction
factor	Introduction to parsing
number * number	Top-down parsing
First and follow	
sets	

Bottom-up parse: Growing the parse tree

INF5110 Compiler Construction
Introduction to parsing
Top-down parsing
First and follow sets
LL-parsing (mostly LL(1))
Bottom-up
parsing
$\underline{\text { number } * \text { number }} \underset{\hookrightarrow}{\hookrightarrow} \frac{\text { factor } * \text { number }}{\text { term } * \text { number }}$
References

Bottom-up parse: Growing the parse tree

INF5110 -
Compiler
Construction

term	factor
factor	\mid
'	
number $*$	number

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
$\begin{aligned} \text { number } * \text { number } & \hookrightarrow \text { factor } * \text { number } \\ & \hookrightarrow \text { term } * \mathbf{n u m b e r} \\ & \hookrightarrow \text { term } * \text { factor }\end{aligned}$
References

Bottom-up parse: Growing the parse tree

$$
\begin{aligned}
& \\
& \text { number * number } \rightarrow \text { factor * number } \\
& \hookrightarrow \text { term } * \text { number } \\
& \rightarrow \text { term * factor } \\
& \rightarrow \text { term }
\end{aligned}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Bottom-up parse: Growing the parse tree

> number * number \rightarrow factor * number
> \leftrightarrow term $*$ number
> \rightarrow term * factor
> \rightarrow term
> $\rightarrow \quad \exp$

```
Introduction to parsing
Top-down parsing
First and follow sets
LL-parsing (mostly LL(1))
```

Bottom-up
parsing
References

Reduction in reverse $=$ right derivation

Reduction

Right derivation

INF5110 -
Compiler
Construction

$$
\begin{aligned}
\underline{\mathbf{n}} * \mathbf{n} & \hookrightarrow \text { factor } * \mathbf{n} \\
& \hookrightarrow \text { term } * \underline{\mathbf{n}} \\
& \hookrightarrow \text { term } * \text { factor } \\
& \hookrightarrow \frac{\text { term }}{\exp }
\end{aligned}
$$

- underlined part:
- different in reduction vs. derivation
- represents the "part being replaced"
- for derivation: right-most non-terminal
- for reduction: indicates the so-called handle (or part of it)
- consequently: all intermediate words are right-sentential forms

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Handle

Definition (Handle)

Assume $S \Rightarrow_{r}^{*} \alpha A w \Rightarrow_{r} \alpha \beta w$. A production $A \rightarrow \beta$ at position k following α is a handle of $\alpha \beta w$ We write $\langle A \rightarrow \beta, k\rangle$ for such a handle.

Note:

- w (right of a handle) contains only terminals
- w : corresponds to the future input still to be parsed!
- $\alpha \beta$ will correspond to the stack content (β the part touched by reduction step).
- the \Rightarrow_{r}-derivation-step in reverse:
- one reduce-step in the LR-parser-machine
- adding (implicitly in the LR-machine) a new parent to children β ($=$ bottom-up!)
- "handle"-part β can be empty (= $\boldsymbol{\epsilon}$)

Schematic picture of parser machine (again)

INF5110 -
Compiler
Construction

General LR "parser machine" configuration

- Stack:
- contains: terminals + non-terminals (+ \$)
- containing: what has been read already but not yet "processed"
- position on the "tape" (= token stream)
- represented here as word of terminals not yet read
- end of "rest of token stream": \$, as usual
- state of the machine
- in the following schematic illustrations: not yet part of the discussion
- later: part of the parser table, currently we explain without referring to the state of the parser-engine
- currently we assume: tree and rest of the input given
- the trick ultimately will be: how do achieve the same without that tree already given (just parsing left-to-right)

Schematic run (reduction: from top to bottom)

$\$$	$\mathbf{t}_{1} \mathbf{t}_{2} \mathbf{t}_{3} \mathbf{t}_{4} \mathbf{t}_{5} \mathbf{t}_{6} \mathbf{t}_{7} \$$
$\$ \mathbf{t}_{1}$	$\mathbf{t}_{2} \mathbf{t}_{3} \mathbf{t}_{4} \mathbf{t}_{5} \mathbf{t}_{6} \mathbf{t}_{7} \$$
$\$ \mathbf{t}_{1} \mathbf{t}_{2}$	$\mathbf{t}_{3} \mathbf{t}_{4} \mathbf{t}_{5} \mathbf{t}_{6} \mathbf{t}_{7} \$ \$$
$\$ \mathbf{t}_{1} \mathbf{t}_{2} \mathbf{t}_{3}$	$\mathbf{t}_{4} \mathbf{t}_{5} \mathbf{t}_{6} \mathbf{t}_{7} \$$
$\$ \mathbf{t}_{1} B$	$\mathbf{t}_{4} \mathbf{t}_{5} \mathbf{t}_{6} \mathbf{t}_{7} \$$
$\$ A$	$\mathbf{t}_{4} \mathbf{t}_{5} \mathbf{t}_{6} \mathbf{t}_{7} \$ \$$
$\$ A \mathbf{t}_{4}$	$\mathbf{t}_{5} \mathbf{t}_{6} \mathbf{t}_{7} \$$
$\$ A \mathbf{t}_{4} \mathbf{t}_{5}$	$\mathbf{t}_{6} \mathbf{t}_{7} \$ \$$
$\$ \$ A A$	$\mathbf{t}_{6} \mathbf{t}_{7} \$$
$\$ A A \mathbf{t}_{6}$	$\mathbf{t}_{7} \$$
$\$ A B$	$\mathbf{t}_{7} \$ \$$
$\$ A B \mathbf{t}_{7}$	$\$$
$\$ S$	$\$$
$\$ S^{\prime}$	$\$$

INF5110 -
Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

2 basic steps: shift and reduce

- parsers reads input and uses stack as intermediate storage
- so far: no mention of look-ahead (i.e., action depending

INF5110 -
Compiler Construction on the value of the next token(s)), but that may play a role, as well

Shift

Move the next input symbol (terminal) over to the top of the stack ("push")

Reduce

Remove the symbols of the right-most subtree from the stack and replace it by the non-terminal at the root of the subtree (replace $=$ "pop + push").

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

- easy to do if one has the parse tree already!
- reduce step: popped resp. pushed part $=$ right- resp. left-hand side of handle

Example: LR parsing for addition (given the tree)

$$
\begin{aligned}
E^{\prime} & \rightarrow E \\
E & \rightarrow E+\mathbf{n} \mid \mathbf{n}
\end{aligned}
$$

Introduction to parsing

Top-down parsing

	parse stack	input	action	First and follow
1	$\$$	$\mathbf{n}+\mathbf{n} \$$	shift	sets

2	\$ n	+ n \$	red:. $E \rightarrow \mathbf{n}$	LL-parsing (mostly
3	\$ E	+ n \$	shift	Lt(H)
4	\$ $E+$	n \$	shift	Bottom-up parsing
5	\$ $E+\mathbf{n}$	\$	reduce $E \rightarrow E+{ }_{\mathrm{R} E \text { terences }}$	
6	\$ E	\$	red.: $E^{\prime} \rightarrow E$	
7	\$ E^{\prime}	\$	accept	

note: line 3 vs line 6!; both contain E on top of stack

Example with ϵ-transitions: parentheses

$$
\begin{aligned}
S^{\prime} & \rightarrow S \\
S & \rightarrow(S) S \mid \epsilon
\end{aligned}
$$

side remark: unlike previous grammar, here:

- production with two non-terminals in the right
\Rightarrow difference between left-most and right-most derivations (and mixed ones)

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Parentheses: tree, run, and right-most derivation

