Chapter 4

Parsing

Course “Compiler Construction”
Martin Steffen
Spring 2018

Section

Introduction to parsing

Chapter 4 "Parsing”

Course “Compiler Construction”
Martin Steffen

Spring 2018

What's a parser generally doing

task of parser = syntax analysis

= input: stream of tokens from lexer
= output:

= abstract syntax tree
= or meaningful diagnosis of source of syntax error

= the full “power” (i.e., expressiveness) of CFGs not used

= thus:
= consider restrictions of CFGs, i.e., a specific subclass,
and/or
= represented in specific ways (no left-recursion,
left-factored . ..)

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

Lexer, parser, and the rest

source
program

lexer

A

token

parse tree

parser
get next

token

rest of the
front end

INF5110 —
Compiler
Construction

intermuction to

rep.
Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

Top-down vs. bottom-up

= all parsers (together with lexers): left-to-right
= remember: parsers operate with trees

= parse tree (concrete syntax tree): representing
grammatical derivation
= abstract syntax tree: data structure

= 2 fundamental classes

= while parser eats through the token stream, it grows,
i.e., builds up (at least conceptually) the parse tree:

Bottom-up Top-down

Parse tree is being grown from Parse tree is being grown from
the leaves to the root. the root to the leaves.

= while parse tree mostly conceptual: parsing build up the
concrete data structure of AST bottom-up vs.
top-down.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

45

Parsing restricted classes of CFGs

= parser: better be “efficient”

= full complexity of CFLs: not really needed in practice! INFSLI0 -
ompiler
= classification of CF languages vs. CF grammars, e.g.: o

= left-recursion-freedom: condition on a grammar
= ambiguous language vs. ambiguous grammar

Introduction to
parsing

classification of grammars = classification of languages Top-down parsing

= a CF language is (inherently) ambiguous, if there's no First and follow
unambiguous grammar for it sets
= a CF language is top-down parseable, if there exists a I
grammar that allows top-down parsing . .. Bottom-up
parsing
= in practice: classification of parser generating tools: References

= based on accepted notation for grammars: (BNF or
some form of EBNF etc.)

!Perhaps: if a parser has trouble to figure out if a program has a
syntax error or not (perhaps using back-tracking), probably humans will
have similar problems. So better keep it simple. And time in a compiler 46
may be better spent elsewhere (optimization, semantical analysis).

Classes of CFG grammars/languages

= maaaany have been proposed & studied, including their
relationships
= lecture concentrates on
= top-down parsing, in particular
= LL(1)
= recursive descent
= bottom-up parsing
= LR(1)
= SLR
= LALR(1) (the class covered by yacc-style tools)

= grammars typically written in pure BNF

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

47

Relationship of some grammar (not

language) ¢

lasses

unambiguous

[L(k R(K)
g R(1)
LALR(l

SLR

LR(0)

vjj

-
-
L

A\

ambiguous

taken from [1]

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

48

Section

Top-down parsing

Chapter 4 "Parsing”
Course “Compiler Construction”
Martin Steffen
Spring 2018

General task (once more)

= Given: a CFG (but appropriately restricted)

= Goal: “systematic method" s.t.
1. for every given word w: check syntactic correctness
2. [build AST /representation of the parse tree as side

effect]
3. [do reasonable error handling]

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

410

Schematic view on “parser machine”

INF5110 —
Compiler
| | Construction

o[+]2« ([3]+]a])

Introduction to

parsing
Reading “head" Top-down parsing
(moves |eft—t0—right) First and follow
sets
LL-parsing (mostly
LL(1))
VRN cen
N7 Bottom-up
parsing
Ref
inbounded extra memory (stack)

Finite control

Note: sequence of tokens (not characters)

4-11

Overlay

factors and terms

exrp
exp’
addop
term

term’

'rn'uln'n

bbbl

term exp’

addop term exp’ | €

+ | -

factor term/

mulop factor term’ | €

.

Overlay

T2

[»%

[term exp’

factors and terms

exrp
exp’
addop
term

term’

'rn'uln'n

bbbl

term exp’

addop term exp’ | €

+ | -

factor term/

mulop factor term’ | €

.

Overlay

L2

&

actor term/ exp’
f D

factors and terms

exrp
exp’
addop
term

term’

'rn'uln'n

bbbl

term exp’

addop term exp’ | €

+ | -

factor term/

mulop factor term’ | €

.

Overlay

g2~ (Jaf+]a])

[b%

[number term’ exp’

factors and terms

exrp
exp’
addop
term

term’

'rn'uln'n

bbbl

term exp’

addop term exp’ | €

+ | -

factor term/

mulop factor term’ | €

.

Overlay

JENEIEIEI S EIEIETD

[numberterm’ exp’

factors and terms

exp — termexp’

exp’ — addoptermexp’ | €
addop - + | -

term — factor term’
term’ — mulop factor term’ | €
’rn’ll]n’n —_— .

Overlay

Ll fe{-](f3]+]4])
[numbere ezp’
factors and terms
exp — termexp’
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’
term’ — mulop factor term’ | €
’rn’ll]n’n —_— .

Overlay

e f2]-](Jaf+]a])

[numberezp’

factors and terms

term exp’

addop term exp’ | €

+ | -

factor term/

mulop factor term’ | €

.

exrp
exp’
addop
term

term’

'rn'uln'n

bbbl

Overlay

a2~ (Jaf+]a])

[numberaddop term exp’

factors and terms

exrp — termexp’

exp’ — addoptermexp’ | €
addop - + | -

term — factor term’
term’ — mulop factor term’ | €
’rn’ll]n’n —_— .

Overlay

a2 (Jaf+]a])

[number+ term exp’

factors and terms

exp — termexp’

exp’ — addoptermexp’ | €
addop - + | -

term — factor term’
term’ — mulop factor term’ | €
’rn’ll]n’n —_— .

Overlay

[afe2]] (Jaf+]a])

[number +term exp’

factors and terms

exp — termexp’

exp’ — addoptermexp’ | €
addop - + | -

term — factor term’
term’ — mulop factor term’ | €
’rn’ll]n’n —_— .

Overlay

[afef2|](Jaf+]a])

[number +factor term’ exp’

factors and terms

exrp — termexp’

exp’ — addoptermexp’ | €
addop - + | -

term — factor term’
term’ — mulop factor term’ | €
’rn’ll]n’n —_— .

Overlay

JENEI B3 KR

3|+|4

[number +number term’ exp’

factors and terms

exp
exp’
addop

term
4

I R

PlLd

term exp’

addop term exp’ | €

+ | -
factor term’

o T Lo d e Ao

!

P

Overlay

JENEIEI BN

3|+]4

[number +numberterm’ exp’

factors and terms

exp
exp’
addop

term
4

I R

PlLd

term exp’

addop term exp’ | €

+ | -
factor term’

o T Lo d e Ao

!

P

Overlay

ez~ (fs]+]4])

[number +numbermulop factor term’ exp’

factors and terms

exp — termexp’
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

JEIEI EXEA NG EI KRR

[number +numberx* factor term’ exp’

factors and terms

exp — termexp’
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

JENEI E1 ES U E1 K2 ETD)

[number +number * (exp) term’ exp’

factors and terms

exp — termexp’
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

JENEI E1 ES U E1 K2 ETD)

[number +number *{ exp) term’ exp’

factors and terms

exp — termexp’
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

JENEI E1 ES KU E1 K ETD)

[number +number * (exp) term’ exp’

factors and terms

exp — termexp’
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

JENEIEI KR

3|+]4

[number +number * (term exp’) term’ exp’

factors and terms

exp
exp’
addop

term
4

I R

PlLd

term exp’

addop term exp’ | €

+ | -
factor term’

o T Lo d e Ao

!

P

Overlay

-2l {ds]]aD] | |-

[number +number * (factor term’ exp’) term’ exp’

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

e[ds]faD | | |+

[number +number * (auwmber term’ exp’) term’ exp’

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

ezl [s]]aD] | |-

[number +number * (numberterm’ exp”) term’ exp’

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

JENEIE1 S G E1 K E DN I i

[number +number * (numbere exp’) term’ exp’

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

ez [ds]ap] | |-

[number +number * (numberezp’) term’ exp’

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

e+ [sl ap]| | |-

[number +number * (numberaddop term exp’) term

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

e[ds]aD | | |-

[number +number * (number+ term exp’) term’ exy

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

ez [ds]+]aD] |]+

[number +number * (number + term exp’) term’ e

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

-2 [ds]+aD] | |-

[number +number * (number + factor term’ exp’)

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

ez [dsl+]aD] |]

[number +number * (number + number term’ e

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

N 4 NP BRUURY J ISR I A |

P

Overlay

-2+ [ds]+]aD] | |

[number +number * (number + numberterm’ e:

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

N 4 NP BRUURY J ISR I A |

P

Overlay

ez [ds]faD] | |

[number +number * (number + numbere ezp’)

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

N 4 NP BRUURY J ISR I A |

P

Overlay

ez [ds]+faD | | |+

[number +number * (number + numberexp’)

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

ez [ds]+faD] | |

[number +number * (number + numbere) te:

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

N 4 NP BRUURY J ISR I A |

P

Overlay

e[ds]+faD | | |-

[number +number * (number + number?} ter

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

ez [ds]+faD] | |+

[number +number * (number + number) te

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

ezl {s]]aD] | |-

number +number * (number + number) €

factors and terms

exp
exp’
addop

term
4

I R

PlLd

term exp’ (1)
addop term exp’ | €

+ | -

factor term’

DU SRR N ISR I A |

P

Overlay

e[ds]+faD] |]+

[number +number * (number + number)

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

ezl {s]]aD] | |-

[number +number # (number + number)

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

!

Lo NS SR R IR IR A R

Overlay

e[ds]+fap | | |+

[number +number * (number + number

factors and terms

exp — termexp’ (1)
exp’ — addoptermexp’ | €
addop - + | -
term — factor term’

N 4 NP BRUURY J ISR I A |

P

Remarks concerning the derivation

Note:

. INF5110 —
= Input = stream Of tOkenS Compiler

Construction

= there: 1... stands for token class number (for
readability /concreteness), in the grammar: just
number parsing

Introduction to

Top-down parsing

= in full detail: pair of token class and token value

First and follow

(number, 1) sets
Notation: ttirl:;l;sing (mostly
.) Sottom.
= underline: the place (occurrence of non-terminal where p::izg‘ up
production is used) References

= erossed-out:
= terminal = token is considered treated

= parser “moves on”
= later implemented as match or eat procedure

4-13

Not as a “film” but at a glance: reduction
sequence

INF5110 —
Compiler
ﬂ , Construction
term exp
factor term” exp’
naumber term’ exp’ Introduction to

numberterm’ exp’ parsing
numbere exp’
numberezp’
numberaddop term exp’

number+ term ezp’

Top-down parsing

First and follow
sets

LL-parsing (mostly

number +term exp’ LL(1))
A !
number +factor term ez’p) Bottom-up
number +aamber term’ exp parsing
number +numberterm’ exp’
I— References

number +numbermulop factor term’ exp’

number +numberx* factor term’ exp’
number +number * (ezp) term’ exp’
number +number * { exp) term’ exp’
number +number * (ezp) term’ exp’

L e e e A A A A

414

Best viewed as a tree

exp

Best viewed as a tree

exp

term

Best viewed as a tree

exp

-

term

/

factor

Best viewed as a tree

exp

-

term

/

factor

Nr

Best viewed as a tree

exp

-

term

/\

factor term”

Nr

Best viewed as a tree

factor term”

Nr €

Best viewed as a tree

factor term”

Nr €

exp

Best viewed as a tree

factor term’ addop

Nr €

exp

Best viewed as a tree

factor term’ addop

Nr € +

exp

Best viewed as a tree

exp
/
term exp
factor term’ addop term

Nr € +

Best viewed as a tree

exp
/
term exp
factor term’ addop term

Nr € + factor

Best viewed as a tree

exp
/
term exp
factor term’ addop term
Nr € + factor

Best viewed as a tree

exp
///\
term ezp'
/\ //-l
factor term’ addop term
Nr l + factor term’

Best viewed as a tree

exp
///\
term ezp'
/\ //-l
factor term’ addop term
Nr l + factor term’
[/

Best viewed as a tree

exp
///\
term ezp'
/\ //-l
factor term’ addop term
Nr l + factor term’
[/

Best viewed as a tree

exp
///\
term ezp'
— T 1
factor term’ addop term
Nr l + factor term’
[—1

Best viewed as a tree

exp
///\
term ezp'
— T 1
factor term’ addop term
Nr l + factor term’
[—1
Nrmulop factor
| —

Best viewed as a tree

exp
///\
term ezp'
— T 1
factor term’ addop term
Nr l + factor term’
[—1
Nrmulop factor
I ——1

Best viewed as a tree

exp
///\
term ezp'
— T 1
factor term’ addop term
Nr l + factor term’
[—1
Nrmulop factor
I ——1
* (exp

Best viewed as a tree

exp
/\
term ezp'
— T 1
factor term’ addop term
Nr l + factor term’
[—1
Nrmulop factor
I ——1
* (exp
/
term

factor

Best viewed as a tree

exp
/\
term ezp'
— T 1
factor term’ addop term
Nr l + factor term’
[—1
Nrmulop factor
I ——1
* (exp
/
term
/
factor

Nr

Best viewed as a tree

exp
/\
term ezp'
— T 1
factor term’ addop term
Nr l + factor term’
[—1
Nrmulop factor
I ——1
* (exp
/
term
/\
factor term’

Nr

Best viewed as a tree

exp
/\
term ezp'
— T 1
factor term’ addop term
Nr l + factor term’
[—1
Nrmulop factor
I ——1
* (exp
/
term
/\
factor term’

Nr €

Best viewed as a tree

term
factor term’ addop
I I |
Nr € +

factor

Nr

Best viewed as a tree

term exp
— T 1
factor term’ addop term
Nr l + factor term’
[—1
Nrmulop factor
I ——1
* (exp
/\
term exp’
T _—

factor

Nr

Best viewed as a tree

term
factor term’ addop
I I |
Nr € +

factor

Nr

Best viewed as a tree

exp
/\
term ezp'
— T 1
factor term’ addop term
Nr l + factor term’
[—1
Nrmulop factor
I ——1
* (exp
/\
term e:cp'
T 1
factor term’ addop term

Nr € +

Best viewed as a tree

exp
/\
term ezp'
— T 1
factor term’ addop term
Nr l + factor term’
[—1
Nrmulop factor
I ——1
* (exp
/\
term e:cp'
T 1
factor term’ addop term

| | | —

Nr € + factor

Best viewed as a tree

exp
/\
term ezp'
— T 1
factor term’ addop term
Nr l + factor term’
[—1
Nrmulop factor
I ——1
* (exp
/\
term e:cp'
T 1
factor term’ addop term
| —
Nr l -i|~ factor

Nr

Best viewed as a tree

exp
/\
term ezp'
— T 1
factor term’ addop term
Nr l + factor term’
[—1
Nrmulop factor
I ——1
* (exp
/\
term e:cp'
T 1
factor term’ addop term
| /\
Nr l -i|~ factor term’

Nr

Best viewed as a tree

exp
/\
term ezp'
— T 1
factor term’ addop term
Nr l + factor term’
[—1
Nrmulop factor
I ——1
* (exp
/\
term e:cp'
T 1
factor term’ addop term
| /\
Nr l -i|~ factor term’

Nr €

Best viewed as a tree

term
factor term’ addop
I I |
Nr € +

factor

Nr

addop

+

factor

Nr

Best viewed as a tree

term
factor term’ addop
I I |
Nr € +

factor

Nr

addop

+

factor

Nr

Best viewed as a tree

term
factor term’ addop
I I |
Nr € +

factor

Nr

addop

+

factor

Nr

Best viewed as a tree

term
factor term’ addop
\ | |
Nr € +

factor

Nr

addop

+

factor

Nr

Best viewed as a tree

term
factor term’ addop
\ | |
Nr € +

factor

Nr

addop

+

factor

Nr

Best viewed as a tree

term
factor term’ addop
\ | |
Nr € +

factor

Nr

addop

+

factor

Nr

Best viewed as a tree

term
factor term’ addop
\ | |
Nr € +

factor

Nr

addop

+

factor

Nr

Non-determinism?

