
Course Script
INF 5110: Compiler con-
struction
INF5110, spring 2018

Martin Steffen

http://www.ifi.uio.no/~msteffen

ii Contents

Contents

5 Semantic analysis 1
5.1 Introduction . 1
5.2 Attribute grammars . 1
5.3 Signed binary numbers (SBN) . 27
5.4 Attribute grammar SBN . 28

6 References 29

5 Semantic analysis 1

5
Semantic analysis
Chapter

What
is it

about?Learning Targets of this Chapter
1. “attributes”
2. attribute grammars
3. synthesized and inherited

attributes
4. various applications of

attribute grammars

Contents

5.1 Introduction 1
5.2 Attribute grammars . . 1
5.3 Signed binary numbers

(SBN) 27
5.4 Attribute grammar SBN 28

5.1 Introduction

5.2 Attribute grammars

Attributes

Attribute

• a “property” or characteristic feature of something
• here: of language “constructs”. More specific in this chapter:
• of syntactic elements, i.e., for non-terminal and terminal nodes in syntax

trees

Static vs. dynamic

• distinction between static and dynamic attributes
• association attribute ↔ element: binding
• static attributes: possible to determine at/determined at compile time
• dynamic attributes: the others . . .

http://www.merriam-webster.com/dictionary/attribute

2 5 Semantic analysis
5.2 Attribute grammars

With the concept of attribute so general, basically very many things can be
subsumed under being an attribute of “something”. After having a look at
how attribute grammars are used to “attribution” (or “binding” of values of
some attribute to a syntactic element), we will normally be concered with
more concrete attributes, like the type of something, or the value (and there
are many other examples). In the very general use of the word “attribute” and
“attribution” (the act of attributing something) is almost synonymous with
“analysis” (here semantic analysis). The analysis is concerned with figuring
out the value of some attribute one is interested in, for instance, the type of a
syntactic construct. After having done so, the result of the analysis is typically
remembered (as opposed to being calculated over and over again), but that’s
for efficiency reasons. One way of remembering attributes is in a specific data
structure, for attributes of “symbols”, that kind of data structure is known as
the symbol table.

Examples in our context

• data type of a variable : static/dynamic
• value of an expression: dynamic (but seldomly static as well)
• location of a variable in memory: typically dynamic (but in old FOR-

TRAN: static)
• object-code: static (but also: dynamic loading possible)

The value of an expression, as stated, is typically not a static “attribute” (for
reasons which I hope are clear). Later, in this chapter, we will actually use
values of expressions as attributes. That can be done, for instance, if there are
no variables mentioned in the expressions. The values of those values typically
are not known at compile-time and would not allow to calculate the value at
compile time. However, the “non-variable” is exactly the situation we will see
later.

As a side remark: even with variables, sometimes the compiler can figure out,
that, in some situations, the value of a variable is at some point is known in
advance. In that case, an optimization could be to precompute the value and
use that instead. To figure out whether or not that is the case is typically done
via data-flow analysis which operates on control-flow graph. That is therefore
not done via attribute grammars in general.

Attribute grammar in a nutshell

• AG: general formalism to bind “attributes to trees” (where trees are given
by a CFG)1

1Attributes in AG’s: static, obviously.

5 Semantic analysis
5.2 Attribute grammars 3

• two potential ways to calculate “properties” of nodes in a tree:

“Synthesize” properties

define/calculate prop’s bottom-up

“Inherit” properties

define/calculate prop’s top-down

• allows both at the same time

Attribute grammar

CFG + attributes one grammar symbols + rules specifing for each produc-
tion, how to determine attributes

Rest

• evaluation of attributes: requires some thought, more complex if mixing
bottom-up + top-down dependencies

Example: evaluation of numerical expressions

Expression grammar (similar as seen before)

exp → exp + term ∣ exp − term ∣ term
term → term ∗ factor ∣ factor

factor → (exp) ∣ number

• goal now: evaluate a given expression, i.e., the syntax tree of an expres-
sion, resp:

4 5 Semantic analysis
5.2 Attribute grammars

more concrete goal

Specify, in terms of the grammar, how expressions are evaluated

• grammar: describes the “format” or “shape” of (syntax) trees
• syntax-directedness
• value of (sub-)expressions: attribute here

As stated earlier: values of syntactic entities are generally dynamic attributes
and cannot therefore be treated by an AG. In this simplistic AG example, it’s
statically doable (because no variables, no state-change etc.).