INF5110 -
Compiler
Construction

1	\$	()\$	shift	${ }_{\text {Introduction to }}^{\text {parsing }}$
2	\$()\$	reduce $S \rightarrow \boldsymbol{\epsilon}$	Top-down parsing
3	\$(S)\$	shift	First and folow
4	\$(S)	\$	reduce $S \rightarrow \boldsymbol{\epsilon}$ sis	
5	\$(S)S	\$	reduce $S \rightarrow$ (S	
6	\$ S	\$	reduce $S^{\prime \prime} \rightarrow$ S	Sotoomp
7	\$ S^{\prime}	\$	accept	References

Note: the 2 reduction steps for the ϵ productions
Right-most derivation and right-sentential forms

$$
S^{\prime} \Rightarrow S \Rightarrow(S) S \Rightarrow_{\infty}(S) \Rightarrow_{\infty}()
$$

Right-sentential forms \& the stack

Right-sentential form: right-most derivation

$$
S \Rightarrow_{r}^{*} \alpha
$$

- right-sentential forms:
- part of the "run"
- but: split between stack and input

	parse stack	input	action
1	\$	n+ \mathbf{n} \$	shift $\quad E^{\prime} \Rightarrow_{r} E \Rightarrow_{r} E+\mathbf{n} \Rightarrow_{r} \mathbf{n}+\mathbf{n}$
2	\$ n	+ n \$	
3	\$ E	+ n \$	shift
4	\$ $E+$	n\$	shift $\quad \underline{\mathbf{n}}+\mathbf{n} \hookrightarrow \underline{E+\mathbf{n}} \hookrightarrow \underline{E} \hookrightarrow E^{\prime}$
5	\$ $E+\mathbf{n}$	\$	reduce $E \rightarrow E+\mathbf{n}$
6	\$ E	\$	red.: $E^{\prime} \rightarrow E$
7	\$ E^{\prime}	\$	accept

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

$$
\underline{E^{\prime}} \Rightarrow_{r} \underline{E} \Rightarrow_{r} \underline{E}+\mathbf{n}\|\sim \underline{E}+\| \mathbf{n} \sim \underline{E}\left\|+\mathbf{n} \Rightarrow_{r} \mathbf{n}\right\|+\mathbf{n} \sim \| \mathbf{n}+\mathbf{n}
$$

Viable prefixes of right-sentential forms and handles

- right-sentential form: $E+\mathbf{n}$
- viable prefixes of RSF
- prefixes of that RSF on the stack
- here: 3 viable prefixes of that RSF: $E, E+, E+\mathbf{n}$
- handle: remember the definition earlier
- here: for instance in the sentential form $\mathbf{n}+\mathbf{n}$
- handle is production $E \rightarrow \mathbf{n}$ on the left occurrence of \mathbf{n} in $\mathbf{n}+\mathbf{n}$ (let's write $\mathbf{n}_{1}+\mathbf{n}_{2}$ for now)
- note: in the stack machine:
- the left \mathbf{n}_{1} on the stack
- rest $+\mathbf{n}_{2}$ on the input (unread, because of $\operatorname{LR}(0)$)
- if the parser engine detects handle \mathbf{n}_{1} on the stack, it does a reduce-step
- However (later): reaction depends on current state of the parser engine

A typical situation during LR-parsing

After a shift, the next reduction to be made is a reduction with the production:
C \rightarrow t1
Then, after two shifts, we will make a reduction with the production:
D -> t2 t3
Then, what's next?

The stack is reduced version of the processed input

General design for an LR-engine

- some ingredients clarified up-to now:
- bottom-up tree building as reverse right-most derivation,
- stack vs. input,
- shift and reduce steps
- however: 1 ingredient missing: next step of the engine may depend on
" top of the stack ("handle")
- look ahead on the input (but not for $\operatorname{LL}(0)$)
- and: current state of the machine

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

But what are the states of an LR-parser?

General idea:

Construct an NFA (and ultimately DFA) which works on the stack (not the input). The alphabet consists of terminals and non-terminals $\Sigma_{T} \cup \Sigma_{N}$. The language
$\operatorname{Stacks}(G)=\left\{\alpha \left\lvert\, \begin{array}{l}\alpha \text { may occur on the stack during LR- } \\ \text { parsing of a sentence in } \mathcal{L}(G)\end{array}\right.\right\}$
is regular!

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

LR(0) parsing as easy pre-stage

- $\operatorname{LR}(0)$: in practice too simple, but easy conceptual step towards $\operatorname{LR}(1), \operatorname{SLR}(1)$ etc.
- LR(1): in practice good enough, $\operatorname{LR}(\mathrm{k})$ not used for $k>1$

LR(0) item

production with specific "parser position" . in its right-hand side
". . is, of course, a "meta-symbol" (not part of the production)

- For instance: production $A \rightarrow \alpha$, where $\alpha=\beta \gamma$, then

LR(0) item

$$
A \rightarrow \beta \cdot \gamma
$$

Introduction to
parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

INF5110 -
Compiler
Construction

Grammar for parentheses: 3 productions

$$
\begin{aligned}
S^{\prime} & \rightarrow S \\
S & \rightarrow(S) S \mid \epsilon
\end{aligned}
$$

8 items

$$
\begin{array}{rll}
S^{\prime} & \rightarrow & . S \\
S^{\prime} & \rightarrow & S . \\
S & \rightarrow & .(S) S \\
S & \rightarrow & (. S) S \\
S & \rightarrow & (S .) S \\
S & \rightarrow & (S) . S \\
S & \rightarrow & (S) S . \\
S & \rightarrow & .
\end{array}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

- note: $S \rightarrow \boldsymbol{\epsilon}$ gives $S \rightarrow$. as item (not $S \rightarrow \boldsymbol{\epsilon}$. and $S \rightarrow . \boldsymbol{\epsilon})$

Grammar for addition: 3 productions

$$
\begin{aligned}
E^{\prime} & \rightarrow E \\
E & \rightarrow E+\text { number } \mid \text { number }
\end{aligned}
$$

(coincidentally also:) 8 items

$$
\begin{aligned}
E^{\prime} & \rightarrow . E \\
E^{\prime} & \rightarrow E . \\
E & \rightarrow . E+\text { number } \\
E & \rightarrow E .+ \text { number } \\
E & \rightarrow E+. \text { number } \\
E & \rightarrow E+\text { number. } \\
E & \rightarrow \text {.number } \\
E & \rightarrow \text { number. }
\end{aligned}
$$

- also here: it will turn out: not $L R(0)$ grammar

Finite automata of items

- general set-up: items as states in an automaton
- automaton: "operates" not on the input, but the stack
- automaton either
- first NFA, afterwards made deterministic (subset construction), or
- directly DFA

States formed of sets of items

In a state marked by/containing item

$$
A \rightarrow \beta \cdot \gamma
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

- β on the stack
- γ : to be treated next (terminals on the input, but can contain also non-terminals)

State transitions of the NFA

- $X \in \Sigma$
- two kind of transitions

Terminal or non-terminal

Epsilon (X : non-terminal here)

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

- for non-terminals (see next slide):
- interpretation more complex: non-terminals are officially never on the input
- note: in that case, item $A \rightarrow \alpha . X \eta$ has two (kinds of) outgoing transitions
${ }^{14}$ We have explained shift steps so far as: parser eats one terminal (= input token) and pushes it on the stack.

Transitions for non-terminals and ϵ

- so far: we never pushed a non-terminal from the input to the stack, we replace in a reduce-step the right-hand side by a left-hand side
- however: the replacement in a reduce steps can be seen as

1. pop right-hand side off the stack,
2. instead, "assume" corresponding non-terminal on input \&
3. eat the non-terminal an push it on the stack.