= not a “free” expansion/reduction/generation of some
word, but
= reduction of start symbol towards the target word of
terminals

erp =" 1+2x%(3+4)

= j.e.: input stream of tokens “guides” the derivation
process (at least it fixes the target)

= but: how much “guidance” does the target word (in
general) gives?

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

416

Oracular derivation

exp — exp + term | exp — term | term INF5110 -
Compiler
term — term * factor | factor Construction
factor — (exp) | number

exp =1 11+2%3 Introduction to
eTcp+ term =3 |1+2%3 parsing
Em.', term =5 i 14+2%3 Top-down parsing
factor +term =7 [1+2x%3 First and follow
number + term 11+2%3 sets
number + term 1+2%3 LL-parsing (mostly
number + term =4 1+|2%3 LL(1))
number + term * factor =5 1+]2x%3 Bottom-up
number + factor * factor =7 1+|2%3 parsing
number + number * factor 1+ 2%3 R,
number + number * factor 1+2| %3
number + number * factor =7 1+2%|3
number + number * number 1+2% |3
number + number * number 1+2%3)

4-17

Two principle sources of non-determinism
here

Using production A — 3 INF5110 —

Compiler
Construction

S="a1 Aaww=a1 fay=>"w

Introduction to

parsing

= 1,9, 3: word of terminals and nonterminals Top-down parsing

= w: word of terminals, only First and follow

= A: one non-terminal LL-parsing (mostly
LL(1))

2 choices to make Bottom-up

parsing

1. where, i.e., on which occurrence of a non-terminal in References

a1 Aas to apply a production?

2. which production to apply (for the chosen
non-terminal).

2Note that aq and s may contain non-terminals, including further 4-18
occurrences of A.

Left-most derivation

= that's the easy part of non-determinism

= taking care of “where-to-reduce” non-determinism:

left-most derivation
= notation =

= some of the example derivations earlier used that

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

419

Non-determinism vs. ambiguity

= Note: the “where-to-reduce”-non-determinism #

ambiguitiy of a grammar3
. “ . my. . INF5110 —
= in a way (“theoretically”): where to reduce next is Compiler
irre/evant: Construction
= the order in the sequence of derivations does not matter
= what does matter: the derivation tree (aka the parse Introduction to
arsin
tree) parsing
Top-down parsing
Lemma (Left or right, who cares) et e (e
sets
* [£ 1 e LL-parsing (mostly
S=w iff S=;w iff §="w. s
“ . " .. Bottom-up
= however (“practically”): a (deterministic) parser parsing
implementation: must make a choice References
Using production A —
S="a1 Aas=>a1 8 az="w
420

3A CFG is ambiguous, if there exists a word (of terminals) with 2

Non-determinism vs. ambiguity

= Note: the “where-to-reduce”-non-determinism #

ambiguitiy of a grammar3
. “ . my. . INF5110 —
= in a way (“theoretically”): where to reduce next is Compiler
irre/evant: Construction
= the order in the sequence of derivations does not matter
= what does matter: the derivation tree (aka the parse Introduction to
tree) parsing
Top-down parsing
Lemma (Left or right, who cares) et e (e
sets
* [£ 1 e LL-parsing (mostly
S=w iff S=;w iff §="w. s
“ . " .. Bottom-up
= however (“practically”): a (deterministic) parser parsing
implementation: must make a choice References
Using production A —
S=]w Aag=w [ag=] w
420

3A CFG is ambiguous, if there exists a word (of terminals) with 2

What about the “which-right-hand side”
non-determinism?

INF5110 -

A — 6 | Y Compiler

Construction

Is that the correct choice?

Introduction to
parsing

S :>l* w1 A a9 = W1 5 (6) :>l* w Top-down parsing
First and follow

sets

= reduction with “guidance”: don't loose sight of the
LL-parsing (mostly

target w LL(1))
O “past” is fixed: w = w1 w2 Bottom-up
= “future” is not: e
References
Aag = fag =] we orelse Aag = yag =] wy ?
Needed (minimal requirement):
In such a situation, “future target” ws must determine which 421

of the rules to takel

Deterministic, yes, but still impractical

INF5110 —
Compiler
Construction

Aag = fag =] wy or else Aag =) yag =] we ?

= the “target” wsy is of unbounded length!

Introduction to

= impractical, therefore: parsing
Top-down parsing

Look-ahead of length &k et Gl
resolve the “which-right-hand-side” non-determinism ttirl’;;sins (mostly

inspecting only fixed-length prefix of wy (for all situations as g omup
above) parsing

References

LL(k) grammars

CF-grammars which can be parsed doing that.*

*Of course, one can always write a parser that “just makes some
decision” based on looking ahead k£ symbols. The question is: will that 422
allow to capture all words from the grammar and only those.

Section

First and follow sets

Chapter 4 "Parsing”

Course “Compiler Construction”
Martin Steffen

Spring 2018

First and Follow sets

= general concept for grammars
= certain types of analyses (e.g. parsing):
= info needed about possible “forms"” of derivable words,

First-set of A

which terminal symbols can appear at the start of strings
derived from a given nonterminal A

Follow-set of A

Which terminals can follow A in some sentential form.

= sentential form: word derived from grammar’s starting
symbol

= later: different algos for first and follow sets, for all
non-terminals of a given grammar

= mostly straightforward

= one complication: nullable symbols (non-terminals)

= Note: those sets depend on grammar, not the language

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

424

First sets

Definition (First set)

Given a grammar G and a non-terminal A. The first-set of
A, written Firstg(A) is defined as

Firstg(A)={a | A=faa, aeXr}+{c|A=5€}. (2)

Definition (Nullable)

Given a grammar G. A non-terminal A € Xy is nullable, if
A=%e.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

425

Examples

INF5110 -

Compiler

= Cf the T|ny grammar Construction

= in Tiny, as in most languages

Introduction to
parsing
. . _ e
FZTSt(Zf'Stmt) - { lf } Top-down parsing
First and follow
sets

LI u :
n many languages

LL-parsing (mostly

First(assign-stmt) = {identifier,”(”} HA
Bottom-u
parsing ’
= typical Follow (see later) for statements: et

Follow(stmt) ={”;”,”end”, "else”, "until”}

426

Remarks

INF5110 —
Compiler
Construction

= note: special treatment of the empty word €
= in the following: if grammar G clear from the context

= =% for =>2; Introduction to
= First for Firstg L

- Top-down parsing

First and follow

= definition so far: “top-level” for start-symbol, only sets
= next: a more general definition ttirl:?;sing (mostly
= definition of First set of arbitrary symbols (and even Bottom-up
words) parsing
= and also: definition of First for a symbol in terms of References

First for “other symbols” (connected by productions)

= recursive definition

427

A more algorithmic/recursive definition
= grammar symbol X: terminal or non-terminal or €

Definition (First set of a symbol)
Given a grammar G and grammar symbol X. The first-set
of X, written First(X), is defined as follows:

1. If X e X7+ {€}, then First(X) = {X}.

2. If X € 3n: For each production

X—>X1X2Xn

2.1 First(X) contains First(X;) \ {€}

2.2 If, for some i <n, all First(Xy),..., First(X;) contain
€, then First(X) contains First(X;11) ~ {€}.

2.3 If all First(Xy),..., First(X,) contain €, then
First(X) contains {€}.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

428

For words

INF5110 -

Definition (First set of a word) Compiler

Construction

Given a grammar G and word «. The first-set of

Introduction to

a=Xi...X,, pasie
Top-down parsing
. 0 First and follow
written First(a) is defined inductively as follows: sets
; ; ; LL-parsi I
1. First(a) contains First(Xi) \ {€} T
2. foreach i=2,...n, if First(X}y) contains € for all Bottom-up

parsing

k=1,...,i—1, then First(«) contains First(X;) ~ {€}

3. If all First(Xy),..., First(X,) contain €, then
First(X) contains {€}.

References

429

Pseudo code

for allX \in Au{e} do PR =
A Compiler
First [X] =X Construction
end;
for all non-terminals A do Introduction to
First[A] = {} parsing
end Top-down parsing
while there are changes to any First [A] do Firet andlfollow
for each production A - X1 ...X, do sets
k ::_ 1 LL-parsing (mostly
continue = true LL(1))
while continue = true and k<n do i
First [A] := First[A] U First[Xg] ~ {e} T P
if e¢ First[Xy] then continue := false
k = k + 1 References
end;
if continue = true
then First[A] := First[A] u {€}
end;
end

4-30

If only we could do away with special cases

for the empty words ...

for grammar without e-productions.”

for all non-terminals A do
First [A] = {} // counts as change
end
while there are changes to any First [A] do
for each production A - X;...X, do
First [A] := First[A] U First[X1]
end ;
end

®A production of the form A — e.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-31

Example expression grammar (from before)

INF5110 —
Compiler
Construction

Introduction to

exp — exp addop term | term (3) e
Top-down parsing
addop — + | -
First and follow
term — term mulop factor | factor sets
mulop - * LL-parsing (mostly
LL(1))
factor — (exp) | number
Bottom-up
parsing
References

4-32

Example expression grammar (expanded)

INF5110 —
Compiler
Construction

exp — exp addop term (4)
Introduction to
exp — term parsing
a’ddop - + Top-down parsing
addop - = First and follow
sets
term — term mulop factor
LL-parsing (mostly
term — factor LL(1))
mulop - % Bottom-up
t parsing
actor — Eex,
f (p) References
factor - n

4-33

nr pass 1 pass 2 pass 3
1 exp — expaddop term

2 exp— term

3 addop — +

4 addop —» -

5 term — term mulop factor

6 term — factor

7 mulop » *

8 factor — (exp)

9 factor - n

“Run” of the

algo

Grammar rule Pass | Pass 2 Pass 3
exp — exp
addop term
exp — term First(exp) =
{ (, number }
addop — + First(addop)
= (+}
addop — - First(addop)
={+ -}
term — term
mulop factor
term — factor <First(rzerm) =
{ (. number }
mulop — * First(mulop)
= {*}
factor — (exp) First(factor)
=1{(}
factor — number First(factor) =
{(, number |}

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

Collapsing the rows & final result

= results per pass:

1 2 3
eap {(;n}
addop {+,-}
term {(,n}
mulop {*}

factor {(,n}

= final results (at the end of pass 3):

First[_]

erp
addop
term

mulop
factor

{(;n}
{+7_}
{(;n}
{*}

{(;n}

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

Work-list formulation

for all non-terminals A do
First [A] = {}
WL == P // all productions
end
while WL #@ do
remove one (A— X;...X,) from WL
if First [A] # First[A] u First[X1]
then First[A] := First[A] u First[X1]
add all productions (A-X7...X],) to WL
else skip
end

= worklist here: “collection” of productions

= alternatively, with slight reformulation: “collection” of
non-terminals instead also possible

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

Follow sets

Definition (Follow set (ignoring $))

Given a grammar G with start symbol S, and a non-terminal
A.
The follow-set of A, written Followg(A), is

Followg(A) ={a | S =5 a1Aaay, aecXr}. (5)

= More generally: $ as special end-marker

S$=F ajAaas, aeXr+{$}.

= typically: start symbol not on the right-hand side of a
production

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

Follow sets, recursively

Definition (Follow set of a non-terminal)
Given a grammar GG and nonterminal A. The Follow-set of
A, written Follow(A) is defined as follows:

1. If A is the start symbol, then Follow(A) contains $.

2. If there is a production B — aAf3, then Follow(A)
contains First(/3) \ {e}.

3. If there is a production B - aAf such that
€ € First(3), then Follow(A) contains Follow(B).

= $: “end marker” special symbol, only to be contained in
the follow set

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

More imperative representation in pseudo
code

Follow [S] := {$}
for all non-terminals A4S do
Follow[A] = {}
end
while there are changes to any Follow-set do
for each production A - X;...X, do
for each X; which is a non-terminal do

Follow [X;] := Follow [X;]Ju(First(X;1...X,)N{e})
if ec FirSt(Xi+1X¢+2...Xn)
then Follow[X;] := Follow[X;] u Follow[A]
end
end
end

Note! First() = {e}

Example expression grammar (expanded)

INF5110 —
Compiler
Construction

exp — exp addop term (4)
Introduction to
exp — term parsing
a’ddop - + Top-down parsing
addop - = First and follow
sets
term — term mulop factor
LL-parsing (mostly
term — factor LL(1))
mulop - % Bottom-up
t parsing
actor — Eex,
f (p) References
factor - n

441

nr pass 1 pass 2

1 exp — expaddop term

2 exp— term

5 term — term mulop factor

6 term — factor

[0}

factor - (exp)

normalsize

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

442

“Run” of the algo

Grammar rule

Pass |

Pass 2

exp — exp addop
term

Follow(exp) =
{3, + -}
Follow(addop) =
{ (, number}
Follow(term) =

{8+ -}

Follow(term) =
($.+, -, %)}

exp — term

term — term mulop
factor

Follow(term) =
{8+, -, %}
Follow(mulop) =
{ (, number}
Follow(factor) =
{8, +, -, *}

Follow(factor) =
{$,+.-,%))

term — factor

factor = (exp)

Follow(exp) =
{$,+.-,)})

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-43

lllustration of first/follow sets

a € First(A) a € Follow(A) —
Compiler
Construction
\
\\ /‘ \ Introduction to
/ \ \\ \ / ‘ \ parsing
\ Top-down parsing
, \ \ \ / \ First and follow
\ D(\E sets
///‘ i‘ " LL-parsing (mostly
J/ \ LL(1))
/ \\ \ Bottom-up
@ » parsing
References

= red arrows: illustration of information flow in the algos
= run of Follow:

= relies on First

= in particular a € First(E) (right tree)

= $ ¢ Follow(B) 444

More complex situation (nullability)

a € First(A)

a € Follow(A)
s

N
/N

N,
//\\F L \\H

\

3

5o

N
® - ®

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

445

Some forms of grammars are less desirable
than others

= left-recursive production:
A~ Aa
more precisely: example of immediate left-recursion

= 2 productions with common “left factor"”:

A—aB | afs where a # €

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-46

Some simple examples for both

= left-recursion

exp — exp+term

= classical example for common left factor: rules for
conditionals

if-stmt — if (exp) stmtend
| if (exp) stmtelse stmtend

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

447

Transforming the expression grammar

exp — exp addop term | term
addop — + | -

term — term mulop factor | factor
mulop — *
factor — (exp) | number

= obviously left-recursive

= remember: this variant used for proper associativity!