Expression evaluation: how to do if on one’s own?

• simple problem, easy solvable without having heard of AGs
• given an expression, in the form of a syntax tree
• evaluation:

– simple bottom-up calculation of values
– the value of a compound expression (parent node) determined by
the value of its subnodes

– realizable, for example, by a simple recursive procedure2

Connection to AG’s

• AGs: basically a formalism to specify things like that
• however : general AGs will allow more complex calculations:

– not just bottom up calculations like here but also
– top-down, including both at the same time3

Pseudo code for evaluation

eval_exp (e) =
case
: : e equa l s PLUSnode −>

return eval_exp (e . l e f t) + eval_term (e . r i g h t)
: : e equa l s MINUSnode −>

return eval_exp (e . l e f t) − eval_term (e . r i g h t)
. . .
end case

2Resp. a number of mutually recursive procedures, one for factors, one for terms, etc. See
the next slide.

3Top-down calculations will not be needed for the simple expression evaluation example.

5 Semantic analysis
5.2 Attribute grammars 5

AG for expression evaluation
productions/grammar rules semantic rules

1 exp1 → exp2 + term exp1 .val = exp2 .val + term .val
2 exp1 → exp2 − term exp1 .val = exp2 .val − term .val
3 exp → term exp .val = term .val
4 term1 → term2 ∗ factor term1 .val = term2 .val ∗ factor .val
5 term → factor term .val = factor .val
6 factor → (exp) factor .val = exp .val
7 factor → number factor .val = number.val

• specific for this example is:
– only one attribute (for all nodes), in general: different ones possible
– (related to that): only one semantic rule per production
– as mentioned: rules here define values of attributes “bottom-up” only

• note: subscripts on the symbols for disambiguation (where needed)

Attributed parse tree

The attribute grammar (being purely synthesized = bottom-up) is very simple
and hence, the values in the attribute val should be self-explanatory. It

6 5 Semantic analysis
5.2 Attribute grammars

Possible dependencies

Possible dependencies (> 1 rule per production possible)

• parent attribute on childen attributes
• attribute in a node dependent on other attribute of the same node
• child attribute on parent attribute
• sibling attribute on sibling attribute
• mixture of all of the above at the same time
• but: no immediate dependence across generations

Attribute dependence graph

• dependencies ultimately between attributes in a syntax tree (instances)
not between grammar symbols as such

⇒ attribute dependence graph (per syntax tree)
• complex dependencies possible:

– evaluation complex
– invalid dependencies possible, if not careful (especially cyclic)

Sample dependence graph (for later example)

The graph belongs to an example that we revisit later. The dashed line repre-
sent the AST. The bold arrows the dependence graph. Later, we will classify
the attributes in that base (at least for the non-terminals num) is inherited
(“top-down”), whereas val is synthesized (“bottom-up”).

We will later have a look at what synthesized and inherited means. As we see
in the example already here, being synthesized is (in its more general form) not
as simplistic as “dependence only from attributes of children”. In the example

5 Semantic analysis
5.2 Attribute grammars 7

the synthesized attribute val depends on its inherited “sister attribute” base
in most nodes. So, synthesized is not only “strictly bottom-up”, it also goes
“sideways” (from base to val). Now, this “sideways” dependence goes from
inherited to synthesized only but never the other way around. That’s fortunate,
because in this way it’s immediately clear that there are no cycles in the
dependence graph. An evaluation (see later) following this form dependece
is “down-up”, i.e., first top-down, and afterwards bottom-up (but not then
down again etc, the evaluation does not go into cycles).