- two kind of transitions

1. the ϵ-transition correspond to the "pop" half
2. that X transition (for non-terminals) corresponds to that "eat-and-push" part

- assume production $X \rightarrow \beta$ and initial item $X \rightarrow . \beta$

Terminal or non-terminal

Epsilon (X : non-terminal here)

Given production $X \rightarrow \beta$:

Initial and final states

initial states:

- we make our lives easier
- we assume (as said): one extra start symbol say S^{\prime} (augmented grammar)
\Rightarrow initial item $S^{\prime} \rightarrow . S$ as (only) initial state

final states:

" NFA has a specific task, "scanning" the stack, not scanning the input

- acceptance condition of the overall machine: a bit more complex
- input must be empty
- stack must be empty except the (new) start symbol
- NFA has a word to say about acceptence
- but not in form of being in an accepting state
- so: no accepting states
- hut. accenting action (see later)

NFA: parentheses

Remarks on the NFA

- colors for illustration
- "reddish": complete items
- "blueish": init-item (less important)
- "violet'tish": both
- init-items
- one per production of the grammar
- that's where the $\boldsymbol{\epsilon}$-transistions go into, but
" with exception of the initial state (with S^{\prime}-production)
no outgoing edges from the complete items

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

NFA: addition

INF5110 -
Compiler
Construction

$$
E \rightarrow E .+\mathbf{n} \rightarrow E \rightarrow E+. \mathbf{n} \rightarrow E \rightarrow E+\mathbf{n} .
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Determinizing: from NFA to DFA

- standard subset-construction ${ }^{15}$
- states then contains sets of items
- especially important: ϵ-closure
- also: direct construction of the DFA possible

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References
${ }^{15}$ Technically, we don't require here a total transition function, we

DFA: parentheses

DFA: addition

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Direct construction of an LR(0)-DFA

- quite easy: simply build in the closure already

ϵ-closure

- if $A \rightarrow \alpha . B \gamma$ is an item in a state where
- there are productions $B \rightarrow \beta_{1} \mid \beta_{2} \ldots \Rightarrow$
- add items $B \rightarrow . \beta_{1}, B \rightarrow . \beta_{2} \ldots$ to the state
- continue that process, until saturation

initial state

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Direct DFA construction: transitions

- X : terminal or non-terminal, both treated uniformely
- All items of the form $A \rightarrow \alpha \cdot X \beta$ must be included in the post-state

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

- and all others (indicated by "...") in the pre-state: not included
- re-check the previous examples: outcome is the same

How does the DFA do the shift/reduce and the rest?

- we have seen: bottom-up parse tree generation
- we have seen: shift-reduce and the stack vs. input
- we have seen: the construction of the DFA

But: how does it hang together?

We need to interpret the "set-of-item-states" in the light of the stack content and figure out the reaction in terms of

- transitions in the automaton
- stack manipulations (shift/reduce)
- acceptance
- input (apart from shifting) not relevant when doing LR(0)

Stack contents and state of the automaton

- remember: at any given intermediate configuration of stack/input in a run

1. stack contains words from Σ^{*}
2. DFA operates deterministically on such words
" the stack contains the "past": read input (potentially partially reduced)

- when feeding that "past" on the stack into the automaton
- starting with the oldest symbol (not in a LIFO manner)
- starting with the DFA's initial state
\Rightarrow stack content determines state of the DFA
- actually: each prefix also determines uniquely a state
- top state:
- state after the complete stack content
- corresponds to the current state of the stack-machine
\Rightarrow crucial when determining reaction

State transition allowing a shift

- assume: top-state (= current state) contains item

$$
X \rightarrow \alpha . \mathbf{a} \beta
$$

- construction thus has transition as follows


```
Introduction to parsing
Top-down parsing
First and follow sets
LL-parsing (mostly LL(1))
Bottom-up
parsing
```

References

- shift is possible
- if shift is the correct operation and \mathbf{a} is terminal symbol corresponding to the current token: state afterwards $=t$

State transition: analogous for non-terminals

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing

References

State (not transition) where a reduce is possible

- remember: complete items (those with a dot . at the end)
- assume top state s containing complete item $A \rightarrow \gamma$.

- a complete right-hand side ("handle") γ on the stack and thus done
- may be replaced by right-hand side A
\Rightarrow reduce step
- builds up (implicitly) new parent node A in the bottom-up procedure
- Note: A on top of the stack instead of γ : 16
- new top state!
- remember the "goto-transition" (shift of a non-terminal)

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

INF5110 -
Compiler
Construction

Remarks: states, transitions, and reduce steps

- ignoring the ϵ-transitions (for the NFA)
- there are 2 "kinds" of transitions in the DFA

1. terminals: reals shifts
2. non-terminals: "following a reduce step"

No edges to represent (all of) a reduce step!

- if a reduce happens, parser engine changes state!
- however: this state change is not represented by a transition in the DFA (or NFA for that matter)
- especially not by outgoing errors of completed items
- if the (rhs of the) handle is removed from top stack: \Rightarrow
- "go back to the (top) state before that handle had been added": no edge for that
- later: stack notation simply remembers the state as part of its configuration

Example: LR parsing for addition (given the tree)

$$
\begin{aligned}
E^{\prime} & \rightarrow E \\
E & \rightarrow E+\mathbf{n} \mid \mathbf{n}
\end{aligned}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))
$\left.\begin{array}{llrl} & & & \begin{array}{l}\text { Introduction to } \\ \text { parsing } \\ \text { Top-down parsing }\end{array} \\ & \text { parse stack } & \text { input } & \text { action }\end{array} \begin{array}{l}\text { First and follow } \\ \text { sets }\end{array}\right)$

INF5110 -
Compiler Construction

note: line 3 vs line 6!; both contain E on top of stack

DFA of addition example

- note line 3 vs. line 6

INF5110 -
Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

- both stacks $=E \Rightarrow$ same (top) state in the DFA (state 1)

LR(0) grammars

LR(0) grammar

The top-state alone determines the next step.

- especially: no shift/reduce conflicts in the form shown
- thus: previous number-grammar is not $L R(0)$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Simple parentheses

$$
A \rightarrow(A) \mid \mathbf{a}
$$

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Simple parentheses is LR(0)

NFA for simple parentheses (bonus slide)

INF5110 -
 Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing

References

Parsing table for an LR(0) grammar

- table structure: slightly different for $\operatorname{SLR}(1), \operatorname{LALR}(1)$, and $\operatorname{LR}(1)$ (see later)
- note: the "goto" part: "shift" on non-terminals (only 1 non-terminal A here)
- corresponding to the A-labelled transitions
- see the parser run on the next slide

state	action	rule	input			goto
			$($	\mathbf{a}	$)$	A
0	shift		3	2		1
1	reduce	$A^{\prime} \rightarrow A$				
2	reduce	$A \rightarrow \mathbf{a}$				
3	shift		3	2		4
4	shift				5	
5	reduce	$A \rightarrow \mathbf{(A)}$				

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Parsing of ((a))

stage	parsing stack	input	action
1	\$0	((a)) \$	shift
2	\$0 ${ }_{3}$	(a))\$	shift
3	$\$_{0}\left({ }_{3}\left({ }_{3}\right.\right.$	a))\$	shift
4	\$0 $\left(_{3}\left({ }_{3} \mathbf{a}_{2}\right.\right.$))\$	reduce $A \rightarrow \mathbf{a}$
5	$\$_{0}\left({ }_{3}\left({ }_{3} A_{4}\right.\right.$)) \$	shift
6	\$0 $\left({ }_{3}\left({ }_{3} A_{4}\right)_{5}\right.$)\$	reduce $A \rightarrow(A)$
7	\$0 ${ }_{3} A_{4}$) \$	shift
8	$\$_{0}\left({ }_{3} A_{4}\right)_{5}$	\$	reduce $A \rightarrow(A)$
9	\$0 A_{1}	\$	accept