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

448

After removing left recursion

INF5110 —
Compiler
/ Construction
exp — termexp
exp’ — addoptermezp’ | €
Introduction to
addop - + | - parsing
term — faCtOT te’r‘ml Top-down parsing
term’ — mulop factor term’ | € First and follow
sets
— *
muzoP LL-parsing (mostly
factor — (exp) | n LL(1))
Bottom-up
parsing

= still unambiguous et
eferences

= unfortunate: associativity now different!

= note also: e-productions & nullability

4-49

Left-recursion removal

INF5110 —
Compiler
Construction

Left-recursion removal

A transformation process to turn a CFG into one without left
recursion parsing

Top-down parsing

Introduction to

First and follow
sets

= price: e-productions

= 3 cases to consider LL-parsing (mostly
LL(1))
= immediate (or direct) recursion e
= simple parsing
- general References

= indirect (or mutual) recursion

Left-recursion removal:

Before

A > Aa| B

simplest case

After
A - BA
A" - aA | e

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-51

Schematic representation

INF5110 —
Compiler
A A ’ IB A IBA/ Construction
— e} —
A > oA | e .
Introduction to
parsing
Top-down parsing
A A
/\ /\ First and follow
A Q 6 A, sets
LL-parsing (mostly
N T~ LL(1))
!
A o @ A Bottom-up

/\ /\ parsing

A References
| /\

g

S
o
=

Q
REN

4-52

Remarks

INF5110 —
= both grammars generate the same (context-free) Compiler
. Construction
language (= set of words over terminals)
= in EBNF: !
Introduction to
parsing
A — ,8{06} Top-down parsing
First and follow
= two negative aspects of the transformation sets

. . LL-parsing (mostly
1. generated language unchanged, but: change in resulting LL(1))

structure (parse-tree), i.a.w. change in associativity, Bottom-up
which may result in change of meaning parsing
2. introduction of e-productions

References

= more concrete example for such a production: grammar
for expressions

Left-recursion removal: immediate
recursion (multiple)

INF5110 —
Compiler
Construction

Before After

Introduction to
parsing

Top-down parsing

A - Aal | | AOén A - BlA, | | IBmA, First and follow
| 051 | | B A - oA | | anA' St

| € LL-parsing (mostly
LL(1))

Bottom-up
parsing

Note: can be written in EBNF as: Refeiences

A= B |- | Bu)or | o | an)”

454

Removal of: general left recursion

Assume non-terminals Ay,..., A,
for i := 1 to m do
for j := 1 to i-1 do
replace each grammar rule of the form A; — AjB by // i<j
ruIeAi—wxlﬂ | szﬁ | | Otk,B
where Aj a1 | ag | ... | ag

is the current rule(s) for A; // current
end
{ corresponds to i=j }
remove, if necessary, immediate left recursion for A;
end

“current” = rule in the current stage of algo

Example (for the general case)

C
INF5110 —
- Bb | Ab | d Compiler

Construction

A - Ba | Aa |
B

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-56

Example (for the general case)

L

Ba | Aa | ¢

A
B Bb | Ab | d

I

A - BaA | cA
aA’ | e
B - Bb| Ab|d

S
!

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-56

Example (for the general case)

% g 5 | kil | ¢ INF5110 —
B - Bb | Ab | d Compiler
Construction
Introduction to
A — BaA’ | cA’ parsing
A" - aA’ | € Top-down parsing
B - Bb| Ab |d First and follow
sets
LL-parsing (mostly
LL(1))
7 7 Bottom-up
A - BaA' | cA parsing
A" > aA | e
B —> Bb | BaA'b | cA'b | d References

4-56

Example (for the general case)

A - Ba| Aa | c
INF5110 —
B - Bb | Ab | d Compiler
Construction
Introduction to
A — BaA’ | cA’ parsing
A" - aA’ | € Top-down parsing
B - Bb | Ab I d First and follow
sets
LL-parsing (mostly
LL(1))
A -~ Bad' | cA P
A" > aA | e
B - Bb | BaA'b | cA'b | d References
A — BaA' | cA’
A" > aA | e
B - cAbB' | dB’ A
B’ - bB | aA’bB | €

Left factor removal

INF5110 —
Compiler

= CFG: not just describe a context-free languages o

= also: intended (indirect) description of a parser for that
Introduction t
language parsing

Top-down parsing

= common left factor undesirable

First and follow

= cf.: determinization of automata for the lexer sets

LL-parsing (mostly

. . . LL(1

Simple situation G
Bottom-up
parsing

A — O[A, | . References

A-af | ay | ... A’

4-57

Example: sequence of statements

INF5110 —
Compiler
Construction

Introduction to
Before After porsing
Top-down parsing

First and follow
sets

stmt-seq — stmt; stmi-seq stmt-seq — stmt stmt-seq’
’ LL-parsing (mostly
| stmt stmt-seq’ — jstmit-seq | €)

Bottom-up
parsing

References

4-58

Example: conditionals

Before

if-stmt — if (exp) stmt-seqend
| if (exp) stmt-seqelse stmi-seqend

After

if-stmt — if (exp) stmt-seq else-or-end
else-or-end — else stmt-segend | end

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

Example: conditionals (without else)

Before

if-stmt — if (exp) stmt-seq
| if (exp) stmt-seq else stmt-seq

After

if-stmt — if (exp) stmt-seq else-or-empty
else-or-empty — else stmt-seq | €

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

Not all factorization doable in “one step”
Starting point

INF5110 —
Compiler
A = abCB | abC | aE Construction
| .
After 1 step e
Top-down parsing
A N abAI | aE ;I;S: and follow
/
A - c¢B | C LL-parsing (mostly
LL(1))
Bottom-up
After 2 steps PR
References
A - aA”
A" > bA' | E
A" - ¢B | C
4-61

= nater we ~rhance the IAnoect camman nrafiv (— lAanoaact

Left factorization

INF5110 —
Compiler
while there are changes to the grammar do Construction
for each nonterminal A do
let « be a prefix of max. length that is shared
by two or more productions for A Introduction to
. parsing
if ate
then Top-down parsing
let A— aq ‘ e | ay be all First and follow
prod. for A and suppose that ay, ..., share a sets
so that A — af1 I s | afy I O‘k'-*-l I s | An LL-parsing (mostly
that the (3;'s share no common prefix, and LL(1))
that the ag41,...,an do not share a. Bottortn
replace rule A - a1 | ... | an by the rules parsing
!
A,_> ad | Xhk+1 | T ‘ *n References
A B || Br
end
end
end

462

Section
LL-parsing (mostly LL(1))

Chapter 4 "Parsing”

Course “Compiler Construction”
Martin Steffen

Spring 2018

Parsing LL(1) grammars

= this lecture: we don't do LL(k) with k> 1
= LL(1): particularly easy to understand and to A

implement (efficiently) o Sompiler
= not as expressive than LR(1) (see later), but still kind of

decent Introduction to
parsing
LL(1) parsing principle Top-down parsing
First and follow
Parse from 1) left-to-right (as always anyway), do a 2) sets
left-most derivation and resolve the “which-right-hand-side” i A
non-determinism by Bottom-up
1. looking 1 symbol ahead. parsing
References
= two flavors for LL(1) parsing here (both are top-down
parsers)
= recursive descent
= table-based LL(1) parser
464

= predictive parsers

Sample expr grammar again

INF5110 —
Compiler
Construction

factors and terms

Introduction to

exp — termexp’ (6) rreme
Top-d i
exp’ — addoptermerp’ | € op-down parsing
First and follow
addop - + | - sets
term — factor term' LL—(pz)l;sing (mostly
LL(1
term’ — mulop factor term’ | €
Bottom-up
mulop - % parsing
faCtOT — (61‘])) | n References

Look-ahead of 1: straightforward, but not
trivial

= |ook-ahead of 1:

= not much of a look-ahead, anyhow
= just the “current token”

= read the next token, and, based on that, decide
= but: what if there's no more symbols?

— read the next token if there is, and decide based on the
token or else the fact that there's none left®

Example: 2 productions for non-terminal factor

factor - (exp) | number

that situation is trivial, but that's not all to LL(1) ...

®Sometimes “special terminal” $ used to mark the end (as
mentioned).

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

Recursive descent: general set-up

1. global variable, say tok, representing the “current
token” (or pointer to current token)

2. parser has a way to advance that to the next token (if
there’s one)

Idea

For each non-terminal nonterm, write one procedure which:

= succeeds, if starting at the current token position, the
“rest” of the token stream starts with a syntactically
correct word of terminals representing nonterm

= fail otherwise

= ignored (for right now): when doing the above
successfully, build the AST for the accepted
nonterminal.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-67

A W N

Recursive descent

method factor for nonterminal factor

final int LPAREN=1,RPAREN=2 ,NUMBER=3,
PLUS=4 ,MINUS=5, TIMES=6;

void factor () {
switch (tok) {
case LPAREN: eat(LPAREN);expr();eat(RPAREN);
case NUMBER: eat(NUMBER);

}

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

Recursive descent

qtype token = LPAREN | RPAREN | NUMBER
| PLUS | MINUS | TIMES

let factor () = (* function for factors x*)
match !tok with
LPAREN —-> eat(LPAREN); expr(); eat(RPAREN)
| NUMBER —> eat (NUMBER)

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

Slightly more complex

= previous 2 rules for factor: situation not always as
immediate as that

LL(1) principle (again)

given a non-terminal, the next token must determine the
choice of right-hand side’

= definition of the First set
Lemma (LL(1) (without nullable symbols))

A reduced context-free grammar without nullable
non-terminals is an LL(1)-grammar iff for all non-terminals
A and for all pairs of productions A - a1 and A - as with
a7 # a9’

Firsty(a1) n Firsti(ag) =@ .

"It must be the next token/terminal in the sense of First, but it
need not be a token directly mentioned on the right-hand sides of the
corresponding rules.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-70

Common problematic situation

= often: common left factors problematic

if-stmt — if (exp) stmt
| if (exp) stmtelse stmt

= requires a look-ahead of (at least) 2
= = try to rearrange the grammar
1. Extended BNF ([2] suggests that)

if-stmt — if (exp) stmt[else stmt]

1. left-factoring:

if-stmt — if (exp) stmt else—part
else—part — € | elsestmt

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

471

N P O © 0 N O 0 B W N

Recursive descent for left-factored if-stmt

procedure ifstmt ()

begin

match ("if");

match
exp ()

(" (");

match (")");

stmt ();

if token =
then match ("else");
stmt ()

end
end;

"else"

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-72

Left recursion is a no-go

factors and terms

INF5110 —
Compiler
exp — exp addop term | term (7) S
addop - + | -
Introduction to
term — term mulop factor | factor Pl
muzop - * Top-down parsing
factor — (exp) | number First and follow
sets
LL-parsing (mostly
. . LL(1))
= consider treatment of exp: First(exp)?
Bottom-up
= whatever is in First(term), is in First(exp)® parsing
= even if only one (left-recursive) production = infinite References
recursion.
Left-recursion
Left-recursive grammar never works for recursive descent.
473

8And it would not help to look-ahead more than 1 token either.

Removing left recursion may help

exp
erp
addop
term
term’
mulop
factor

R R

procedure exp ()
begin

end

term ();
exp’()

term exp’ L
addop term exp’ | €
+ | -

factor term’

procedure exp’()
begin
case token of

mulop factor term’ || €

*

(ezp) | n

end

ey

end

match ("+");
term ();
exp’()
match (" -");
term ();
exp’ ()

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly

LL(1))

Bottom-up
parsing

References

474

Recursive descent works, alright, but ...

exp
/
term exp
factor term’ addop term exp
Nr € + factor term’ €
Nrmulop factor term’
* (exp) €

term exp
factor term’ addop term exp
Nr € + factor term’ €

Nr

who wants this form of trees?

The two expression grammars again

no left-rec.

exp — termexp’
Precedence & assoc. exp’ — addoptermexp’ | €
addop - + | -
term — factor term’
exp - exp addop term | term term’ — mulop factor term’ | €
addop — + | - mulop - *
term — term mulop factor | fact factor - (ezp) | n
mulop — %
factor — (ezp) | number

= no left-recursion

= assoc. / precedence

. ok
= clean and straightforward _
rules . ric. descent parsing
o

= |eft-recursive

= but: just “unnatural”

= non-straightforward

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

Left-recursive grammar with nicer parse
trees

1+2%(3+4)
exp
erp addop term
| T
term + term mulop term
| | | |
factor factor * factor
| | — T
Nr Nr (exp

T~

Nr mulop

Nr

)

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-77

The simple “original” expression grammar
(even nicer)

Flat expression grammar

extp — exp op exp | (exp) | number

op - + | - | =
1+2%(3+4)
cap
. A

Nr + Nr

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly

LL(1))

Bottom-up
parsing

References

4-78

Associtivity problematic

Precedence & assoc.

exzp — exp addop term | term
addop - + | -
term — term mulop factor | factor
mulop — %
factor — (ezp) | number
exp
exp addop term
3+4+5 T \ !
exp addop term + factor
parsed “as” | | | |
term + factor number
\ \
factor number
(3+4)+5 |

number

Associtivity problematic

Precedence & assoc.

exzp — exp addop term | term
addop - + | -
term — term mulop factor | factor
mulop — %
factor — (ezp) | number
exp
exp addop term
3-4-5 T \ !
exp addop term - factor
parsed “as” | | | |
term - factor number
\ \
factor number
(3-4)-5 |

number

Now use the grammar without left-rec (but
right-rec instead)

No left-rec.

exp
exp
addop
term
term’
mulop
factor

A

factor

3 _ 4 _ 5 number

term exp’

addop term exp’ | €

+ | -

factor term’

mulop factor term’ | €
*

(ezp) | n

exp

/\

’

term exrp
T~ e
terméddop term exp
€ - factor term/ addop term
| [PN
number € = factor term’ €

IS T

Now use the grammar without left-rec (but
right-rec instead)
No left-rec.

erp — termexp’
exp’ — addoptermezp’ | €
addop - + | -
term — factor term’
term’ — mulop factor term’ | €
mulop — %
factor — (ezp) | n
exp
term ezp'
3-4-5 0 T
factor termbddop term ezp'
parsed “as” !] AN T
number € - factor term’ addop term ezp’
| | [N |
number € - factor term’ €
3-(4-5) o

IS T

But if we need a “left-associative” AST?