Two-phase evaluation

Perhaps a too fine point concerning evaluation in the example. The above
explanation highlighted that the evaluation is “phased” in first a top-down
evaluation and afterwards a bottom-up phase. Conceptually, that is correct
and gives a good intuition about the design of the dependencies of the attribute.
Two “refinements” of that picture may be in order, though. First, as explained
later, a dependence graph does not represent one possible evaluation (so it
makes no real sense in speaking of “the” evaluation of the given graph, if we
think of the edges as individual steps). The graph denotes which values need
to be present before another value can be determined. Secondly, and relatd
to that: If we take that view seriously, it’s not strictly true that all inherited
depenencies are evaluated before all synthesized. “Conceptually” they are, in
a way, but there is an amound of “indepdendence” or “parallelism” possible.
Looking at the following picture, which shows one of many possible evaluation
orders shows, for example that step 8 is filling an inherited attribute, and
that comes after 6 which deals with an synthesized one. But both steps are
indepdedent, so they could as well be done the other way around.

So, the picture “first top-down, then bottom-up” is conceptually correct and a
good intuition, it needs some fine-tuning when talking about when an indivdual
step-by-step evaluation is done.

8 5 Semantic analysis
5.2 Attribute grammars

Possible evaluation order

The numbers in the picture give one possible evaluation order. As mentioned
earlier, there are in general more than one possible ways to evaluate depdency
graph, in particular, when dealing with a syntrax tree, and not with the gen-
erate case of a “ syntax list” (considering list as a degenerated form of trees).
Generally, the rules that say when an AG is properly done assures that all
possible evaluations give a unique value for all attributes, and the order of
evaluation does not matter. Those conditions assure that each attribute in-
stance gets a value exactly once (which also implies there are no cycles in the
dependence graph).

Restricting dependencies

• general GAs allow bascially any kind of dependencies4

• complex/impossible to meaningfully evaluate (or understand)
• typically: restrictions, disallowing “mixtures” of dependencies

– fine-grained: per attribute
– or coarse-grained: for the whole attribute grammar

Synthesized attributes

bottom-up dependencies only (same-node dependency allowed).

4Apart from immediate cross-generation dependencies.

5 Semantic analysis
5.2 Attribute grammars 9

Inherited attributes

top-down dependencies only (same-node and sibling dependencies allowed)

The classification in inherited = top-down and synthesized = bottom-up is
a general guiding light. The discussion about the previous figures showed
that there might be some refinements like that “sideways” dependencies are
acceptable, not only strictly bottom-up dependencies.

Synthesized attributes (simple)

Synthesized attribute

A synthesized attribute is define wholly in terms of the node’s own attributes,
and those of its children (or constants).

Rule format for synth. attributes

For a synthesized attribute s of non-terminal A, all semantic rules with A.s
on the left-hand side must be of the form

A.s = f(X1.b1, . . . Xn.bk) (5.1)

and where the semantic rule belongs to production A→X1 . . . Xn

• Slight simplification in the formula.

The “simplification” here is that we ignore the fact that one symbol can have in
general many attributes. So, we just write X1.b1 instead of X1.b1,1 . . . X1.b1.k1

which would more “correctly” cover the situation in all generality, but doing
so would not make the points more clear.

S-attributed grammar:

all attributes are synthesized

The simplification mentioned is to make the rules more readable, to avould
all the subscript, while keeping the spirit. The simplification is that we con-
sider only 1 attribute per symbol. In general, instead depend on A.a only,
dependencies on A.a1, . . . A.al possible. Similarly for the rest of the formula

10 5 Semantic analysis
5.2 Attribute grammars

Remarks on the definition of synthesized attributes

• Note the following aspects
1. a synthesized attribute in a symbol: cannot at the same time also be

“inherited”.
2. a synthesized attribute:

– depends on attributes of children (and other attributes of the
same node) only. However:

– those attributes need not themselves be synthesized (see also next
slide)

• in Louden:
– he does not allow “intra-node” dependencies
– he assumes (in his wordings): attributes are “globally unique”

Unfortunately, depending on the text-book the exact definitions (or the way
it’s formulated) of synthesized and inherited slightly deviate. But in spirit, of
course, they all agree in principle. the lecture is not so much concerned with
the super-fine print in definitions, more with questions like “given the following
problem, write an AG”, and the conceptual picture of synthesized (bottom-up
and a bit of sideways), and inherited (top-down and perhaps a bit of sideways)
helps in thinking about that problem. Of course, all books agree: circles need
to be avoided and all attributes need to be uniquely defined. The concepts
of synthesized and inherited attributes thereby helps to clarify thinking about
those problems. For intance, by having this “phased” evaluation discussed
earlier (first down with the inherited attributes, then up with the synthesized
one) makes clear: there can’t be a cycle.