INF5110 -

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing

- note: stack on the left
- contains top state information
- in particular: overall top state on the right-most end
- note also: accept action
- reduce wrt. to $A^{\prime} \rightarrow A$ and
- empty stack (apart from $\mathbf{\$}, A$, and the state annotation)
\Rightarrow accept

Parse tree of the parse

- As said:
" the reduction "contains" the parse-tree
- reduction: builds it bottom up
- reduction in reverse: contains a right-most derivation (which is "top-down")
- accept action: corresponds to the parent-child edge $A^{\prime} \rightarrow A$ of the tree

Parsing of erroneous input

- empty slots it the table: "errors"

INF5110 -
Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Invariant

important general invariant for LR-parsing: never shift something "illegal" onto the stack

LR(0) parsing algo, given DFA

let s be the current state, on top of the parse stack

1. s contains $A \rightarrow \alpha . X \beta$, where X is a terminal

- shift X from input to top of stack. the new state pushed on the stack: state t where $s \xrightarrow{X} t$
- else: if s does not have such a transition: error

2. s contains a complete item (say $A \rightarrow \gamma$.): reduce by rule $A \rightarrow \gamma$:

- A reduction by $S^{\prime} \rightarrow S$: accept, if input is empty; else error:
- else:

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
pop: remove γ (including "its" states from the stack)
back up: assume to be in state u which is now head state
push: push A to the stack, new head state t where $u \xrightarrow{A} t$ (in the DFA)

DFA parentheses again: LR(0)?

DFA parentheses again: $\operatorname{LR}(0)$?

DFA addition again: LR(0)?

INF5110 -
Compiler

Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

DFA addition again: LR(0)?

$$
\begin{aligned}
E^{\prime} & \rightarrow E \\
E & \rightarrow E+\text { number } \mid \text { number }
\end{aligned}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

How to make a decision in state 1?

Decision? If only we knew the ultimate tree already

... especially the parts still to come

	parse stack	input	action	Introduction to parsing
1	$\$$	$n+n \$$	shift	Top-down parsing
2	\$n	$+1 \$$	$\text { red:. } E \rightarrow \mathbf{n}$	First and follow
3		$+1 \$$	shift	sets
4	$\$ H+$	$n \$$	shift	LL-parsing (mostly LL(1))
5	$\$ H+n$		$\text { reduce } E \rightarrow E$	$+n_{\text {Bottom-up }}$
$\overline{6}$	$\$ F$	$\$$	red. $H^{\prime \prime} \rightarrow E$	parsing
7	$\$ H^{\prime}$	\pm	accept	References

- current stack: represents already known part of the parse tree
- since we don't have the future parts of the tree yet:
\Rightarrow look-ahead on the input (without building the tree as yet)

Addition grammar (again)

- How to make a decision in state 1? (here: shift vs. reduce)
\Rightarrow look at the next input symbol (in the token)

INF5110 -
Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

One look-ahead

- $\operatorname{LR}(0)$, not useful, too weak
- add look-ahead, here of 1 input symbol (= token)
- different variations of that idea (with slight difference in expresiveness)
- tables slightly changed (compared to LR(0))
- but: still can use the LR(0)-DFAs

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Resolving $\operatorname{LR}(0)$ reduce/reduce conflicts

LR(0) reduce/reduce conflict:

Resolving $L R(0)$ reduce/reduce conflicts

LR(0) reduce/reduce conflict:

References

- If Follow $(A) \cap \operatorname{Follow}(B)=\varnothing$
\Rightarrow next symbol (in token) decides!
- if token \in Follow (α) then reduce using $A \rightarrow \alpha$
- if token $\in \operatorname{Follow}(\beta)$ then reduce using $B \rightarrow \beta$
- . . .

Resolving LR(0) shift/reduce conflicts

LR(0) shift/reduce conflict:

INF5110 -
 Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Resolving LR(0) shift/reduce conflicts

LR(0) shift/reduce conflict:

INF5110 -
Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

- If Follow $(A) \cap\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \ldots\right\}=\varnothing$
\Rightarrow next symbol (in token) decides!
- if token $\in \operatorname{Follow}(A)$ then reduce using $A \rightarrow \alpha$, non-terminal A determines new top state
- if token $\in\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \ldots\right\}$ then shift. Input symbol $\mathbf{b}_{\mathbf{i}}$ determines new top state

Revisit addition one more time

- Follow $\left(E^{\prime}\right)=\{\$\}$
$\Rightarrow \quad$ - shift for +
- reduce with $E^{\prime} \rightarrow E$ for $\$$ (which corresponds to accept, in case the input is empty)

INF5110 -
Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

SLR(1) algo

let s be the current state, on top of the parse stack

1. s contains $A \rightarrow \alpha$. $X \beta$, where X is a terminal and X is the next token on the input, then

- shift X from input to top of stack. the new state pushed on the stack: state t where $s \xrightarrow{X} t^{17}$

2. s contains a complete item (say $A \rightarrow \gamma$.) and the next token in the input is in Follow (A) : reduce by rule $A \rightarrow \gamma$:

- A reduction by $S^{\prime} \rightarrow S$: accept, if input is empty ${ }^{18}$
- else:
pop: remove γ (including "its" states from the stack)
back up: assume to be in state u which is now head state
push: push A to the stack, new head state t where $u \xrightarrow{A} t$

3. if next token is such that neither 1. or 2. applies: error
${ }^{17} \mathrm{Cf}$. to the $\operatorname{LR}(0)$ algo: since we checked the existence of the transition before, the else-part is missing now.

LR(0) parsing algo, given DFA

let s be the current state, on top of the parse stack

1. s contains $A \rightarrow \alpha . X \beta$, where X is a terminal

- shift X from input to top of stack. the new state pushed on the stack: state t where $s \xrightarrow{X} t$
- else: if s does not have such a transition: error

2. s contains a complete item (say $A \rightarrow \gamma$.): reduce by rule $A \rightarrow \gamma$:

- A reduction by $S^{\prime} \rightarrow S$: accept, if input is empty; else error:
- else:

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References
pop: remove γ (including "its" states from the stack)
back up: assume to be in state u which is now head state
push: push A to the stack, new head state t where $u \xrightarrow{A} t$ (in the DFA)

Parsing table for SLR(1)

state	input			goto
	\mathbf{n}	+	$\mathbf{\$}$	E
0	$s: 2$			
1		$s: 3$	accept	
2		$r:(E \rightarrow \mathbf{n})$		
3	$s: 4$			
4		$r:(E \rightarrow E+\mathbf{n})$	$r:(E \rightarrow E+\mathbf{n})$	

Introduction to
parsing parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Parsing table: remarks

- $\operatorname{SLR}(1)$ parsing table: rather similar-looking to the LR(0) one
- differences: reflect the differences in: LR(0)-algo vs. SLR(1)-algo
- same number of rows in the table (= same number of states in the DFA)
- only: colums "arranged differently
- LR(0): each state uniformely: either shift or else reduce (with given rule)
- now: non-uniform, dependent on the input
- it should be obvious:
- SLR(1) may resolve LR(0) conflicts
- but: if the follow-set conditions are not met: $\operatorname{SLR}(1)$ shift-shift and/or SRL(1) shift-reduce conflicts
- would result in non-unique entries in SRL(1)-table ${ }^{19}$