= we want (3-4) -5, not 3-(4-5)

factor term’ addop term exp

number € - factor term’ addop term
number € - factor term’

number €

Code to “evaluate” ill-associated such trees
correctly

function exp’ (valsofar: int): int;
begin
if token = '4+' or token = '-'
then

case token of
'+': match ('+"');

valsofar := valsofar + term;
'-': match ('-"');
valsofar := valsofar - term;

end case;
return exp’(valsofar);
else return valsofar
end;

= extra “accumulator” argument valsofar

= instead of evaluating the expression, one could build the
AST with the appropriate associativity instead:

= instead of valueSoFar, one had
rootOfTreeSoFar

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly

LL(D))

Bottom-up
parsing

References

4.82

“Designing” the syntax, its parsing, & its

AST

= trade offs:

1.

2.

o

starting from: design of the language, how much of the
syntax is left “implicit”®

which language class? Is LL(1) good enough, or
something stronger wanted?

how to parse? (top-down, bottom-up, etc.)
parse-tree/concrete syntax trees vs. ASTs

%Lisp is famous/notorious in that its surface syntax is more or less
an explicit notation for the ASTs. Not that it was originally planned like

this ...

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

AST vs. CST

= once steps 1.—3. are fixed: parse-trees fixed!

INF5110 -

. . . Compiler
= parse-trees = essence of grammatical derivation process Construction
= often: parse trees only “conceptually” present in a
Introduction to
parser parsing
= AST Top-down parsing
= abstractions of the parse trees First and follow
= essence of the parse tree e
= actual tree data structure, as output of the parser tt'('{‘;;s'"g (mostly
= typically on-the fly: AST built while the parser parses, Bottom-up
i.e. while it executes a derivation in the grammar parsing

References

AST vs. CST/parse tree

Parser "builds" the AST data structure while "doing" the
parse tree

4-84

AST: How “far away” from the CST?
= AST: only thing relevant for later phases = better be
clean ...
= AST “=" CST?
= building AST becomes straightforward
= possible choice, if the grammar is not designed
“weirdly"”,

factor term’ addop term exp

number € - factor term’ addop term

number € - factor term’

AST: How “far away” from the CST?

= AST: only thing relevant for later phases = better be
clean ...
= AST “=" CST?
= building AST becomes straightforward
= possible choice, if the grammar is not designed

“weirdly",
exp
exp addop term
— T \ \
erp addop term - factor
\ | | \
term - factor number
\ \
factor number
\
number

slightly more reasonable looking as AST (but underlying
grammar not directly useful for recursive descent)

AST: How “far away” from the CST?

= AST: only thing relevant for later phases = better be
clean . ..
= AST "=" CST?
= building AST becomes straightforward

= possible choice, if the grammar is not designed
“weirdly”,

-

exp op ETP
\ | T
number - erp op exrp
\ | \
number - number

That parse tree looks reasonable clear and intuitive

AST: How “far away” from the CST?

= AST: only thing relevant for later phases = better be
clean ...
= AST “=" CST?
= building AST becomes straightforward

= possible choice, if the grammar is not designed
“weirdly",

TN

number -

/\

number number

Wouldn’t that be the best AST here?

AST: How “far away” from the CST?

= AST: only thing relevant for later phases = better be
clean ...

= AST “=" CST?
= building AST becomes straightforward

= possible choice, if the grammar is not designed
“weirdly"”,

TN

number

/\

number number

Wouldn’t that be the best AST here?

Certainly minimal amount of nodes, which is nice as such.
However, what is missing (which might be interesting) is the
fact that the 2 nodes labelled “-" are expressions!

AST: How “far away” from the CST?
= AST: only thing relevant for later phases = better be
clean ...
= AST "=" CST?
= building AST becomes straightforward
= possible choice, if the grammar is not designed

“weirdly”,
exp: —
ezp : number exp: —
erp : number erp : number

Wouldn’t that be the best AST here?

Certainly minimal amount of nodes, which is nice as such.
However, what is missing (which might be interesting) is the
fact that the 2 nodes labelled “-" are expressions!

This is how it’s done (a recipe)
Assume, one has a “non-weird” grammar

exqp — exp op exp | (exp) | number
op — + | - | *

= typically that means: assoc. and precedences etc. are
fixed outside the non-weird grammar

= by massaging it to an equivalent one (no left recursion
etc.)

= or (better): use parser-generator that allows to specify
assoc ...

., without cluttering the grammar.

= if grammar for parsing is not as clear: do a second one
describing the ASTs

Remember (independent from parsing)

BNF describe trees

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

This is how it’s done (recipe for OO data
structures)

Recipe

= turn each non-terminal to an abstract class

= turn each right-hand side of a given non-terminal as
(non-abstract) subclass of the class for considered
non-terminal

= chose fields & constructors of concrete classes
appropriately

= terminal: concrete class as well, field/constructor for
token's value

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

Example in Java

exp — exp op exp | (exp) | number
op - + |- |

1|| abstract public class Exp {

211}

|

1| public class BinExp extends Exp { // exp -> exp op exp
2 public Exp left, right;

3 public Op op;

4 public BinExp(Exp |, Op o, Exp r) {

5 left=I; op=o; right=r;}

6}

public class ParentheticExp extends Exp { // exp —> (op'%

1
2 public Exp exp;

3 public ParentheticExp(Exp e) {exp = I;}
4

1| public class NumberExp extends Exp { // exp —-> NUMBER
2 public number; // token value

3 public Number(int i) {number = i;}

4}

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1)

Bottom-up
parsing

eferences

Example in Java

INF5110 —
Compiler
exqp — exp op exp | (exp) | number R
op — + | - | *
1|/ abstract public class Op { // non—terminal = abstract Introduction to
5 } parsing
l Top-down parsing
First and follow
1| public class Plus extends Op { // op —> "+" sets
2 } LL-parsing (mostly
| LL(1))
) X Bottom-up
1|l public class Minus extends Op { // op -> "-" parsing
} References

1| public class Times extends Op { // op —> "x"

}
L

3-(4-

ot
N

INF5110 —
Compiler
Construction

Introduction to

Exp e = new BinExp(parsing
new NumberExp(3), Top-down parsing
new Minus(), First and follow
new BinExp(new ParentheticExpr(sets
new NumberEXP(4)y LL-parsing (mostly
new Minus(), LL(1))
new NumberExp(5)))) Bottom-up
parsing
References

o G AW N

Pragmatic deviations from the recipe

= it's nice to have a guiding principle, but no need to
carry it too far ...

= To the very least: the ParentheticExpr is
completely without purpose: grouping is captured by
the tree structure

= that class is not needed

= some might prefer an implementation of

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly

op—>+ | - | * LL(1))

as simply integers, for instance arranged like P
public class BinExp extends Exp { // exp -> exp op exp References

public Exp left, right;

public int op;

public BinExp(Exp |, int o, Exp r) {pos=p; left=I; oper=o; right=i

public final static int PLUS=0, MINUS=1, TIMES=2;
}

4-90

and used as BinExpr.PLUS etc.

Recipe for ASTs, final words:

= space considerations for AST representations are
irrelevant in most cases

. w . " INF5110 —
= clarity and cleanness trumps “quick hacks” and Compiler

Construction

“squeezing bits”
= some deviation from the recipe or not, the advice still
Introduction to
holds: parsing

Top-down parsing

Do it systematically

First and follow
sets

A clean grammar is the specification of the syntax of the

language and thus the parser. It is also a means of iy ey
communicating with humans (at least with pros who (of Bottom-up
course) can read BNF) what the syntax is. A clean grammar .

is a very systematic and structured thing which consequently

can and should be systematically and cleanly represented in

an AST, including judicious and systematic choice of names

and conventions (nonterminal exp represented by class Exp,

non-terminal stmt by class Stmt etc)

References

491

I T = T T LY o Y T e e T W o K

Extended BNF may help alleviate the pain

BNF EBNF
INF5110 —
Compiler
Construction
exp — expaddopterm | term exp — term{ addopterm }

term — termmulop factor | fac term — factor{ mulop factor }
Introduction to
parsing

but remember: Top-down parsing
= EBNF just a notation, just because we do not see (left g e follow
or right) recursion in { ... }, does not mean there is no LL parsing (mostly
recursion. Bottom-up
= not all parser generators support EBNF FEEG

References

= however: often easy to translate into loops- 1°

= does not offer a general solution if associativity etc. is
problematic

That results in a parser which is somehow not “pure recursive
descent”. It's “recusive descent, but sometimes, let's use a while-loop, if 492
more convenient concerning, for instance, associativity”

© 00 N OO W N

O 00N OO W N

Pseudo-code representing the EBNF

productions

procedure exp;

begin
term ; { recursive call }
while token = "4+" or token = "-"
do
match (token);
term; // recursive call
end
end

procedure term;
begin
factor; { recursive call }
while token = "x"
do
match (token);
factor; // recursive call
end
end

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-93

How to produce “something” during RD
parsing?

Recursive descent

So far: RD = top-down (parse-)tree traversal via recursive
procedure.!! Possible outcome: termination or failure.

= Now: instead of returning “nothing” (return type void
or similar), return some meaningful, and build that up
during traversal

= for illustration: procedure for expressions:

= return type int,
= while traversing: evaluate the expression

"Modulo the fact that the tree being traversed is “conceptual” and
not the input of the traversal procedure; instead, the traversal is
“steered” by stream of tokens.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-94

A W N HFH O ©W 0N O & WN -

Evaluating an ezp during RD parsing

function exp() : int;

var temp: int

begin
temp = term (); { recursive call }
while token = "+" or token = "-"

case token of
II+II: matCh (II+II);

temp = temp + term();
II_II: matCh (Il_ll)
temp = temp - term();
end
end
return temp;

end

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-95

© 0 N O U A WNRFE O VoSN O R WN R

o

Building an AST: expression

function exp() : syntaxTree;

var temp, newtemp: syntaxTree

begin
temp = term (); { recursive call }
while token = "4+" or token = "-"

case token of
I|+II: matCh (II+II);

newtemp := makeOpNode("+");
leftChild (newtemp) := temp;
rightChild (newtemp) := term();
temp := newtemp;
||_||: match (ll_ll
newtemp := makeOpNode(" -");
leftChild (newtemp) := temp;
rightChild (newtemp) := term();
temp := newtemp;
end
end
return temp;

end

= note: the use of temp and the while loop

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly

LL(D))

Bottom-up
parsing

References

A W N H O ©W N O H» WN -

Building an AST: factor

factor - (exp) | number

function factor() : syntaxTree;
var fact: syntaxTree
begin

case token of

"(": match ("

_(I

(")
fact exp ();
match (")")
number:
match (number)
fact := makeNumberNode(number);
else : error ... // fall through
end
return fact;
end

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly

LL(1))

Bottom-up
parsing

References

4-97

Building an AST: conditionals

. . INF5110 —
if-stmt — if (‘exp) stmt [else stmt] Compiler
Construction
function ifStmt() : syntaxTree;
var temp: syntaxTree Introduction to
begin parsing
match (':Iil:"); Top-down parsing
match (()' Weem First and follow
temp := makeStmtNode("if") i
testChild (temp) = exp();)
wymy . LL-parsing (mostly
match (")"); LL(1))
thenChild (temp) := stmt();
if token = "else" G
parsing
then match "else";
elseChild (temp) := stmt(); Refeiences
else elseChild (temp) = nil;
end
return temp,;
end

4-98

Building an AST: remarks and “invariant”

INF5110 —
Compiler
Construction

= LL(1) requirement: each procedure/function/method
(covering one specific non-terminal) decides on Introduction to
alternatives, looking only at the current token parsing
A i Top-down parsing
= call of function A for non-terminal A:
= upon entry: first terminal symbol for A in token
= upon exit: first terminal symbol after the unit derived tt’(g‘;fi"g sy
from A in token

First and follow
sets

Bottom-up
parsing

= match ("a") : checks for "a" in token and eats the
token (if matched).

References

LL(1) parsing
= remember LL(1) grammars & LL(1) parsing principle:

LL(1) parsing principle

1 look-ahead enough to resolve “which-right-hand-side”
non-determinism.

= instead of recursion (as in RD): explicit stack
= decision making: collated into the LL(1) parsing table
= LL(1) parsing table:
= finite data structure M (for instance 2 dimensional
array)*?

M:YnxYp - ((Eny xX") + error)

= M[Aa]=w
= we assume: pure BNF

20ften, the entry in the parse table does not contain a full rule as
here, needed is only the right-hand-side. In that case the table is of type
3N x X1 - (XF +error). We follow the convention of this book.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-100

Construction of the parsing table

Table recipe

1. If A—>aeP and aa =" af, then add A — « to table
entry M[A, a]
2. f A>aeP and a =€ and S$ =" fAay (where a

is a token (=non-terminal) or $), then add A — « to
table entry M[A, a]

Table recipe (again, now using our old friends First and
Follow)
Assume A - a € P.