Don’t forget the purpose of the restriction

• ultimately: calculate values of the attributes
• thus: avoid cyclic dependencies
• one single synthesized attribute alone does not help much

S-attributed grammar

• restriction on the grammar, not just 1 attribute of one non-terminal
• simple form of grammar
• remember the expression evaluation example

S-attributed grammar:

all attributes are synthesized

5 Semantic analysis
5.2 Attribute grammars 11

Alternative, more complex variant

“Transitive” definition (A→X1 . . . Xn)

A.s = f(A.i1, . . . , A.im, X1.s1, . . . Xn.sk)

• in the rule: the Xi.sj’s synthesized, the Ai.ij’s inherited
• interpret the rule carefully: it says:

– it’s allowed to have synthesized & inherited attributes for A
– it does not say: attributes in A have to be inherited
– it says: in an A-node in the tree: a synthesized attribute

∗ can depend on inherited att’s in the same node and
∗ on synthesized attributes of A-children-nodes

Pictorial representation

Conventional depiction

General synthesized attributes

Note that in the previous example discussing the dependence graph with at-
tributes base and val was of this format and followed the convention: show
the inherited base on the left, the synthesized val on the right.

Inherited attributes

• in Louden’s simpler setting: inherited = non-synthesized

12 5 Semantic analysis
5.2 Attribute grammars

Inherited attribute

An inherited attribute is defined wholly in terms of the node’s own attributes,
and those of its siblings or its parent node (or constants).

Rule format

Rule format for inh. attributes

For an inherited attribute of a symbol X of X, all semantic rules mentioning
X.i on the left-hand side must be of the form

X.i = f(A.a, X1.b1, . . . , X, . . . Xn.bk)

and where the semantic rule belongs to production A→X1 . . . X, . . . Xn

• note: mentioning of “all rules”, avoid conflicts.

Alternative definition (“transitive”)

Rule format

For an inherited attribute i of a symbol X, all semantic rules mentioning
X.i on the left-hand side must be of the form

X.i = f(A.i′, X1.b1, . . . , X.b, . . . Xn.bk)

and where the semantic rule belongs to production A→X1 . . . X . . . Xn

• additional requirement: A.i′ inherited
• rest of the attributes: inherited or synthesized

5 Semantic analysis
5.2 Attribute grammars 13

Simplistic example (normally done by the scanner)

CFG

number → numberdigit ∣ digit
digit → 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9 ∣

Attributes (just synthesized)

number val
digit val
terminals [none]

We will look at an AG solution. In practice, this conversion is typically done by
the scanner already, and the way it’s normally done is relying on provide func-
tions of the implementing programming language (all languages will support
such conversion functions, either built-in or in some libraries). For instance
in Java, one could use the method valueOf(String s), for instance used
as static method Integer.valueOf("900") of the class of integers. Of
course and obviously, not everything done by an AG can be done already by
the scanner. But this particular example used as warm-up is so simple that
you could be done by the scanner, and it typically is done there already.

14 5 Semantic analysis
5.2 Attribute grammars

Numbers: Attribute grammar and attributed tree

A-grammar

attributed tree

Attribute evaluation: works on trees

i.e.: works equally well for

• abstract syntax trees
• ambiguous grammars

5 Semantic analysis
5.2 Attribute grammars 15

Seriously ambiguous expression grammar5

exp → exp + exp ∣ exp − exp ∣ exp ∗ exp ∣ (exp) ∣ number

Evaluation: Attribute grammar and attributed tree

A-grammar

Attributed tree

5Alternatively: It’s meant as grammar describing nice and clean ASTs for an underlying,
potentially less nice grammar used for parsing.