[^5]
SLR(1) parser run (= "reduction")

state	input			goto
	\mathbf{n}	+	$\mathbf{\$}$	E
0	$s: 2$			1
1		$s: 3$	accept	
2		$r:(E \rightarrow \mathbf{n})$		
3	$s: 4$			
4		$r:(E \rightarrow E+\mathbf{n})$	$r:(E \rightarrow E+\mathbf{n})$	

stage	parsing stack	input	action
1	\$0	$\mathbf{n}+\mathbf{n}+\mathrm{n}$ \$	shift: 2
2	$\$_{0} \mathbf{n}_{2}$	+ $\mathrm{n}+\mathrm{n}$ \$	reduce: $E \rightarrow \mathbf{n}$
3	$\$_{0} E_{1}$	+ $\mathrm{n}+\mathrm{n}$ \$	shift: 3
4	$\$_{0} E_{1}+3$	n+n\$	shift: 4
5	$\$_{0} E_{1}+{ }_{3} \mathbf{n}_{4}$	+ n \$	reduce: $E \rightarrow E+\mathbf{n}$
6	$\$_{0} E_{1}$	n \$	shift 3
7	$\$_{0} E_{1}+3$	n\$	shift 4
8	$\$_{0} E_{1}+{ }_{3} \mathbf{n}_{4}$	\$	reduce: $E \rightarrow E+\mathbf{n}$
9	$\$_{0} E_{1}$	\$	accept

INF5110 -
Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Corresponding parse tree

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References
number

Revisit the parentheses again: SLR(1)?

Grammar: parentheses (from

 before)

SLR(1) parse table

INF5110 -
Compiler
\section*{Construction}

state	input			goto
	$($	$)$	$\mathbf{\$}$	S
0	$s: 2$	$r: S \rightarrow \boldsymbol{\epsilon}$	$r: S \rightarrow \boldsymbol{\epsilon}$	1
1			accept	
2	$s: 2$	$r: S \rightarrow \boldsymbol{\epsilon}$	$r: S \rightarrow \boldsymbol{\epsilon}$	3
3		$s: 4$		
4	$s: 2$	$r: S \rightarrow \boldsymbol{\epsilon}$	$r: S \rightarrow \boldsymbol{\epsilon}$	5
5		$r: S \rightarrow(S) S$	$r: S \rightarrow \mathbf{(S) S}$	

Introduction to
parsing
Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Parentheses: $\operatorname{SLR}(1)$ parser run (= "reduction")

state	input			goto
	$\mathbf{(}$	$\boldsymbol{)}$	$\mathbf{\$}$	S
0	$s: 2$	$r: S \rightarrow \boldsymbol{\epsilon}$	$r: S \rightarrow \boldsymbol{\epsilon}$	1
1			accept	
2	$s: 2$	$r: S \rightarrow \boldsymbol{\epsilon}$	$r: S \rightarrow \boldsymbol{\epsilon}$	3
3		$s: 4$		
4	$s: 2$	$r: S \rightarrow \boldsymbol{\epsilon}$	$r: S \rightarrow \boldsymbol{\epsilon}$	5
5		$r: S \rightarrow(S) S$	$r: S \rightarrow(S) S$	

stage	parsing stack	input	action
1	\$0	() () \$	shift: 2
2	\$0 ${ }_{2}$) ()\$	reduce: $S \rightarrow \boldsymbol{\epsilon}$
3	\$0 $\left({ }_{2} S_{3}\right.$) ()\$	shift: 4
4	\$0 $\left({ }_{2} S_{3}\right)_{4}$	()\$	shift: 2
5	\$0 $\left(_{2} S_{3}\right)_{4}\left({ }_{2}\right.$	$)$ \$	reduce: $S \rightarrow \boldsymbol{\epsilon}$
6	\$0 $\left({ }_{2} S_{3}\right)_{4}\left({ }_{2} S_{3}\right.$) \$	shift: 4
7	\$0 $\left(2_{2} S_{3}\right)_{4}\left({ }_{2} S_{3}\right)_{4}$	\$	reduce: $S \rightarrow \boldsymbol{\epsilon}$
8	$\$_{0}\left({ }_{2} S_{3}\right)_{4}\left({ }_{2} S_{3}\right)_{4} S_{5}$	\$	reduce: $S \rightarrow(S) S$
9	$\$_{0}\left({ }_{2} S_{3}\right)_{4} S_{5}$	\$	reduce: $S \rightarrow(S) S$
10	$\$_{0} S_{1}$	\$	accep

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

SLR(k)

- in principle: straightforward: k look-ahead, instead of 1
- rarely used in practice, using First $_{k}$ and Follow k instead of the $k=1$ versions
- tables grow exponentially with k !

As with other parsing algorithms, the SLR(1) parsing algorithm can be extended to SLR (k) parsing where parsing actions are based on $k \geq 1$ symbols of lookahead. Using the sets First t_{k} and Follow ${ }_{k}$ as defined in the previous chapter, an SLR (k) parser uses the following two rules:

1. If state s contains an item of the form $A \rightarrow \alpha \cdot X \beta$ (X a token), and $X w \in$ First $(X \beta)$ are the next k tokens in the input string, then the action is to shift the current input token onto the stack, and the new state to be pushed on the stack is the state containing the item $A \rightarrow \alpha X . \beta$.
2. If state s contains the complete item $A \rightarrow \alpha$., and $w \in \operatorname{Follow}_{k}(A)$ are the next k tokens in the input string, then the action is to reduce by the rule $A \rightarrow \alpha$.
$\operatorname{SLR}(k)$ parsing is more powerful than $\operatorname{SLR}(1)$ parsing when $k>1$, but at a substantial cost in complexity, since the parsing table grows exponentially in size with k.

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Ambiguity \& LR-parsing

- in principle: $\operatorname{LR}(k)$ (and $\operatorname{LL}(k)$) grammars: unambiguous
- definition/construction: free of shift/reduce and reduce/reduce conflict (given the chosen level of look-ahead)
- However: ambiguous grammar tolerable, if (remaining) conflicts can be solved "meaningfully" otherwise:

Additional means of disambiguation:

1. by specifying associativity / precedence "outside" the grammar
2. by "living with the fact" that LR parser (commonly) prioritizes shifts over reduces

- for the second point ("let the parser decide according to its preferences"):
- use sparingly and cautiously
- tvnical examnle danolino_else

Example of an ambiguous grammar

$$
\begin{aligned}
\text { stmt } & \rightarrow \text { if-stmt | other } \\
\text { if-stmt } & \rightarrow \text { if (exp) stmt } \\
& \mid \text { if (exp) stmt else } \text { stmt } \\
\exp & \rightarrow \mathbf{0} \mid \mathbf{1}
\end{aligned}
$$

In the following, E for exp, etc.

```
Introduction to parsing
Top-down parsing
First and follow sets
LL-parsing (mostly LL(1))
Bottom-up
parsing
```

References

Simplified conditionals

Simplified "schematic" if-then-else

$$
\begin{aligned}
S & \rightarrow I \mid \text { other } \\
I & \rightarrow \text { if } S \mid \text { if } S \text { else } S
\end{aligned}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

- since ambiguous: at least one conflict must be somewhere

DFA of LR(0) items

Simple conditionals: parse table

SLR(1)-parse-table, conflict resolved

Grammar

$$
\begin{array}{rrl}
S & \rightarrow & I \tag{1}\\
& \mid & \text { other } \\
I & \rightarrow & \text { if } S \\
& \mid & \text { if } S \text { else } S
\end{array}
$$

state	input				goto	
	if	else	other	$\$$	S	I
0	$s: 4$		$s: 3$		1	2
1				accept		
2		$r: 1$		$r: 1$		
3		$r: 2$		$r: 2$		
4	$s: 4$		$s: 3$		5	2
5		$s: 6$		$r: 3$		
6	$s: 4$		$s: 3$		7	2
7		$r: 4$		$r: 4$		