1. If a € First(«), then add A - a to M[A,a].

2. If a'is nullable and a € Follow(A), then add A — « to
M[A,a].

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-101

Example: if-statements

= grammars is left-factored and not left recursive

stmt
if-stmt
else—part
exp

VLol

if-stmt | other

if (exp) stmt else—part

elsestmt | €

stmt
if-stmt
else—part
exp

01

‘ First ‘ Follow
other,if | $,else
if $,else
else, € $, else
0,1)

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-102

Example: if statement: “LL(1) parse table”

MIN. T] |if other else 0 1 $
INF5110 -
statement | statement sStatement Compiler
— if-stmt — other Construction
if-stmt if-stmt —
if (exp), .
statement Intrt?ductlon to
parsing
else-part
else-part else-part — else-part Top-down parsing
else —E First and follow
Statement Set
else-part — ¢ LL-parsing (mostly
exp exp—0 |exp— 1 L)
Bottom-up
parsing
References
= 2 productions in the “red table entry”
= thus: it's technically not an LL(1) table (and it's not an
LL(1) grammar)
= note: removing left-recursion and left-factoring did not

help! 4103

HF O © o N o O &> W N =

N

0 N o 0 > W

LL(1) table based algo

while the top of the parsing stack +$
if the top of the parsing stack is terminal a
and the next input token =a
then
pop the parsing stack;;
advance the input; // " “match''
else if the top the parsing is non-terminal A
and the next input token is a terminal or $
and parsing table M[A,a] contains
production A > X1 X5... X,
then (% generate x)
pop the parsing stack
for i:=m to 1 do
push X onto the stack;
else error
if the top of the stack = $
then accept
end

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-104

LL(1): illustration of run of the algo

INF5110 -
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-105

Expressions

Original grammar

exp — exp addop term | term
addop - + | -
term — term mulop factor | factor
mulop — *
factor — (exp) | number
First Follow
exp (,number | $,)
exp’ |+, -, € $.)
addop | +, - (,number
term | (,number | $,),+, -
term’ | x,€ $,),+-
mulop | * (,number
factor | (,number | $,),+,-

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-106

Expressions

Original grammar

exp — exp addop term | term
addop - + | -
term — term mulop factor | factor
mulop — *
factor — (exp) | number
left-recursive = not LL(k)
First Follow
exp (,number | §,)
exp) | +,-,€ $.)
addop | +, - (,number
term | (,number | $,),+, -
term’ | x,€ $,),+ -
mulop | * (,number

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-106

Expressions

Left-rec removed

exrp — termexp’
exp’ — addoptermexp’ | €
addop - + | -
term - factor term’
term’ — mulop factor term’ | €
mulop — *
factor - (ezp) | n
First Follow
exp (,number | $,)
exp’ +,-€ $,)
addop | +,- (,number
term | (,number | $,),+,
term’ | *,€ $,),+,
mulop | * (, number
factor | (,number | $,), +,

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-106

Expressions: LL(1) parse table

MIN, T] (number) + - * $
INF5110 —
exp exp — exp = Compiler
term exp'| term exp’ Construction
exp’ exp’ =& | exp’ — exp’ — exp' > e
), .
addop , addop , Introduction to
term exp'| term exp parsing
addop addop — | addop — Top-down parsing
+ -
First and follow
term term — term — sets
factor factor LL-parsing (mostly
term' term’ LL(1))
term' term' — | term' — & |term’ — & | term' — | term’ — Bottom-up
€ mulop £ parsing
Jactor References
term’
mulop nulop —
*
factor Jactor — | factor —
(exp) number

4-107

Error handling

INF5110 -

Compiler

= at the least: do an understandable error message Construction

= give indication of line / character or region responsible

Introduction to

for the error in the source file parsing
= potentially stop the parsing Top-down parsing
. First and follow
= some compilers do error recovery sets
= give an understandable error message (as minimum) LL-parsing (mostly
LL(1))

= continue reading, until it's plausible to resume parsing
= find more errors

= however: when finding at least 1 error: no code
generation

= observation: resuming after syntax error is not easy

Bottom-up
parsing

References

4-108

Error messages

= important:

try to avoid error messages that only occur because of
an already reported error!

report error as early as possible, if possible at the first
point where the program cannot be extended to a
correct program.

make sure that, after an error, one doesn't end up in a
infinite loop without reading any input symbols.

= What's a good error message?

assume: that the method factor () chooses the
alternative (exp) but that it, when control returns from
method exp (), does not find a)

one could report : left paranthesis missing
But this may often be confusing, e.g. if what the
program textis: (a + b c)

here the exp () method will terminate after (a + b,
as ¢ cannot extend the expression). You should
therefore rather give the message error in
expression or left paranthesis missing.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-109

Handling of syntax errors using recursive
descent

INF5110 —
Compiler
Construction

Method: «Panic mode» with use of «Synchronizing set»

Synch-set (stack or parameter):

Introduction to
$ parsing

end

<programs>

begin <deklsekv> <setmngssekv7> end

Top-down parsing

First and follow

. First(stmt) SEtS
‘\ if while for ... LL-parsing (mostly
o - - LL(1))
then First(stmt) else
Bottom-up
parsing
+ - First(term) References

(integer name

\/

* First(factor

+ - (tall navn

4-110

Syntax errors with sync stack

From the sketch at the previous page we can easily find:
- Which call should continue the execution?

- What input symbol should this method search for before resuming?

- We assume that §$ is added to the synch. stack only by the
outermost method (for the start symbol)

- The union of everything on the stack is called the "synch. set”, SS

The algorithm for this goes is as follows:
For each coming input symbol, test if it is a member of SS
If so:

= Look through the SS stack from newest to oldest, and find the newest
method

= that are willing to resume at one of these symbol

= This method will itself know how to resume after the actual
input symbol

What is nof easy is to program this without destroing the nich
program structure occuring from pure recursive descent.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly

LL(1))

Bottom-up
parsing

References

4-111

Procedures for expression with '‘error

recovery"

procedure exp (synchset) 5

begin Main philosophy

The method "checkinput”
is called twice: First to
n check that the
: construction starts
correctly, and secondly
to check that the symbol
after the construction is

checkinpui ({ (, number |, synchset) ;
if not (token in synchset) then
terim (synchset) ;
while ioken = + or token = - do
march (token) 3

term (synchset) §
end while ; J\A‘SU it 17

checkinpur (synchset, | (, number }) ;
end if;
end exp ;

legal.

Uses parameters, not a stack

The procedures must themselves
resume execution at the right
place inside themselves when they
get the control back,

or it must terminate immediately if
it cannot resume execution on the
current symbol.

if token in {(,number} then ...

procedure factor (synchset) 5
begin
checkinpur (| (, number |, synchset) ;
if not (token in synchser) then
case token of
Cr mareh(();
exp ({)});+— Why not the full’synchset™?
match()) ;
number :
match(number) ;
else error §
end case ;
cheekinput (synchser, { (, number }): ~
end if
end factor ;

procedure scanto (synchser) ;
begin
while not (token in synchser w { $ }) do
gerToken ;
end scanto §

procedure checkinput (firstset, followset) 3
begin
if not (token in firstset) then
error
scanto (firstser U followset) 3
end if 5
end; 27

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-112

Section

Bottom-up parsing

Chapter 4 "Parsing”

Course “Compiler Construction”
Martin Steffen

Spring 2018

Bottom-up parsing: intro

LR(0)

SLR(1)

LALR(1)

"R" stands for right-most derivation.

only for very simple grammars

approx. 300 states for standard
programming languages

only as intro to SLR(1) and LALR(1)
expressive enough for most grammars for
standard PLs

same number of states as LR(0)

main focus here

slightly more expressive than SLR(1)
same number of states as LR(0)

we look at ideas behind that method as
well

LR(1) covers all grammars, which can in principle be

parsed by looking at the next token

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-114

unambiguous

[L(k R(K)
g R(1)
LALR(l

SLR

LR(0)

"jj

)
-
N\

S

ambiguous

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

References

4-115

LR-parsing and its subclasses

= right-most derivation (but left-to-right parsing)
= in general: bottom-up parsing more powerful than

INF5110 —
tOp—dOWh Compiler

Construction

= typically: tool-supported (unlike recursive descent,
which may well be hand-coded)

Introduction to

= based on parsing tables 4+ explicit stack parsing

= thankfully: left-recursion no longer problematic Top-down parsing

= typical tools: yacc and its descendants (like bison, CUP, First and follow
etC) LL-parsing (mostly

= another name: shift-reduce parser LL(1))
Bottom-up
parsing

tokens + non-terms .

> References

states LR parsing table
4-116

Example grammar

S, - S INF5110 —
© il
S - ABt7 | e ColgltT:'l)llctciron
A - t4t5 | tl B |
B - t2t3 | At6 | e Introduction to
parsing

. Top-down parsing
= assume: grammar unambiguous

First and follow

= assume word of terminals t1tz...t7 and its (unique) ets
LL-parsing (mostly
parse-tree LL(1))
. Bottom-up
= general agreement for bottom-up parsing: parsing
= start symbol never on the right-hand side or a Refeiences
production

= routinely add another “extra” start-symbol (here S’)3

3That will later be relied upon when constructing a DFA for
“scanning” the stack, to control the reactions of the stack machine. 24117
This restriction leads to a unique, well-defined initial state.

Parse tree for t;...t7

g/
S
A B
N A
ANa
ty t2 tz tyg ts5 tg tr

Remember: parse tree independent from left- or
right-most-derivation

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-118

LR: left-to right scan, right-most
derivation?

Potentially puzzling question at first sight:

How does the parser right-most derivation, when parsing

left-to-right?

= short answer: parser builds the parse tree bottom-up
= derivation:

= replacement of nonterminals by right-hand sides

= derivation: builds (implicitly) a parse-tree top-down

Right-sentential form: right-most derivation
S ="«

Slighly longer answer

LR parser parses from left-to-right and builds the parse tree

bottom-up. When doing the parse, the parser (implicitly)

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-119

Example expression grammar (from before)

exp — exp addop term | term (8)
addop — + | -
term — term mulop factor | factor
mulop — *
factor — (exp) | number

exp
\
term

/’\

term ‘ factor
factor ‘ }

number * number

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-120

Bottom-up parse: Growing the parse tree

number * number

number * number

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-121

Bottom-up parse: Growing the parse tree

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

factor First and follow
1 sets

number * number LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

number * number < factor * number

4-121

Bottom-up parse: Growing the parse tree

term
1

factor

number * number

number * number < factor * number
< term*number

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-121

Bottom-up parse: Growing the parse tree

term factor

factor |

number * number

number * number < factor * number
< term* number
< term* factor

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-121

Bottom-up parse: Growing the parse tree

term

/l\

term | factor

1
factor | |

number * number

number * number factor * number
term * number

term * factor

PPl

term

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-121

Bottom-up parse: Growing the parse tree

exp
|
term

/l\

term | factor

1
factor | |

number * number

number * number factor * number
term * number
term * factor
lerm

exp

PP

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-121

Reduction in reverse = right derivation

Reduction Right derivation
n*n < factor*n n*n <, factor*n
= termx*n <=, term*n
- term * factor <, term= factor
= term <=p term
> exp =, erp

= underlined part:
= different in reduction vs. derivation
= represents the “part being replaced”
= for derivation: right-most non-terminal
= for reduction: indicates the so-called handle (or part of
it)
= consequently: all intermediate words are right-sentential
forms

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-122

Handle

Definition (Handle)

INF5110 —
Assume S =" aAw =, afw. A production A - [at anprtes

Construction

position k following « is a handle of afw We write
(A — B,k) for such a handle.

Introduction to
parsing

Note: Top-down parsing

First and follow
sets

= w (right of a handle) contains only terminals

= w: corresponds to the future input still to be parsed! tll:?l’a)l;smg (mostly

= «af will correspond to the stack content (S the part
touched by reduction step).

Bottom-up
parsing

References

= the =, -derivation-step in reverse:
= one reduce-step in the LR-parser-machine
= adding (implicitly in the LR-machine) a new parent to
children 8 (= bottom-up!)
= "handle"-part 5 can be empty (= €)

4-123

Schematic picture of parser machine (again)

INF5110 —
Compiler
Construction

[e D] -

Introduction to

parsing
Reading “head” Top-down parsing
H First and foll
(moves left-to-right) First and follow

LL-parsing (mostly
LL(1))

\ Bottom-up

N7 parsing
References

inbounded extra memory (stack)

Finite control

4-124

General LR “parser machine” configuration

= Stack:

= contains: terminals + non-terminals (+ $)
= containing: what has been read already but not yet
“processed”

= position on the “tape” (= token stream)

= represented here as word of terminals not yet read
= end of “rest of token stream": $, as usual

= state of the machine

= in the following schematic illustrations: not yet part of
the discussion

= Jater: part of the parser table, currently we explain
without referring to the state of the parser-engine

= currently we assume: tree and rest of the input given

= the trick ultimately will be: how do achieve the same
without that tree already given (just parsing
left-to-right)

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-125

Schematic run (reduction: from top to
bottom)

INF5110 -

$ t1totstatstets $ Conpmmntion

$t; totgtatstets $

$ tito t3t4t5t6t7 $ Introduction to
parsing

$ t1t2t3 t4t5t6t7 $ Top-down parsing

$ tlB t4t5t6t7 $ First and follow

$A tatstety $ sets

$ At4 t5t6t7 $ ttiylx?;sing (mostly

$ At’4t5 t6t7 $ Bott_om—up

$ AA t6t7 $ parsing

$ AAt(j t7 $ References

$AB tr $

$ ABt; $

$S $

$5 $

4-126

2 basic steps: shift and reduce

= parsers reads input and uses stack as intermediate

storage INF5110 -
= so far: no mention of look-ahead (i.e., action depending o

on the value of the next token(s)), but that may play a

role, as well Introduction to

parsing

Top-down parsing

Reduce

Shift First and follow
T ") Remove the symbols of the e
OuE UG nex.t iz right-most subtree from the tt{‘l’?;s'"g et
symbol (terminal) over :
stack and replace it by the Bottom-up
tO the tOp Of the StaCk . parsing
e non-terminal at the root of e
(“push”) the subtree (replace = “pop
+ push”).

= easy to do if one has the parse tree already!