16 5 Semantic analysis
5.2 Attribute grammars

Expressions: generating ASTs

Expression grammar with precedences & assoc.

exp → exp + term ∣ exp − term ∣ term
term → term ∗ factor ∣ factor

factor → (exp) ∣ number

Attributes (just synthesized)

exp, term, factor tree
number lexval

Expressions: Attribute grammar and attributed tree

A-grammar

5 Semantic analysis
5.2 Attribute grammars 17

A-tree

The AST looks a bit bloated, that’s because the grammar was massaged in
such a way that precedences etc during parsing was dealt with properly. The
the grammar is describing more a parse tree rather than an AST, which often
would be less verbose. But the AG formalisms itself does not care about what
the grammar describes (a grammar used for parsing or a grammar describing
the abstract syntax), it does especially not care if the grammar is ambiguous.

Example: type declarations for variable lists

CFG

decl → type var-list
type → int
type → float

var-list1 → id, var-list2
var-list → id

• Goal: attribute type information to the syntax tree
• attribute: dtype (with values integer and real)6

• complication: “top-down” information flow: type declared for a list of
vars ⇒ inherited to the elements of the list

6There are thus 2 different attribute values. We don’t mean “the attribute dtype has
integer values”, like 0, 1, 2, . . .

18 5 Semantic analysis
5.2 Attribute grammars

Types and variable lists: inherited attributes

grammar productions semantic rules
decl → type var-list var-list .dtype = type .dtype
type → int type .dtype = integer
type → float type .dtype = real

var-list1 → id, var-list2 id.dtype = var-list1 .dtype
var-list2 .dtype = var-list1 .dtype

var-list → id id.dtype = var-list .dtype

• inherited: attribute for id and var-list
• but also synthesized use of attribute dtype: for type .dtype7

Types & var lists: after evaluating the semantic rules

floatid(x),id(y)

Attributed parse tree

7Actually, it’s conceptually better not to think of it as “the attribute dtype”, it’s better
as “the attribute dtype of non-terminal type” (written type .dtype) etc. Note further:
type .dtype is not yet what we called instance of an attribute.

5 Semantic analysis
5.2 Attribute grammars 19

Dependence graph

Example: Based numbers (octal & decimal)

• remember: grammar for numbers (in decimal notation)
• evaluation: synthesized attributes
• now: generalization to numbers with decimal and octal notation

CFG

based-num → num base-char
base-char → o
base-char → d

num → num digit
num → digit
digit → 0
digit → 1

. . .
digit → 7
digit → 8
digit → 9

Based numbers: attributes

Attributes

• based-num .val: synthesized

20 5 Semantic analysis
5.2 Attribute grammars

• base-char .base: synthesized
• for num:

– num .val: synthesized
– num .base: inherited

• digit .val: synthesized

• 9 is not an octal character
⇒ attribute val may get value “error”!

Based numbers: a-grammar

5 Semantic analysis
5.2 Attribute grammars 21

Based numbers: after eval of the semantic rules

Attributed syntax tree

Based nums: Dependence graph & possible evaluation order

22 5 Semantic analysis
5.2 Attribute grammars

Dependence graph & evaluation

• evaluation order must respect the edges in the dependence graph
• cycles must be avoided!
• directed acyclic graph (DAG)
• dependence graph ∼ partial order
• topological sorting: turning a partial order to a total/linear order (which

is consistent with the PO)
• roots in the dependence graph (not the root of the syntax tree): their

values must come “from outside” (or constant)
• often (and sometimes required): terminals in the syntax tree:

– terminals synthesized / not inherited
⇒ terminals: roots of dependence graph
⇒ get their value from the parser (token value)

A DAG is not a tree, but a generalization thereof. It may have more than
one “root” (like a forest). Also: “shared descendents” are allowed. But no
cycles.

As for the treatment of terminals, resp. restrictions some books require: An
alternative view is that terminals get token values “from outside”, the lexer.
They are as if they were synthesized, except that it comes “from outside” the
grammar.

Evaluation: parse tree method

For acyclic dependence graphs: possible “naive” approach

Parse tree method

Linearize the given partial order into a total order (topological sorting), and
then simply evaluate the equations following that.

5 Semantic analysis
5.2 Attribute grammars 23

Rest

• works only if all dependence graphs of the AG are acyclic
• acyclicity of the dependence graphs?

– decidable for given AG, but computationally expensive8

– don’t use general AGs but: restrict yourself to subclasses

• disadvantage of parse tree method: also not very efficient check per parse
tree

Observation on the example: Is evalution (uniquely)
possible?