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

- shift-reduce conflict in state 5: reduce with rule 3 vs. shift (to state 6)
- conflict there: resolved in favor of shift to 6
- note: extra start state left out from the table

Parser run (= reduction)

state	input			goto		
	if	else	other	$\$$	S	I
0	$s: 4$		$s: 3$		1	2
1				accept		
2		$r: 1$		$r: 1$		
3		$r: 2$		$r: 2$		
4	$s: 4$		$s: 3$		5	2
5		$s: 6$		$r: 3$		
6	$s: 4$		$s: 3$		7	2
7		$r: 4$		$r: 4$		

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

stage	parsing stack	input	action
1	\$0	if if other else other \$	shift: 4
2	$\$_{0} \mathbf{i f}_{4}$	if other else other \$	shift: 4
3	$\$_{0} \mathbf{i f}_{4} \mathbf{i f}_{4}$	other else other \$	shift: 3
4	$\$_{0} \mathbf{i f}_{4} \mathbf{i f}_{4}$ other $_{3}$	else other \$	reduce: 2
5	$\$_{0} \mathbf{i f}_{4} \mathbf{i f}_{4} S_{5}$	else other \$	shift 6
6	$\$_{0} \mathbf{i f}_{4} \mathbf{i f}_{4} S_{5} \mathrm{else}_{6}$	other \$	shift: 3
7	$\$_{0}$ if $_{4}$ if $_{4} S_{5}$ else $_{6}$ other $_{3}$	\$	reduce: 2
8	$\mathbf{\$}_{0} \mathbf{i f}_{4} \mathbf{i f}_{4} S_{5}$ else $_{6} S_{7}$	\$	reduce: 4
9	$\$_{0} \mathbf{i f}_{4} I_{2}$	\$	reduce: 1
10	\$ S_{1}	\$	accept

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Parser run, different choice

state	input			goto		
	if	else	other	$\$$	S	I
0	$s: 4$		$s: 3$		1	2
1				accept		
2		$r: 1$		$r: 1$		
3		$r: 2$		$r: 2$		
4	$s: 4$		$s: 3$		5	2
5		$s: 6$		$r: 3$		
6	$s: 4$		$s: 3$		7	2
7		$r: 4$		$r: 4$		

stage	parsing stack	input	action
1	\$0	if if other else other \$	shift: 4
2	$\$_{0} \mathbf{i f}_{4}$	if other else other \$	shift: 4
3	$\$_{0} \mathbf{i f}_{4} \mathbf{i f}_{4}$	other else other \$	shift: 3
4	$\$_{0}$ if $_{4}$ if $_{4}$ other $_{3}$	else other \$	reduce: 2
5	$\$_{0} \mathbf{i f}_{4} \mathbf{i f}_{4} S_{5}$	else other \$	reduce 3
6	$\$_{0} \mathbf{i f}_{4} I_{2}$	else other \$	reduce 1
7	$\$_{0} \mathbf{i f}_{4} S_{5}$	else other \$	shift 6
8	$\$_{0} \mathbf{i f}_{4} S_{5} \mathbf{e l s e}_{6}$	other \$	shift 3
9	$\$_{0}$ if $_{4} S_{5}$ else $_{6}$ other $_{3}$	\$	reduce 2
10	$\$_{0} \mathbf{i f}_{4} S_{5}$ else $_{6} S_{7}$	\$	reduce 4
11	\$0 S_{1}	\$	accept

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Parse trees: simple conditions

shift-precedence:

 conventional
"wrong" tree

standard "dangling else" convention

"an else belongs to the last previous, still open (= dangling)

Use of ambiguous grammars

INF5110 -
Compiler
Construction

- advantage of ambiguous grammars: often simpler
- if ambiguous: grammar guaranteed to have conflicts
- can be (often) resolved by specifying precedence and associativity
- supported by tools like yacc and CUP ...

$$
\begin{aligned}
E^{\prime} & \rightarrow E \\
E & \rightarrow E+E|E * E| \text { number }
\end{aligned}
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

DFA for + and \times

States with conflicts

- state 5
- stack contains \$... E +E\$
- for input \$: reduce, since shift not allowed from \$
- for input +; reduce, as + is left-associative
- for input *: shift, as * has precedence over +
- state 6:
- stack contains \$... E *E\$
- for input \$: reduce, since shift not allowed from \$
- for input +; reduce, a * has precedence over +
- for input *: shift, as * is left-associative

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

- see also the table on the next slide

Parse table + and \times

INF5110 -
Compiler
Construction

state					input
	\mathbf{n}	+	$*$	$\$$	E
0	$s: 2$		$s: 3$	$s: 4$	accept
1		$r: E \rightarrow \mathbf{n}$	$r: E \rightarrow \mathbf{n}$	$r: E \rightarrow \mathbf{n}$	
2					5
3	$s: 2$		$s: 4$	$r: E \rightarrow E+E$	
4	$s: 2$		$r: E \rightarrow E+E$		
5		$r: E \rightarrow E * E$	$r: E \rightarrow E * E$	$r: E \rightarrow E * E$	
6					

How about exponentiation (written \uparrow or $* *$)?
Defined as right-associative. See exercise

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

For comparison: unambiguous grammar for + and *

Unambiguous grammar: precedence and left-assoc built in

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

DFA for unambiguous + and \times

DFA remarks

- the DFA now is $\operatorname{SLR}(1)$
- check states with complete items

$$
\begin{aligned}
\text { state 1: } & \operatorname{Follow}\left(E^{\prime}\right)=\{\$\} \\
\text { state 4: } & \operatorname{Follow}(E)=\{\$,+\} \\
\text { state 6: } & \operatorname{Follow}(E)=\{\$,+\} \\
\text { state 3/7: } & \operatorname{Follow}(T)=\{\$,+, *\}
\end{aligned}
$$

- in no case there's a shift/reduce conflict (check the outgoing edges vs. the follow set)
- there's not reduce/reduce conflict either

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

LR(1) parsing

- most general from of $\operatorname{LR}(1)$ parsing
- aka: canonical $\operatorname{LR}(1)$ parsing

INF5110 -
Compiler
Construction
" usually: considered as unecessarily "complex" (i.e.
$\operatorname{LALR}(1)$ or similar is good enough)

- "stepping stone" towards LALR(1)

Basic restriction of SLR(1)

Uses look-ahead, yes, but only after it has built a non-look-ahead DFA (based on LR(0)-items)

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

A help to remember

$\operatorname{SRL}(1)$ "improved" $\operatorname{LR}(0)$ parsing $\operatorname{LALR}(1)$ is "crippled" LR(1) parsing.