= reduce step: popped resp. pushed part = right- resp.
left-hand side of handle 4127

Example: LR parsing for addition (given the

tree)

El

X

|

E+n | n

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

(right) derivation: reduce-steps “in reverse”

parse stack input action Eirst and follow
1 $ n+n$ shift S
2 $ n +n $ red:. £ »>n ﬂrsing (mostly
3 $E +n$ shift H)
4 $E+ n$ shift fé’éﬁfi?’“”
5 $FE+n $ reduce F > E +l¥erences
6 SE $ red: E'>FE
7 SL $ accept

note: line 3 vs line 6!; both contain £
on top of stack

4-128

Example with e-transitions: parentheses

INF5110 —
Compiler
Construction

S I S Introduction to
parsing
S - (S) S ’ € Top-down parsing
side remark: unlike previous grammar, here: First and follow
= production with two non-terminals in the right ttg";;si"g (mostly
= difference between left-most and right-most derivations Bottom-up

(and mixed ones) parsing

References

4-129

Parentheses: tree, run, and right-most
derivation

INF5110 -

Compiler
S/ . . Construction
parse stack Input action
‘ 1 $ () $ shift Lr;trrscia:li;ction to
S 2 $()$ reduce S = € 1o down parsing
3 8(5)$ shift First and follow
A 4 $(9) $ reduce S —>e€*"
S s 5 $(9)¢5 $ reduce S > (S0 ="
6 $ S $ reduce Sl — S&Jtt_mn—up
7 $ S, $ accept Il'\‘eferem:es
(€) €

Note: the 2 reduction steps for the
€ productions

Right-most derivation and right-sentential forms

4-130
Qs Qs (VYL (QY— ()

Right-sentential forms & the stack

Right-sentential form: right-most derivation
S="a

= right-sentential forms:
= part of the “run”
= but: split between stack and input

parse stack input action
13 n+n$ shift E' =, E=, E+n=,n+n
2 $n +n$ red:;. E—>n - -
3 $FE +n$ shift
4 $SE+ n$ shift n+n—-FE+n—>E<E
5 $F+n $ reduce E - E+n
6 $F $ red: B> FE
7 $E $ accept

E = E= E+n|~ E+|n~E[+n=;n| +n~[n+n

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-131

Viable prefixes of right-sentential forms and
handles

right-sentential form: E+n
viable prefixes of RSF
= prefixes of that RSF on the stack
= here: 3 viable prefixes of that RSF: E, E+, E+n
handle: remember the definition earlier
here: for instance in the sentential form n+n

= handle is production E — n on the /eft occurrence of n
in n+n (let's write n; +ny for now)
= note: in the stack machine:

= the left n; on the stack

= rest +ny on the input (unread, because of LR(0))
if the parser engine detects handle n; on the stack, it
does a reduce-step

However (later): reaction depends on current state of
the parser engine

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-132

A typical situation during LR-parsing

INF5110 —

, Compiler
S Construction

| After a shift, the next

S reduction to be made is a
Al these are // I\ reduction with the NP

reduced

@ ’ A © production: parsing
A g
f C->t1 Top-down parsing
o Then, after two shifts, we First and follow
will make a reduction with -
\ the production:
LL-parsing (mostly
Q D->1t2 t3 LL(1))
vode 77 S b Then, what's next? pate
/,’ g /.\ parsing
voyp ¥ ¢
to@00® ty t, sty ts te t,$ References
the stack token rest of input
51558384 v Sk

The stack is reduced version of the processed input

4-133

General design for an LR-engine

INF5110 —
Compiler
Construction

= some ingredients clarified up-to now:
= bottom-up tree building as reverse right-most derivation, 'ntroduction to
. parsing
= stack vs. input,
= shift and reduce steps

Top-down parsing

First and follow

= however: 1 ingredient missing: next step of the engine S
may depend on tt{‘i?;ﬁ"g (mostly
= top of the stack (“handle") S
= look ahead on the input (but not for LL(0)) parsing
= and: current state of the machine References

4134

But what are the states of an LR-parser?

General idea:

Construct an NFA (and ultimately DFA) which works on the
stack (not the input). The alphabet consists of terminals
and non-terminals X7 u X y. The language

« may occur on the stack during LR-

Stacks(G) = {a | parsing of a sentence in £L(G)

}

is regular!

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-135

LR(0) parsing as easy pre-stage

= LR(0): in practice too simple, but easy conceptual step
towards LR(1), SLR(1) etc.

= LR(1): in practice good enough, LR(k) not used for
k>1

LR(0) item

production with specific “parser position” . in its right-hand
side

= . is, of course, a “meta-symbol” (not part of the
production)

= For instance: production A - «, where « = 37, then

LR(0) item

A— By

= jtem with dot at the beginning: initial item

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-136

Grammar for parentheses: 3 productions

S - S
S - (9)S | e€

8 items Introduction to
parsing
S, N ,S Top-down parsing
First and follow
S, - S. sets
S —> . (S) S LL-parsing (mostly
LL(1))
S - (.9)S
S - (8.)8
S — (S) .S References
S - (9)8.
S -
note: S — € gives S — . as item (not S — €. and
4-137

S — .€)

Grammar for addition: 3 productions

E' - E
E - FE+number | number

(coincidentally also:) 8 items

&

E

E.

.F+ number
E. +number
F + .number
E + number.
.number
number.

&y

N

Sl Nololole

also here: it will turn out: not LR(0) grammar

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

References

4-138

Finite automata of items

= general set-up: items as states in an automaton

= automaton: “operates” not on the input, but the stack
= automaton either

= first NFA, afterwards made deterministic (subset
construction), or
= directly DFA

States formed of sets of items

In a state marked by/containing item

A— By

= (3 on the stack

= v: to be treated next (terminals on the input, but can
contain also non-terminals)

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-139

State transitions of the NFA

s XeX
= two kind of transitions

INF5110 -

Compiler

Epsilon (X: non-terminal Construction

Terminal or non-terminal
here)

Introduction to
parsing

Top-down parsing

X
[A—)(M.Xﬁ]—>[A—>04X-T] [A—>OJ.X?7]6 [X*B] sl s

LL-parsing (mostly

LL(1))
= In case X = terminal (i.e. token) = Bottonsup
. parsing
= the left step corresponds to a shift step
References

= for non-terminals (see next slide):
= interpretation more complex: non-terminals are officially
never on the input
= note: in that case, item A - «.Xn has two (kinds of)
outgoing transitions

*\We have explained shift steps so far as: parser eats one terminal (= 4-140
input token) and pushes it on the stack.

Transitions for non-terminals and ¢

so far: we never pushed a non-terminal from the input
to the stack, we replace in a reduce-step the right-hand
side by a left-hand side
however: the replacement in a reduce steps can be seen
as
1. pop right-hand side off the stack,
2. instead, “assume” corresponding non-terminal on input
&
3. eat the non-terminal an push it on the stack.
two kind of transitions
1. the e-transition correspond to the “pop” half
2. that X transition (for non-terminals) corresponds to
that “eat-and-push” part

assume production X — § and initial item X — .3

Epsilon (X: non-terminal

Terminal or non-terminal here)

Given production X — j:

INF5110 -

Compiler
Construction
Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-141

Initial and final states

initial states:

= we make our lives easier INESTI0RS

Compiler
Construction

= we assume (as said): one extra start symbol say S’
(augmented grammar)

e el . ’ . Introduction to
= initial item S’ — .S as (only) initial state parsing

Top-down parsing

First and follow

final states: Firs
LL-parsing (mostly
= NFA has a specific task, “scanning” the stack, not LL(1)
scanning the input S;?r:ﬁ;l"’

= acceptance condition of the overall machine: a bit more References
complex
= input must be empty
= stack must be empty except the (new) start symbol
= NFA has a word to say about acceptence

= but not in form of being in an accepting state
= so: no accepting states

A e svareEret R avarfiara Taava Nevyae)

4-142

NFA: parentheses

INF5110 —
Compiler
Construction

Introduction to
parsing

-down parsing
S e (S) S' I,t and follow
s

A

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

Remarks on the NFA

= colors for illustration
= “reddish”: complete items
= “blueish”: init-item (less important)
= ‘violet'tish": both
= init-items
= one per production of the grammar
= that's where the e-transistions go into, but
= with exception of the initial state (with S’-production)

no outgoing edges from the complete items

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4144

NFA: addition

INF5110 —
Compiler
Construction

—>[E’—> .EJ—E>[E’—> E]
Intrc?duction to
parsing
€

€ Top-down parsing

v First and follow
sets

€ n
€ [EF—- .E+ nJ—>[FE - .HJ—> LL-parsing (mostly
LL(1))

Bottom-up
E parsing

Y References

[E—> E.+nJ—>[E—> E+.n]—>[E—> E+n.J
+ n

4-145

Determinizing: from NFA to DFA

= standard subset-construction!®
= states then contains sets of items
= especially important: e-closure

= also: direct construction of the DFA possible

5 Technically, we don't require here a total transition function, we
leave out any error state.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-146

DFA: parentheses

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

4147

DFA: addition

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-148

Direct construction of an LR(0)-DFA

= quite easy: simply build in the closure already

e-closure

= if A— «a.B7 is an item in a state where
= there are productions B —> 31 | f2... =
= add items B - .5, , B — .02 ... to the state

= continue that process, until saturation

initial state

S - .S

plus closure

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-149

Direct DFA construction: transitions

Al - Ozl.Xﬂl X Al - 041X.,31
... —>| Ay — 042X-ﬁ2
Ay - 9. X[plus closure

= X: terminal or non-terminal, both treated uniformely

= All items of the form A - «.X /3 must be included in
the post-state

= and all others (indicated by "...") in the pre-state: not
included

= re-check the previous examples: outcome is the same

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-150

How does the DFA do the shift/reduce and
the rest?

. INF5110 —
= we have seen: bottom-up parse tree generation Compiler

Construction

= we have seen: shift-reduce and the stack vs. input

= we have seen: the construction of the DFA Introduction to

parsing

But: how does it hang together? Top-down parsing

First and follow

We need to interpret the “set-of-item-states” in the light of sets

the stack content and figure out the reaction in terms of tti‘l";;S‘"g (mostly
= transitions in the automaton Bottom-up
parsing
= stack manipulations (shift/reduce) Referances

= acceptance

= input (apart from shifting) not relevant when doing
LR(0)

and the reaction better be uniquely determined 4-151

Stack contents and state of the automaton

= remember: at any given intermediate configuration of
stack/input in a run

1. stack contains words from X%
2. DFA operates deterministically on such words
= the stack contains the “past”: read input (potentially
partially reduced)
= when feeding that “past” on the stack into the
automaton

= starting with the oldest symbol (not in a LIFO manner)
= starting with the DFA's initial state
= stack content determines state of the DFA

= actually: each prefix also determines uniquely a state

= top state:

= state after the complete stack content
= corresponds to the current state of the stack-machine
= crucial when determining reaction

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-152

State transition allowing a shift

= assume: top-state (= current state) contains item

INF5110 —
Compiler
Construction

X - a.af

= construction thus has transition as follows Introduction to

parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly

a
X - «a.ap X > aa.p LL(1))

Bottom-up
parsing

References

= shift is possible

= if shift is the correct operation and a is terminal symbol
corresponding to the current token: state afterwards = ¢

4-153

State transition: analogous for
non-terminals

INF5110 —
Compiler
Construction

Introduction to
parsing
Top-down parsing

S t First and follow

X - a.Bj B e

T LL-parsing (mostly
X > «a.Bp X - aB.p LLD)

Bottom-up
parsing

References

4154

State (not transition) where a reduce is
possible

= remember: complete items (those with a dot . at the T =
Compiler
end) Constr'uction

= assume top state s containing complete item A — ~.

Introduction to
parsing

Top-down parsing

First and follow
sets

= a complete right-hand side (“handle”) ~ on the stack I
and thUS done Bottom-up

parsing

= may be replaced by right-hand side A
= reduce step
= builds up (implicitly) new parent node A in the
bottom-up procedure
= Note: A on top of the stack instead of ~:'®
= new top state!
= remember the “goto-transition” (shift of a non-terminal) 4-155

161 directlv onlv: ac <aid we remove the handle from the <tack and

References

Remarks: states, transitions, and reduce
steps

= ignoring the e-transitions (for the NFA) NS =
= there are 2 “kinds” of transitions in the DFA T

1. terminals: reals shifts

2. non-terminals: “following a reduce step”
Introduction to
parsing

No edges to represent (all of) a reduce step!

Top-down parsing

First and follow

= if a reduce happens, parser engine changes state! sets
= however: this state change is not represented by a I

transition in the DFA (or NFA for that matter) Bottom-up

parsing

= especially not by outgoing errors of completed items

References

= if the (rhs of the) handle is removed from top stack: =
= “go back to the (top) state before that handle had been
added”: no edge for that
= later: stack notation simply remembers the state as

part of its configuration 150

Example: LR parsing for addition (given the

tree)

El

El

—

E
E+n | n

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow

note: line 3 vs line 6!; both contain F
on top of stack

parse stack input action sets
1 $ n+n $ shift LL-parsing (mostly
2 $n +n$ red:. E—>n @)
3 $E +n$ shift f;’r‘;izg"”p
4 $ E + n $ Shift References
5 $FE+n $ reduce E - E+n
6 $E $ red: B> FE
7T SE $ accept

4-157

DFA of addition example

4

= note line 3 vs. line 6

= both stacks = E' = same (top) state in the DFA (state

1)

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-158

LR(0) grammars

INF5110 —
Compiler
Construction

LR(O) grammar Introduction to

parsing

The top-state alone determines the next step. Top-down parsing
First and follow
sets

= especially: no shift/reduce conflicts in the form shown LL-parsing (mostly
LL(1))
= thus: previous number-grammar is not LR(0) RV

parsing

References

4-159

Simple parentheses

A - (A)] a

many shift
transitions in 1
state allowed

= shift counts as
one action

(including
e “shifts” on

A— a. non-terms)

= but for reduction:
alsp the production

m must be clear
[A—» (A.)HAe (A).

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-160

Simple parentheses is LR(0)

INF5110 —
Compiler
Construction

A/ — A. :’r;trrs?r(li;ction to
possible action Top-down parsing

0 only shift First and follow

1 only red: (with A’ ="A

LL-parsing (mostly

nIy red: (with A —uag)

Onl Shlft Bottom-up
4 only shift

References

5 only red (with A - (A))

4-161

NFA for simple parentheses (bonus slide)

INF5110 -

[Al A [A, N A chgltT:'l’n:Siron

Introduction to

parsing

Top-down parsing
v First and follow

@)

A ind [A —> a]—>[A— a.] LL-parsing (mostly
LL(1))

€ Bottom-up
(parsing
References

(A)(d~ (a4~ (4)]

4-162

Parsing table for an LR(0) grammar

table structure: slightly different for SLR(1), LALR(1),
and LR(1) (see later)

note: the “goto” part: “shift” on non-terminals (only 1
non-terminal A here)

corresponding to the A-labelled transitions
see the parser run on the next slide

state | action rule input goto
(a) A

0 | shift 3 2 1
1 reduce A" - A

2 reduce A —a

3 | shift 3 2 4
4 shift 5

5 |reduce A-(A)

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-163

Parsing of ((a))

stage | parsing stack input action

1 $o ((a))$ shift

2 $o(, (a))$ shift

3 $o(5(5 a))$ shift

4 $0(5(za2))$ reduce A—>a

5 $0(5(5A4))$ shift

6 $0(5(544)5)$ reduce A (A)
7 $0(3A4)$ shift

8 $0(;A44)5 $ reduce A— (A)
9 $0A: $ accept

= note: stack on the left

= contains top state information

= in particular: overall top state on the right-most end
= note also: accept action

= reduce wrt. to A’ - A and

= empty stack (apart from $, A, and the state annotation)

= accept

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-164

Parse tree of the parse

INF5110 —
Compiler
Construction

Introduction to
parsing

‘ ‘ Top-down parsing
First and follow
)) sets

LL-parsing (mostly

LL(1))
. Bottom-up

= AS Sa|d: parsing
= the reduction “contains” the parse-tree References

= reduction: builds it bottom up
= reduction in reverse: contains a right-most derivation
(which is “top-down")
= accept action: corresponds to the parent-child edge
A" > A of the tree 2165

Parsing of erroneous input

= empty slots it the table: “errors”

stage | parsing stack input action

1 $o ((a)$ shift

2 $o (5 (a)$ shift

3 $o(5(5 a)$ shift

4 $o(5(5a2)$ reduce A —>a

5 $0(3(3A4)$ shift

6 $0(5(53A44)5 $ reduce A—(A)
7 $0(5As $ 777

stage ‘ parsing stack input action

Invariant

important general invariant for LR-parsing: never shift

1
2

$o
$0(s

something “illegal” onto the stack

()% shift
)$ 2?27?2777

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-166

LR(0) parsing algo, given DFA

let s be the current state, on top of the parse stack

1. s contains A - a.X 3, where X is a terminal
= shift X from input to top of stack. the new state

X
pushed on the stack: state ¢t where s — ¢
= else: if s does not have such a transition: error

2. s contains a complete item (say A — ~.): reduce by rule
A -y
= A reduction by S’ — S: accept, if input is empty; else
error:
= else:
pop: remove v (including “its” states from the
stack)
back up: assume to be in state u which is now
head state
push: push A to the stack, new head state ¢

where u 2 ¢ (in the DFA)

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-167

DFA parentheses again: LR(0)?