• all attributes: either inherited or synthesized9

• all attributes: must actually be defined (by some rule)
• guaranteed in that for every production:

– all synthesized attributes (on the left) are defined
– all inherited attributes (on the right) are defined
– local loops forbidden

• since all attributes are either inherited or synthesized: each attribute
in any parse tree: defined, and defined only one time (i.e., uniquely
defined)

Loops

• AGs: allow to specify grammars where (some) parse-trees have cycles.
• however: loops intolerable for evaluation
• difficult to check (exponential complexity).10

8On the other hand: the check needs to be done only once.
9base-char .base (synthesized) considered different from num .base (inherited)

10acyclicity checking for a given dependence graph: not so hard (e.g., using topological
sorting). Here: for all syntax trees.

24 5 Semantic analysis
5.2 Attribute grammars

Variable lists (repeated)

Attributed parse tree

Dependence graph

Typing for variable lists

• code assume: tree given

5 Semantic analysis
5.2 Attribute grammars 25

The assumption that the tree is given is reasonable, if dealing with ASTs. For
parse-tree, the attribution of types must deal with the fact that the parse tree
is being built during parsing. It also means: it “blurs” typically the border
between context-free and context-sensitive analysis.

L-attributed grammars

• goal: AG suitable for “on-the-fly” attribution
• all parsing works left-to-right.

L-attributed grammar

An attribute grammar for attributes a1, . . . , ak is L-attributed, if for each in-
herited attribute aj and each grammar rule

X0 →X1X2 . . . Xn ,

the associated equations for aj are all of the form

Xi.aj = fij(X0.a⃗, X1.a⃗ . . . Xi−1.a⃗) .

where additionally for X0.a⃗, only inherited attributes are allowed.

26 5 Semantic analysis
5.2 Attribute grammars

Rest

• X.a⃗: short-hand for X.a1 . . . X.ak

• Note S-attributed grammar ⇒ L-attributed grammar

Nowadays, doing it on-the-fly is perhaps not the most important design crite-
rion.

“Attribution” and LR-parsing

• easy (and typical) case: synthesized attributes
• for inherited attributes

– not quite so easy
– perhaps better: not “on-the-fly”, i.e.,
– better postponed for later phase, when AST available.

• implementation: additional value stack for synthesized attributes, main-
tained “besides” the parse stack

Example: value stack for synth. attributes

Sample action

E : E + E { $$ = $1 + $3 ; }

in (classic) yacc notation

5 Semantic analysis
5.3 Signed binary numbers (SBN) 27

Value stack manipulation: that’s what’s going on behind the scene

5.3 Signed binary numbers (SBN)

SBN grammar

number → sign list
sign → + ∣ −
list → list bit ∣ bit
bit → 0 ∣ 1

Intended attributes

symbol attributes
number value
sign negative
list position, value
bit position, value

• here: attributes for non-terminals (in general: terminals can also be in-
cluded)

28 5 Semantic analysis
5.4 Attribute grammar SBN

5.4 Attribute grammar SBN

production attribution rules
1 number → sign list list.position = 0

if sign .negative
then number .value = −LIST.value
else number .value = LIST.value

2 sign → + sign .negative = false
3 sign → − sign .negative = true
4 list → bit bit .position = list.position

list.value = bit .value
5 list0 → list1 bit list1.position = list0.position + 1

bit .position = list0.position
list0.position = list1.value + bit .value

6 bit → 0 bit .value = 0
7 bit → 1 bit .value = 2bit .position

Bibliography
Bibliography 29

Bibliography

[1] Cooper, K. D. and Torczon, L. (2004). Engineering a Compiler. Elsevier.

[2] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS
Publishing.

30 Index
Index

Index

acyclic graph, 22
attribute grammars, 1

DAG, 22
directed acyclic graph, 22

grammar
L-attributed, 25

graph
cycle, 22

l-attributed grammar, 25
linear order, 22

partial order, 22

topological sorting, 22
total order, 22

	Contents
	Semantic analysis
	Introduction
	Attribute grammars
	Signed binary numbers (SBN)
	Attribute grammar SBN

	References