Limits of $\operatorname{SLR}(1)$ grammars

Assignment grammar fragment ${ }^{20}$

$$
\begin{aligned}
\text { stmt } & \rightarrow \text { call-stmt } \mid \text { assign-stmt } \\
\text { call-stmt } & \rightarrow \text { identifier } \\
\text { assign-stmt } & \rightarrow \text { var }:=\exp \\
\text { var } & \rightarrow \exp] \mid \text { identifier } \\
\exp & \mid \text { var } \mid \text { number }
\end{aligned}
$$

Assignment grammar fragment, simplified

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

$$
\begin{aligned}
S & \rightarrow \text { id } \mid V:=E \\
V & \rightarrow \text { id } \\
E & \rightarrow V \mid \mathbf{n}
\end{aligned}
$$

${ }^{20}$ Inspired by Pascal, analogous problems in C...

non-SLR(1): Reduce/reduce conflict

INF5110 -
 Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Situation can be saved: more look-ahead

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

LALR(1) (and LR(1)): Being more precise with the follow-sets

- LR(0)-items: too "indiscriminate" wrt. the follow sets
- remember the definition of $\operatorname{SLR}(1)$ conflicts
- LR(0)/SLR(1)-states:
- sets of items ${ }^{21}$ due to subset construction
- the items are $\operatorname{LR}(0)$-items
- follow-sets as an after-thought

Add precision in the states of the automaton already

 Instead of using $\operatorname{LR}(0)$-items and, when the LR(0) DFA is done, try to disambiguate with the help of the follow sets forINF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References states containing complete items: make more fine-grained items:

- LR(1) items
- each item with "specific follow information": look-ahead

[^6]
LR(1) items

- main idea: simply make the look-ahead part of the item
- obviously: proliferation of states ${ }^{22}$

LR(1) items

$$
\begin{equation*}
[A \rightarrow \alpha . \beta, \mathbf{a}] \tag{9}
\end{equation*}
$$

- a: terminal/token, including \$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References
${ }^{22}$ Not to mention if we wanted look-ahead of $k>1$, which in practice is not done, though.

LALR(1)-DFA (or LR(1)-DFA)

INF5110 Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Remarks on the DFA

- Cf. state 2 (seen before)
- in $\operatorname{SLR}(1)$: problematic (reduce/reduce), as Follow $(V)=\{:=, \$\}$
- now: diambiguation, by the added information
- LR(1) would give the same DFA

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Full LR(1) parsing

- AKA: canonical LR(1) parsing

INF5110 -

- the best you can do with 1 look-ahead
- unfortunately: big tables
- pre-stage to LALR(1)-parsing

SLR(1)

LR(0)-item-based parsing, with afterwards adding some extra "pre-compiled" info (about follow-sets) to increase expressivity

LALR(1)

LR(1)-item-based parsing, but afterwards throwing away precision by collapsing states, to save space

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

LR(1) transitions: arbitrary symbol

- transitions of the NFA (not DFA)

X-transition

$$
\left[\begin{array}{ll}
A \rightarrow & \alpha \cdot X \beta, \mathbf{a}] \\
& X \\
{[A \rightarrow} & \alpha X . \beta, \mathbf{a}]
\end{array}\right.
$$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

LR(1) transitions: ϵ

ϵ-transition

for all

$$
\begin{gathered}
B \rightarrow \beta_{1} \mid \beta_{2} \ldots \text { and all } \mathbf{b} \in \operatorname{First}(\gamma \mathbf{a}) \\
\quad[A \rightarrow \alpha \cdot B \gamma \quad, \mathbf{a}]
\end{gathered}\left[\begin{array}{ll}
{[B \rightarrow . \beta} & \mathbf{b}]
\end{array}\right.
$$

including special case $(\gamma=\boldsymbol{\epsilon})$
Introduction to parsing
Top-down parsing
First and follow sets
LL-parsing (mostly LL(1))
Bottom-up
parsing
References

$$
\text { for all } B \rightarrow \beta_{1} \mid \beta_{2} \ldots
$$

$$
[A \rightarrow \alpha \cdot B \quad, \mathbf{a}] \stackrel{\epsilon}{\rightarrow}[B \rightarrow . \beta \quad, \mathbf{a}]
$$

$\operatorname{LALR}(1)$ vs $\operatorname{LR}(1)$

LR(1)

INF5110 -
Compiler Construction

Introduction to

 parsingTop-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Core of LR(1)-states

- actually: not done that way in practice
- main idea: collapse states with the same core

Core of an $\operatorname{LR}(1)$ state

$=$ set of $L R(0)$-items (i.e., ignoring the look-ahead)

- observation: core of the $\operatorname{LR}(1)$ item $=\operatorname{LR}(0)$ item
- $2 \operatorname{LR}(1)$ states with the same core have same outgoing edges, and those lead to states with the same core

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

LALR(1)-DFA by as collapse

- collapse all states with the same core
- based on above observations: edges are also consistent
- Result: almost like a LR(0)-DFA but additionally
- still each individual item has still look ahead attached: the union of the "collapsed" items
- especially for states with complete items
$[A \rightarrow \alpha, \mathbf{a}, \mathbf{b}, \ldots]$ is smaller than the follow set of A
- \Rightarrow less unresolved conflicts compared to $\operatorname{SLR}(1)$

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Concluding remarks of LR / bottom up parsing

INF5110 -
Compiler
Construction

- all constructions (here) based on BNF (not EBNF)
- conflicts (for instance due to ambiguity) can be solved by
- reformulate the grammar, but generarate the same language ${ }^{23}$
- use directives in parser generator tools like yacc, CUP, bison (precedence, assoc.)
- or (not yet discussed): solve them later via semantical analysis
- NB: not all conflics are solvable, also not in LR(1) (remember ambiguous languages)
${ }^{23}$ If designing a new language, there's also the option to massage the language itself. Note also: there are inherently ambiguous languages for which there is no unambiguous grammar.

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

LR/bottom-up parsing overview

	der	ks	NF5110 -
LR(0)	defines states also used by	not really used, many conConstruction flicts, very weak weaker than $\operatorname{LALR}(1)$. butintroduction to often good enough. $\mathrm{Ok}^{\text {parsing }}$ for hand-made parsers for ${ }^{\text {Top-down parsing }}$ small grammars	
SLR(1)	SLR and LALR clear improvement over $\operatorname{LR}(0)$ in expressiveness, even if using the same number of states. Table typically with 50 K entries		
L	almost as expressive as $\operatorname{LR}(1)$, but number of states as LR(0)!	generated LR-parse	-parsing (mo (1)) ttom-up
LR(1)	the method covering all bottom-up, one-look-ahead parseable grammars	large number of states (typically 11 M of entries), mostly LALR(1) preferred	

Remeber: once the table specific for $\operatorname{LR}(0), \ldots$ is set-up, the parsing algorithms all work the same

Error handling

- at the least: do an understandable error message
- give indication of line / character or region responsible for the error in the source file
- potentially stop the parsing
- some compilers do error recovery
- give an understandable error message (as minimum)
- continue reading, until it's plausible to resume parsing \Rightarrow find more errors

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing

- however: when finding at least 1 error: no code generation
- observation: resuming after syntax error is not easy

Error handling

Minimal requirement

Upon "stumbling over" an error (= deviation from the grammar): give a reasonable \& understandable error message, indicating also error location. Potentially stop parsing

- for parse error recovery
- one cannot really recover from the fact that the program has an error (an syntax error is a syntax error), but
- after giving decent error message:
- move on, potentially jump over some subsequent code,
- until parser can pick up normal parsing again
- so: meaningfull checking code even following a first error
- avoid: reporting an avalanche of subsequent spurious errors (those just "caused" by the first error)
" "pick up" again after semantic errors: easier than for syntactic errors

Error messages

- important:
- avoid error messages that only occur because of an already reported error!
- report error as early as possible, if possible at the first point where the program cannot be extended to a correct program.
- make sure that, after an error, one doesn't end up in an infinite loop without reading any input symbols.
- What's a good error message?
- assume: that the method factor() chooses the alternative (exp) but that it, when control returns from method exp (), does not find a)
" one could report: left paranthesis missing

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

- But this may often be confusing, e.g. if what the program text is: ($\mathrm{a}+\mathrm{b} \mathrm{c}$)
- here the $\exp ()$ method will terminate after ($\mathrm{a}+\mathrm{b}$, as c cannot extend the expression). You should therefore rather give the message error in
expression or left paranthesis missing.