S - 8
INF5110 —
S - (S) S | € Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

DFA parentheses again: LR(0)?

S - 8
S - (S)S | e

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

DFA addition again: LR(0)?

E' - E
E - FE+number | number

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-169

DFA addition again: LR(0)?

INF5110 —
!/ Compiler
E - E Construction

E - FE+number | number

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

4 References

[E—> n. [E—> EF+.n [E—> F+n.

How to make a decision in state 17

4-169

Decision? If only we knew the ultimate tree

already ...
... especially the parts still to come

INF5110 -

Compiler
E, Construction
)) Introduction to
parse stack iInput action parsing
FE 1 $ n+n $ shift Top-down parsing
2 $ n +n $ red:. £ —>n First and follow
3 $FE +n$ shift sets
E 4 SE+ n$ shift LL-parsing (mostly
5 $E+n $ reduce E—>E+n
6 $F $ red: B/ > E parsing
n + n 7 $SE’ $ accept References

= current stack: represents already known part of the
parse tree

= since we don't have the future parts of the tree yet:

= look-ahead on the input (without building the tree as
yet)

4-170

Addition grammar (again)

= How to make a decision in state 17 (here: shift vs.
reduce)

= look at the next input symbol (in the token)

4

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-171

One look-ahead

= LR(0), not useful, too weak
= add look-ahead, here of 1 input symbol (= token)

= different variations of that idea (with slight difference in
expresiveness)

= tables slightly changed (compared to LR(0))
= but: still can use the LR(0)-DFAs

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-172

Resolving LR(0) reduce/reduce conflicts

LR(0) reduce/reduce conflict:

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-173

Resolving LR(0) reduce/reduce conflicts

LR(0) reduce/reduce conflict:

SLR(1) solution: use follow sets of non-terms

= If Follow(A) n Follow(B) = @
= next symbol (in token) decides!

= if token € Follow(a) then reduce using A - «
= if token € Follow(3) then reduce using B —

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-173

Resolving LR(0) shift/reduce conflicts

LR(0) shift/reduce conflict:

A - a.

B1 — B1.bim

By — B2.bay
-—

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4174

Resolving LR(0) shift/reduce conflicts
LR(0) shift/reduce conflict:

o e
/
B1 — B1.bim D

By — B2.bayo

| N ——

SLR(1) solution: again: use follow sets of non-terms

= If Follow(A)n{by,bs,...} =@
= next symbol (in token) decides!
= if token € Follow(A) then reduce using A - a,
non-terminal A determines new top state
= if token € {by,bs,...} then shift. Input symbol b;
determines new top state

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4174

Revisit addition one more time

4

= Follow(E") = {$}

= shift for +

= reduce with E' — E for $ (which corresponds to accept,
in case the input is empty)

=

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-175

SLR(1) algo
let s be the current state, on top of the parse stack
1. s contains A - a.X 3, where X is a terminal and X is
the next token on the input, then
= shift X from input to top of stack. the new state
pushed on the stack: state ¢ where s L
2. s contains a complete item (say A — ~y.) and the next
token in the input is in Follow(A): reduce by rule
Ay
= A reduction by S’ - S: accept, if input is empty!®
= else:
pop: remove v (including “its” states from the
stack)
back up: assume to be in state u which is now
head state
push: push A to the stack, new head state ¢

A
where u — ¢

3. if next token is such that neither 1. or 2. applies: error
Cf. to the LR(0) algo: since we checked the existence of the
transition before, the else-part is missing now.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-176

LR(0) parsing algo, given DFA

let s be the current state, on top of the parse stack

1. s contains A - a.X 3, where X is a terminal
= shift X from input to top of stack. the new state

X
pushed on the stack: state ¢t where s — ¢
= else: if s does not have such a transition: error

2. s contains a complete item (say A — ~.): reduce by rule
A -y
= A reduction by S’ — S: accept, if input is empty; else
error:
= else:
pop: remove v (including “its” states from the
stack)
back up: assume to be in state u which is now
head state
push: push A to the stack, new head state ¢

where u 2 ¢ (in the DFA)

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-177

Parsing table for SLR(1)

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly

LL(1))
) Bottom-up
state input goto parsing
n + $ E References
0 §:2 1
1 s:3 accept
2 r:(E —n)
3 s:4
4 r:(E—E+n) r:(E - E+n) 4178

. L I L A

Parsing table: remarks

= SLR(1) parsing table: rather similar-looking to the

LR(0) one INF5110 -
Compiler
= differences: reflect the differences in: LR(0)-algo vs. (S 2
SLR(1)-algo
. Introduction t
= same number of rows in the table (= same number of prsing.
states in the DFA) Top-down parsing
= only: colums “arranged differently Gistlendlioliow
sets
= LR(0): each state uniformely: either shift or else reduce LL-parsing (mostly
(with given rule) LL(1))
= now: non-uniform, dependent on the input Bottom-up

parsing

= it should be obvious:
= SLR(1) may resolve LR(0) conflicts
= but: if the follow-set conditions are not met: SLR(1)
shift-shift and/or SRL(1) shift-reduce conflicts
= would result in non-unique entries in SRL(1)-table!®

References

by which it, strictly speaking, would no longer be an SRL(1)-table 4179

-)

SLR(1) parser run (= “reduction”)

state input goto
n + $ E
0 s:2 1
1 5:3 accept
2 r:(E —n)
3 s:4
4 r:(E—>FE+n) r:(EF - E+n)
stage | parsing stack input action
1 $o n+n+n$ shift: 2
2 $ons +n+n% reduce: E - n
3 $oFE1 +n+n$ shift: 3
4 $oE1+3 n+n$ shift: 4
5 $oF1+3n4 +n$ reduce: £E > FE+n
6 $oF n$ shift 3
7 $oE1+3 n$ shift 4
8 $oF1+3n4 $ reduce: E - E+n
9 $0Fn $ accept

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-180

Corresponding parse tree

number + number +

number

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-181

Revisit the parentheses again: SLR(1)?

Grammar: parentheses (from
before)

Follow set

S 5 S Follow(S) =4{),$}
S > (S)S | e

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

SLR(1) parse table

state input goto
() $ 5

0 s:2 r:S—e r:S—e 1
1 accept

2 s:2 r:S—e r:S—e 3
3 s:4

4 s:2 r:S—-e r:S—e 5
5 r:S->(S5)S r:S-(5)S

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-183

Parentheses: SLR(1) parser run (=

“reduction”)
state input goto
() $ S
0 s:2 r:S—e r:S—e 1
1 accept
2 s:2 r:S—e r:S—e 3
3 s:4
4 s:2 r:S—e r:S—e 5
5 r:S—-(S)S r:5-(S)S
stage | parsing stack input action
1 $o 0 ()S shift: 2
2 $o(,)()$ reduce: S —e€
3 $0(,53)()$ shift: 4
4 $o (253)4 () $ shift: 2
5 $0(,53),(5)$ reduce: S—e€
6 50(253)4(2S3)$ shift: 4
7 $0(,53),(53), $ reduce: S— e
8 $0(253)4(2S3)4S5 $ reduce: S — (S) S
9 $0(;,53),55 $ reduce: S—>(5)S
10 ¢ g € accept

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1)

Bottom-up
parsing

References

4184

SLR(k)

= in principle: straightforward: k look-ahead, instead of 1

= rarely used in practice, using First; and Followy
instead of the k£ =1 versions

= tables grow exponentially with k!

As with other parsing algorithms. the SLR(1) parsing algorithm can be extended to
SLR(k) parsing where parsing actions are based on k = 1 symbols of lookahead. Using
the sets First, and Follow, as defined in the previous chapter, an SLR(k) parser uses the
following two rules:

1. If state s contains an item of the form A — «.X B (X a token), and Xw €
Firstx(X [3) are the next k tokens in the input string, then the action is to shift the
current input token onto the stack, and the new state to be pushed on the stack is
the state containing the item A — « X, .

. It state s contains the complete item A — ., and w € Follow,(A) are the next k
tokens in the input string, then the action is to reduce by the rule A — «.

(¥

SLR{k) parsing is more powerful than SLR(1) parsing when & > 1. but at a sub-
stantial cost in complexity, since the parsing table grows exponentially in size with k.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-185

Ambiguity & LR-parsing
= in principle: LR(k) (and LL(k)) grammars:

unambiguous
e . . INF5110 -
= definition/construction: free of shift/reduce and Compiler
. . Construction
reduce/reduce conflict (given the chosen level of
look-ahead)
. . .. Introduction to
= However: ambiguous grammar tolerable, if (remaining) parsing
conflicts can be solved “meaningfully” otherwise: Top-down parsing
First and follow
Additional means of disambiguation: sets
LL-parsing (mostly
1 . C e o ide” th LL(1))
. by specifying associativity / precedence “outside” the R
grammar parsing

References

2. by “living with the fact” that LR parser (commonly)
prioritizes shifts over reduces

= for the second point (“let the parser decide according to
its preferences”):

= use sparingly and cautiously 4-186
s tunical evamnle: Aanolino_alca

Example of an ambiguous grammar

stmt — if-stmt | other
if-stmt — if (exp) stmt
| if (exp) stmt else stmt
extp - 0|1

In the following, E for exp, etc.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-187

Simplified conditionals

Simplified “schematic” if-then-else

INF5110 —
Compiler
S N I | Other Construction
I - if S| if SelseS
Introduction to
parsing
Top-down parsing
First and follow
Follow-sets sets
LL-parsing (mostly
LL(1))
‘ FOllow Bottom-up
Sl {$} parsing
Ref
S {$7 else} eferences
I | {8, else}

= since ambiguous: at least one conflict must be
somewhere 4-188

: [0)

S' .8
S - .0 S
/I’
—| S — .other >
I—.if S
I - if S else S||iff - if .S

I —-if .S else S
S — .0

lother 3
S — other. |«
he¢rS — .other

U

I-.if S

First and fo

S - .] sets
LL-parsing
S — .othert)

I - .if S

i A

Introductio
parsing 6
ing

(75 if S elZa™8

low

imostly

I — .if § é&isens

N

1

Q;.if S else § s

S

I —if S .else S

7
{I—»if S else S. p

Simple conditionals: parse table

Grammar

S - I (1)
| other (2)

I - if S (3)
|

if S else S 4)

SLR(1)-parse-table, conflict

resolved
state input goto
if else other $ S I
0 14 s:3 1 2
1 accept
2 r:1 r:1
3 P8 r:2
4 14 s:3 5 2
5 s:6 r:3
6 14 s:3 7T 2
7 r:4 r:4

shift-reduce conflict in state 5: reduce with rule 3 vs.

shift (to state 6)
conflict there: resolved in favor of shift to 6
note: extra start state left out from the table

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-190

Parser run (= reduction)

state input goto
if else other $ S I
0 s:4 s:3 1 2
1 accept
2 r:l r:l
3 r:2 r:2
4 s5:4 s:3 5 2
5 s:6 r:3
6 s5:4 s:3 7 2
7 r:4 r:4
stage | parsing stack input action
11 %0 if if other else other$ shift: 4
2 | $oifs if other else other$ shift: 4
3 | $oif4ifs other else other$ shift: 3
4 | $oif4if others else other$ reduce: 2
5 $0if4if4S5 else other$ shift 6
6 | $oifsifs1S5elseq other$ shift: 3
7 | $oif4if1Sselsegothers $ reduce: 2
8 $0if4if4S5GISGGS7 $ reduce: 4
9 | $oifsl> $ reduce: 1
10 | $05: $ accept

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-191

Parser run, different choice

state input goto
if else other $ S I
0 s5:4 s:3 1 2
1 accept
2 r:l r:l
3 r:2 r:2
4 s:4 s:3 5 2
5 s:6 r:3
6 s:4 s:3 7 2
7 r:4d r:4
stage | parsing stack input action
1] % if if other else other$ shift: 4
2 | $oifs if other else other$ shift: 4
3 | $oif4if, other else other$ shift: 3
4 | $oif,ifsothers else other$ reduce: 2
5 | $oif4if4S5 else other$ reduce 3
6 | $oifsl> else other$ reduce 1
7 | $0if4Ss else other$ shift 6
8 | $oif41S5elseq other$ shift 3
9 | $oif,1Sselsegothers $ reduce 2
10 | $oif4Sselses Sy $ reduce 4
11 | $051 $ accept

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-192

Parse trees: simple conditions

shift-precedence:

. “wrong” tree
conventional

INF5110 —
Compiler
Construction

Introduction to
parsing

/\ Top-down parsing
I S First and follow

sets

S
I
A /\ LL-parsing (mostly
LL(1))
S S S Bottom-up

parsing
‘ References
if if other else other if if other else other
standard “dangling else” convention
4-193

“an else belongs to the last previous, still open (= dangling)

Use of ambiguous grammars

= advantage of ambiguous grammars: often simpler
= if ambiguous: grammar guaranteed to have conflicts

= can be (often) resolved by specifying precedence and
associativity

= supported by tools like yacc and CUP ...

E' - E
E - E+F | ExE | number

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-194

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

References

4-195

States with conflicts

= state b
= stack contains $... E +E$
= for input $: reduce, since shift not allowed from $
= for input +; reduce, as + is left-associative
= for input *: shift, as * has precedence over +

= state 6:

= stack contains $... E *E$

= for input $: reduce, since shift not allowed from $
= for input +; reduce, a * has precedence over +

= for input *: shift, as * is left-associative

= see also the table on the next slide

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-196

Parse table + and x

state input goto
n + * $ E
0 s:2 1
1 s:3 s:4 accept
2 r:E->n r:E->n r:E->n
3 s:2 5
4 s:2 6
5 r:E—>FE+FE s:4 r:E—>FE+FE
6 r:E—->FExE r:E->FExFE r:E->FExE

How about exponentiation (written 1 or * x)?