Error recovery in bottom-up parsing

- panic recovery in LR-parsing
- simple form
- the only one we shortly look at
- upon error: recovery \Rightarrow

INF5110 -
Compiler
Construction

- pops parts of the stack
- ignore parts of the input
- until "on track again"
- but: how to do that
- additional problem: non-determinism
- table: constructed conflict-free under normal operation
- upon error (and clearing parts of the stack + input): no guarantee it's clear how to continue
\Rightarrow heuristic needed (like panic mode recovery)

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Panic mode idea

- try a fresh start,
- promising "fresh start" is: a possible goto action
- thus: back off and take the next such goto-opportunity

Possible error situation

parse stack		input	action
1	$\$_{0} \mathbf{a}_{1} \mathbf{b}_{2} \mathbf{c}_{3}\left({ }_{4} \mathbf{d}_{5} \mathbf{e}_{6}\right.$	$\mathbf{f})$ gh $\ldots \$$	no entry for \mathbf{f}

state	input				goto			
	\ldots)	f	g	\ldots	\ldots	A	B	\ldots
\cdots						u	v	
4		-				-	-	
5		-				-	-	
6	-	-				-	-	
. .								
u	-	-	reduce...					
v			shift : 7					
\ldots								

INF5110 -
 Compiler
 Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Possible error situation

parse stack		input	action
1	$\$_{0} \mathbf{a}_{1} \mathbf{b}_{2} \mathbf{c}_{3}\left({ }_{4} \mathbf{d}_{5} \mathbf{e}_{6}\right.$	$\mathbf{f})$ gh $\ldots \$$	no entry for \mathbf{f}
2	$\$_{0} \mathbf{a}_{1} \mathbf{b}_{2} \mathbf{c}_{3} B_{v}$	gh $\ldots \$$	back to normal
3	$\$_{0} \mathbf{a}_{1} \mathbf{b}_{2} \mathbf{c}_{3} B_{v} \mathbf{g}_{7}$	$\mathbf{h} \ldots \$$	\ldots

state	input				goto			
	\ldots)	f	g	\ldots	. .	A	B	. . .
\cdots 3						u	v	
4		-				-	-	
5		-				-	-	
6	-	-				-	-	
\ldots								
u	-	-	reduce...					
v			shift : 7					
...								

INF5110 -
 Compiler Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Panic mode recovery

Algo

1. Pop states for the stack until a state is found with non-empty goto entries
2. - If there's legal action on the current input token from one of the goto-states, push token on the stack, restart the parse.

- If there's several such states: prefer shift to a reduce
- Among possible reduce actions: prefer one whose associated non-terminal is least general

3. if no legal action on the current input token from one of

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References the goto-states: advance input until there is a legal action (or until end of input is reached)

Example again

INF5110 -
Compiler

Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Example again

INF5110 -
Compiler
Construction

parse stack		input	action
1	$\$_{0} \mathbf{a}_{1} \mathbf{b}_{2} \mathbf{c}_{3}\left({ }_{4} \mathbf{d}_{5} \mathbf{e}_{6}\right.$	$\mathbf{f}) \mathbf{g h} \ldots \$$	no entry for \mathbf{f}
2	$\$_{0} \mathbf{a}_{1} \mathbf{b}_{2} \mathbf{c}_{3} B_{v}$	$\mathbf{g h} \ldots \mathbf{\$}$	back to normal
3	$\$_{0} \mathbf{a}_{1} \mathbf{b}_{2} \mathbf{c}_{3} B_{v} \mathbf{g}_{7}$	$\mathbf{h} \ldots \$$	\ldots

- first pop, until in state 3
- then jump over input
- until next input \mathbf{g}
- since \mathbf{f} and) cannot be treated
- choose to goto v (shift in that state)

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Panic mode may loop forever

INF5110 -
Compiler
Construction

	parse stack	input	action
1	$\$ 0$	$\mathbf{n} \mathbf{n}) \$$	
2	$\$_{0}\left({ }_{6}\right.$	$\mathbf{n} \mathbf{n}) \$$	
3	$\$ 0\left({ }_{6} \mathbf{n}_{5}\right.$	$\mathbf{n}) \$$	
4	$\$_{0}\left({ }_{6}\right.$ factor $_{4}$	$\mathbf{n}) \$$	
6	$\$ 0\left({ }_{6}\right.$ term $_{3}$	$\mathbf{n}) \$$	
7	$\$ 0\left({ }_{6}\right.$ exp $_{10}$	$\mathbf{n}) \$$	panic!
8	$\$ 0\left({ }_{6}\right.$ factor $_{4}$	$\mathbf{n}) \$$	been there before: stage 4!

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up
parsing
References

Typical yacc parser table

some variant of the expression grammar again

$$
\begin{aligned}
\text { command } & \rightarrow \text { exp } \\
\text { exp } & \rightarrow \text { term } * \text { factor } \mid \text { factor } \\
\text { term } & \rightarrow \text { term } * \text { factor } \mid \text { factor } \\
\text { factor } & \rightarrow \text { number } \mid(\text { exp })
\end{aligned}
$$

State

INF5110 -
Compiler
Construction

Introduction to parsing

Top-down parsing
First and follow sets

LL-parsing (mostly LL(1))

Bottom-up parsing

References

Panicking and looping

	parse stack	input	action
1	\$0	(n n) ${ }^{\text {S }}$	
2	$\$_{0}{ }_{6}$	n n) \$	
3	$\$_{0}\left({ }_{6} \mathbf{n}_{5}\right.$	n) \$	
4	\$0 $(6)_{6}$ actor $_{4}$	n) \$	
6	\$0 ${ }_{6}$ term $_{3}$	n) \$	
7	\$0 ${ }_{6} \exp _{10}$	n) \$	panic!
8		n) \$	been there before: stage 4!

- error raised in stage 7, no action possible
- panic:

1. pop-off $e x p_{10}$
2. state 6: 3 goto's

	exp	term	factor
goto to	10	3	4
with \mathbf{n} next: action there	-	reduce r_{4}	reduce r_{6}

3. no shift, so we need to decide between the two reduces
4. factor: less general, we take that one

How to deal with looping panic?

- make sure to detec loop (i.e. previous "configurations")
- if loop detected: doen't repeat but do something

INF5110 -
Compiler
Construction special, for instance

- pop-off more from the stack, and try again
- pop-off and insist that a shift is part of the options

Left out (from the book and the pensum)

- more info on error recovery
- expecially: more on yacc error recovery
- it's not pensum, and for the oblig: need to deal with CUP-specifics (not classic yacc specifics even if similar) anyhow, and error recovery is not part of the oblig (halfway decent error handling is).

Section

References

Chapter 4 "Parsing"
Course "Compiler Construction"
Martin Steffen
Spring 2018

References I

INF5110 Compiler Construction

References II

INF5110 Compiler Construction

Chapter 5

*

[blain,t]

Course "Compiler Construction"

[^0]: ${ }^{2}$ Note that α_{1} and α_{2} may contain non-terminals, including further

[^1]: ${ }^{6}$ Sometimes "special terminal" \$ used to mark the end (as mentioned).

[^2]: ${ }^{7}$ It must be the next token/terminal in the sense of First, but it need not be a token directly mentioned on the right-hand sides of the corresponding rules.

[^3]: ${ }^{8}$ And it would not help to look-ahead more than 1 token either.

[^4]: ${ }^{11}$ Modulo the fact that the tree being traversed is "conceptual" and not the input of the traversal procedure; instead, the traversal is "steered" by stream of tokens.

[^5]: ${ }^{19}$ by which it, strictly speaking, would no longer be an $\operatorname{SRL}(1)$-table

[^6]: ${ }^{21}$ That won't change in principle (but the items get more complex)