Defined as right-associative. See exercise

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-197

For comparison: unambiguous grammar for
+ and *

INF5110 —
Compiler
Construction

Unambiguous grammar: precedence and left-assoc built
in

Introduction to
parsing

Top-down parsing
E - FE
First and follow

E - E+T | T sets

T - Txn | n LL-parsing (mostly
LL(1))

Bottom-up

‘ Follow parsing
E"| {$} (as always for start symbol) References
E | {$+}
T | {$,+, %}

4-198

DFA for unambiguous +

and x

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-199

DFA remarks

= the DFA now is SLR(1)
= check states with complete items
state 1: Follow(E") = {$}
state 4: Follow(E) = {$,+}
state 6: Follow(FE) = {$,+}
state 3/7: Follow(T) ={$,+,*}
= in no case there's a shift/reduce conflict (check the
outgoing edges vs. the follow set)
= there's not reduce/reduce conflict either

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-200

LR(1) parsing

= most general from of LR(1) parsing
= aka: canonical LR(1) parsing

= usually: considered as unecessarily “complex” (i.e.
LALR(1) or similar is good enough)

= ‘“stepping stone” towards LALR(1)

Basic restriction of SLR(1)

Uses look-ahead, yes, but only after it has built a
non-look-ahead DFA (based on LR(0)-items)

A help to remember

SRL(1) “improved” LR(0) parsing LALR(1) is “crippled”
LR(1) parsing.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-201

Limits of SLR(1) grammars

Assignment grammar fragmen

stmt
call-stmt
assign-stmt
var

exp

— 4+ L

t20

call-stmt | assign-stmt
identifier

var:= exp

[exp] | identifier
var | number

Assignment grammar fragment, simplified

H < w0

"

Dlnspired by Pascal, analogous problems in C ...

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-202

non-SLR(1): Reduce/reduce conflict

INF5110 —
— Compiler

; S id‘ ViaE First Follow Construction
stmt — call-stmt | assign-stmt v id -

call-stmt — identifier —1 | S |id $

assign-simt — var 1= exp E—-V|n ; _ .
var—var [exp] | identifier V| =8 Ir;trrs(i):uctlon to
exp — var | number E |idn $ P g

First and follow

sets
LL-parsing (mostly
\ LL(1))
Bottom-up
SLR(1)-betrakning: Gir FEENE
her reduser/reduser- References

konflikt for input = $. Se
First og Follow over.

4-203

Situation can be saved: more look-ahead

INF5110 —
Compiler

Construction

S— id|Vi=E Altsa, for SLR(1): Gir
stmt = call-stmt | assign-stmt 7 her reduser/reduser- .
call-simt — identifier V—id konflikt for input = $ |"tr?dUCt'°" to
assign-stmt — var = exp E-V | n Se First 0g Follow ' parsing
var— var [exp] | identifier 9 .
exp — var | number under, Top-down parsing

First and follow

sets
First Follow
. LL-parsing (mostly
S |id $ LL(1))
v |e =3 Bottom-up
E |id, n $ parsing
References

4-204

LALR(1) (and LR(1)): Being more precise
with the follow-sets

= LR(0)-items: too “indiscriminate” wrt. the follow sets L=
ompiler
= remember the definition of SLR(1) conflicts Construction
= LR(0)/SLR(1)-states:
. 21 . Introduction to
= sets of items*" due to subset construction parsing
= the items are LR(O)—ItemS Top-down parsing
= follow-sets as an after-thought First and follow
sets
Add precision in the states of the automaton already i R

Instead of using LR(0)-items and, when the LR(0) DFA is I’fa"r‘s‘ifj;"“"
done, try to disambiguate with the help of the follow sets for geferences
states containing complete items: make more fine-grained

items:
= LR(1) items

= each item with “specific follow information”: look-ahead

4-205
2 That won't change in principle (but the items get more complex)

LR(1) items

= main idea: simply make the look-ahead part of the item

= obviously: proliferation of states??

LR(1) items

[A— a.f,a] (9)

= a: terminal/token, including $

2Not to mention if we wanted look-ahead of k > 1, which in practice
is not done, though.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-206

LALR(1)-DFA (or LR(1)-DFA)

[§'—.55%]
[§ — . ia.§)

[§ — .Vi=E §]
[V— .id =]

Vi=.E.$)
IE—,v.5]
.n. %)

id.5) @

SLR(1),
Follow(
* LALR(
imidlert
tilstand
av {:=
probler

* LR(1)
akkurat

AT

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-207

Remarks on the DFA

= Cf. state 2 (seen before)

= in SLR(1): problematic (reduce/reduce), as
Follow(V') = {:=,$}
= now: diambiguation, by the added information

= LR(1) would give the same DFA

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-208

Full LR(1) parsing

|NF511.07
= AKA: canonical LR(1) parsing e
= the best you can do with 1 look-ahead
= unfortunately: big tables e owction to
= pre—stage to LALR(l)—parSIng Top-down parsing
First and follow
sets
SLR(]') LALR(]') LL-parsing (mostly
LL(1))
LR(0)-item-based parsing, with LR(1)-item-based parsing, Bottomup
afterwards adding some extra but afterwards throwing BatsiE
“pre-compiled” info (about away precision by References
follow-sets) to increase collapsing states, to save
expressivity space

4-209

LR(1) transitions: arbitrary symbol

= transitions of the NFA (not DFA)

X-transition

[[A—> a.Xﬁ,a]]i»[[Ae aX.ﬁ,a]]

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-210

e-transition

for all

B- B | Ba... andall be First(vya)

Introduction to
parsing

[[A - a.By ,a]]f[[B > .8 ,b]] Top-down) parsing

First and follow
sets

LL-parsing (mostly
" " . LL(1))
including special case (7 = €)

References

forall B— 3 | B2...

[[A ~a.B ,a]]i[[B - .8 ,a]]

4-211

LALR(1) vs LR(1)

INF5110 -

LR(].) Compiler

Construction

A — (A1)
A —)
A—.a))

LALR(1) A= (A)|a

LR(1)

Introduction to
parsing

Top-down parsing

LALR(1)
First and follow

sets
A — A)LS) i — (A0l |14 — (.81 LL-parsing (mostly
W— (ALSH] " —..sh) @) @) LL(1))
A—.) [e
we Bottom-up
(\ parsing

A— (. A))]
A=)

IA—.A.H@

A — A1 | (14—)] References
® O)

4-212

Core of LR(1)-states

= actually: not done that way in practice

= main idea: collapse states with the same core

Core of an LR(1) state
= set of LR(0)-items (i.e., ignoring the look-ahead)

= observation: core of the LR(1) item = LR(0) item

= 2 LR(1) states with the same core have same outgoing
edges, and those lead to states with the same core

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-213

LALR(1)-DFA by as collapse

= collapse all states with the same core

= based on above observations: edges are also consistent
= Result: almost like a LR(0)-DFA but additionally

= still each individual item has still look ahead attached:
the union of the “collapsed” items

= especially for states with complete items
[A - a,a,b,...] is smaller than the follow set of A

= = less unresolved conflicts compared to SLR(1)

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-214

Concluding remarks of LR / bottom up
parsing

= all constructions (here) based on BNF (not EBNF)

= conflicts (for instance due to ambiguity) can be solved
by

= reformulate the grammar, but generarate the same
language®?

= use directives in parser generator tools like yacc, CUP,
bison (precedence, assoc.)

= or (not yet discussed): solve them later via semantical
analysis

= NB: not all conflics are solvable, also not in LR(1)
(remember ambiguous languages)

2f designing a new language, there’s also the option to massage the
language itself. Note also: there are inherently ambiguous languages for
which there is no unambiguous grammar.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-215

LR/bottom-up parsing overview

INF5110 -

advantages remarks Compiler
LR(0) defines states also used by | not really used, many con- Construction
SLR and LALR flicts, very weak
SLR(1) clear improvement over | weaker than LALR(1). butmtroduction to
LR(0) in expressiveness, | often good enough. Ok"™™"®
even if using the same | for hand-made parsers for °%%"" Porine
number of states. Table | small grammars First and follow
typically with 50K entries LL-parsing (mostly
LALR(1) | almost as expressive as | method of choice for mostLL())
LR(1), but number of | generated LR-parsers Bottom-up
states as LR(0)! e
LR(1) the method covering all | large number of states oo
bottom-up, one-look-ahead | (typically 11M of entries),
parseable grammars mostly LALR(1) preferred

Remeber: once the table specific for LR(0), ... is set-up, the

parsing algorithms all work the same

4-216

Error handling

= at the least: do an understandable error message

= give indication of line / character or region responsible
for the error in the source file

= potentially stop the parsing
= some compilers do error recovery

= give an understandable error message (as minimum)

= continue reading, until it's plausible to resume parsing
= find more errors

= however: when finding at least 1 error: no code
generation

= observation: resuming after syntax error is not easy

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-217

Error handling

Minimal requirement

Upon “stumbling over” an error (= deviation from the
grammar): give a reasonable & understandable error
message, indicating also error location. Potentially stop
parsing

= for parse error recovery

= one cannot really recover from the fact that the program
has an error (an syntax error is a syntax error), but
= after giving decent error message:
= move on, potentially jump over some subsequent code,
= until parser can pick up normal parsing again
= so: meaningfull checking code even following a first
error
= avoid: reporting an avalanche of subsequent spurious
errors (those just “caused” by the first error)
= “pick up” again after semantic errors: easier than for
syntactic errors

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-218

Error messages

= important:

avoid error messages that only occur because of an
already reported error!

report error as early as possible, if possible at the first
point where the program cannot be extended to a
correct program.

make sure that, after an error, one doesn't end up in an
infinite loop without reading any input symbols.

= What's a good error message?

assume: that the method factor () chooses the
alternative (exp) but that it , when control returns
from method exp (), does not find a)

one could report : left paranthesis missing
But this may often be confusing, e.g. if what the
program textis: (a + b c)

here the exp () method will terminate after (a + b,
as ¢ cannot extend the expression). You should
therefore rather give the message error in
expression or left paranthesis missing.

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-219

Error recovery in bottom-up parsing

= panic recovery in LR-parsing
= simple form
= the only one we shortly look at
= upon error: recovery =
= pops parts of the stack
= ignore parts of the input
= until “on track again”
= but: how to do that
= additional problem: non-determinism
= table: constructed conflict-free under normal operation
= upon error (and clearing parts of the stack + input): no
guarantee it's clear how to continue
= heuristic needed (like panic mode recovery)

Panic mode idea

= try a fresh start,
= promising “fresh start” is: a possible goto action

= thus: back off and take the next such goto-opportunity

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-220

Possible error situation

parse stack

input

action

1 $oaibacs(,dses | £)gh...$ noentry for f

state input goto
) f g A B

3 u v

4 _ _

5 _ -

6 - = _

u — — reduce...

v - - shift: 7

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-221

Possible error situation

parse stack

1 $oaibacs(,dses | £)gh...$ no entry for f
2 $paibsc3By, gh ...$ back to normal
3 $oaleC3ng7 h ...
state input goto
) f g A B
3 u v
4 _ _
5 _ _
6 _ e _
U - — reduce...
v - - shift:7

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-221

Panic mode recovery

Algo

1. Pop states for the stack until a state is found with
non-empty goto entries
2. = |If there's legal action on the current input token from
one of the goto-states, push token on the stack, restart
the parse.
= |f there's several such states: prefer shift to a reduce
= Among possible reduce actions: prefer one whose
associated non-terminal is least general
3. if no legal action on the current input token from one of
the goto-states: advance input until there is a legal
action (or until end of input is reached)

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-222

Example again

parse stack ‘ input action

1 S$oaibacs(,dses | £)gh...$ noentry for f

= first pop, until in state 3
= then jump over input
= until next input g
= since f and) cannot be treated

= choose to goto v (shift in that state)

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-223

Example again

parse stack ‘ input action
1 $paibacz(,dses | f)gh...$ no entry for f
2 $paibsc3By, gh ...$ back to normal
3 $0a1bQC3BUg7 h 5

= first pop, until in state 3
= then jump over input
= until next input g
= since f and) cannot be treated

= choose to goto v (shift in that state)

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-223

Panic mode may loop forever

parse stack input action
1 $ (nn)$
2 $o(s nn)$
3 So(gns n)$
4 $o(gfactory n)$
6 S$o(gterms n)$
7 So(gezpio n)$ panic!
8 $o(gfactory n)$ been there before: stage 4!

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-224

Typical yacc parser table

some variant of the expression grammar again

command — exp
exp — term= factor | factor
term — term* factor | factor
factor — number | (ezp)
State Input Goto
NUMBER | (+ - *) $ command | exp | term | factor
0 S5 56 1 2 3 4
1 accept
2 rl rl s7 s8 Tl rl rl
3 4 4 4 rd 59 rd4 4
- 4 6 6 | 16 | r6 | 16 6 6
-> S 7 7 7 7 7 7 7
6 s5 56 10 3 4
7 s5 6 11 4
8 s s6 12 4
9 s5 s6r 13
10 s7 s8 sl4
11 2 2 2 2 s9 2 2
12 3 3 3 3 s9 r3 3
-»> 13 s [n) 5 5 [) rS 5
- 14 1] 8 i r8 8 8 8

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-225

Panicking and looping

parse stack input action
1 $ (nn)$
2 $o(g nn)$
3 S$o(gns n)$
4 $o(gfactory n)$
6 S$o(gterms n)$
7 So(gezpio n)$ panicl
8 $o(gfactory n)$ been there before: stage 4!

= error raised in stage 7, no action possible
= panic:

1. pop-off exp;,

2. state 6: 3 goto's

exp term factor
goto to 10 3 4
with n next: action there — reduce r4 reduce rg

3. no shift, so we need to decide between the two reduces
4. factor: less general, we take that one

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-226

How to deal with looping panic?

= make sure to detec loop (i.e. previous “configurations”)

= if loop detected: doen't repeat but do something
special, for instance

= pop-off more from the stack, and try again
= pop-off and insist that a shift is part of the options

Left out (from the book and the pensum)

= more info on error recovery

= expecially: more on yacc error recovery

= it's not pensum, and for the oblig: need to deal with
CUP-specifics (not classic yacc specifics even if
similar) anyhow, and error recovery is not part of the
oblig (halfway decent error handling is).

INF5110 —
Compiler
Construction

Introduction to
parsing

Top-down parsing

First and follow
sets

LL-parsing (mostly
LL(1))

Bottom-up
parsing

References

4-227

Section

References

Chapter 4 "Parsing”
Course “Compiler Construction”
Martin Steffen
Spring 2018

References |

INF5110 —
Compiler
Construction

5-0

References |1

INF5110 —
Compiler
Construction

Chapter 5

*

Ul)lain,t]

Course “Compiler Construction” 51
o Martin St+affan

	Parsing
	Introduction to parsing
	Top-down parsing
	First and follow sets
	LL-parsing (mostly LL(1))
	Bottom-up parsing
	References

	*

