
Chapter 5
Semantic analysis

Course “Compiler Construction”
Martin Steffen
Spring 2018

Chapter 5
Learning Targets of Chapter “Semantic analysis”.

1. “attributes”
2. attribute grammars
3. synthesized and inherited attributes
4. various applications of attribute grammars

Chapter 5
Outline of Chapter “Semantic analysis”.

Introduction

Attribute grammars

Section
Introduction

Chapter 5 “Semantic analysis”
Course “Compiler Construction”
Martin Steffen
Spring 2018

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-5

Overview over the chapter resp. SA in
general1

• semantic analysis in general
• attribute grammars (AGs)
• symbol tables (not today)
• data types and type checking (not today)

1The slides are a reworked version originally from Birger
Møller-Pedersen.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-6

Where are we now?

What do we get from the parser?

• output of the parser: (abstract) syntax tree
• often: in anticipation: nodes in the tree contain “space”

to be filled out by SA
• examples:

• for expression nodes: types
• for identifier/name nodes: reference or pointer to the

declaration

assign-expr

subscript expr

identifier
a

identifier
index

additive expr

number
2

number
4

What do we get from the parser?
• output of the parser: (abstract) syntax tree
• often: in anticipation: nodes in the tree contain “space”

to be filled out by SA
• examples:

• for expression nodes: types
• for identifier/name nodes: reference or pointer to the

declaration

assign-expr

additive-expr

number

2

number

4

subscript-expr

identifier

index

identifier

a :array of int :int

:array of int :int

:int :int

:int :int

:int :int

: ?

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-8

General: semantic (or static) analysis

Rule of thumb
Check everything which is possible before executing
(run-time vs. compile-time), but cannot already done during
lexing/parsing (syntactical vs. semantical analysis)

• Goal: fill out “semantic” info (typically in the AST)
• typically:

• all names declared? (somewhere/uniquely/before use)
• typing:

• is the declared type consistent with use
• types of (sub)-expression consistent with used

operations
• border between sematical vs. syntactic checking not

always 100% clear
• if a then ...: checked for syntax
• if a + b then ...: semantical aspects as well?

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-9

SA is nessessarily approximative

• note: not all can (precisely) be checked at compile-time
• division by zero?
• “array out of bounds”
• “null pointer deref” (like r.a, if r is null)

• but note also: exact type cannot be determined
statically either

if x then 1 else "abc"

• statically: ill-typed2

• dynamically (“run-time type”): string or int, or
run-time type error, if x turns out not to be a boolean,
or if it’s null

2Unless some fancy behind-the-scence type conversions are done by
the language (the compiler). Perhaps print(if x then 1 else
"abc") is accepted, and the integer 1 is implicitly converted to "1".

SA remains tricky

A dream

However

• no standard description language
• no standard “theory”

• part of SA may seem ad-hoc, more
“art” than “engineering”, complex

• but: well-established/well-founded
(and non-ad-hoc) fields do exist

• type systems, type checking
• data-flow analysis

• in general
• semantic “rules” must be

individually specified and
implemented per language

• rules: defined based on trees (for
AST): often straightforward to
implement

• clean language design includes clean
semantic rules

Section
Attribute grammars

Chapter 5 “Semantic analysis”
Course “Compiler Construction”
Martin Steffen
Spring 2018

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-12

Attributes
Attribute

• a “property” or characteristic feature of something
• here: of language “constructs”. More specific in this

chapter:
• of syntactic elements, i.e., for non-terminal and terminal

nodes in syntax trees

Static vs. dynamic

• distinction between static and dynamic attributes
• association attribute ↔ element: binding
• static attributes: possible to determine at/determined

at compile time
• dynamic attributes: the others . . .

http://www.merriam-webster.com/dictionary/attribute

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-13

Examples in our context

• data type of a variable : static/dynamic
• value of an expression: dynamic (but seldomly static as

well)
• location of a variable in memory: typically dynamic (but

in old FORTRAN: static)
• object-code: static (but also: dynamic loading possible)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-14

Attribute grammar in a nutshell
• AG: general formalism to bind “attributes to trees”

(where trees are given by a CFG)3

• two potential ways to calculate “properties” of nodes in
a tree:

“Synthesize” properties
define/calculate prop’s
bottom-up

“Inherit” properties
define/calculate prop’s
top-down

• allows both at the same time

Attribute grammar
CFG + attributes one grammar symbols + rules specifing for
each production, how to determine attributes

• evaluation of attributes: requires some thought, more
complex if mixing bottom-up + top-down dependencies

3Attributes in AG’s: static, obviously.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-15

Example: evaluation of numerical
expressions
Expression grammar (similar as seen before)

exp → exp + term ∣ exp − term ∣ term
term → term ∗ factor ∣ factor

factor → (exp) ∣ number

• goal now: evaluate a given expression, i.e., the syntax
tree of an expression, resp:

more concrete goal
Specify, in terms of the grammar, how expressions are
evaluated

• grammar: describes the “format” or “shape” of (syntax)
trees

• syntax-directedness
• value of (sub-)expressions: attribute here

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-16

Expression evaluation: how to do if on
one’s own?

• simple problem, easy solvable without having heard of
AGs

• given an expression, in the form of a syntax tree
• evaluation:

• simple bottom-up calculation of values
• the value of a compound expression (parent node)

determined by the value of its subnodes
• realizable, for example by a simple recursive procedure4

Connection to AG’s

• AGs: basically a formalism to specify things like that
• however: general AGs will allow more complex

calculations:
• not just bottom up calculations like here but also
• top-down, including both at the same time5

4Resp. a number of mutually recursive procedures, one for factors,
one for terms, etc. See the next slide.

5Top-down calculations will not be needed for the simple expression
evaluation example.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-17

Pseudo code for evaluation

eva l_exp (e) =
case
: : e e q u a l s PLUSnode −>

r e t u r n eva l_exp (e . l e f t) + eva l_term (e . r i g h t)
: : e e q u a l s MINUSnode −>

r e t u r n eva l_exp (e . l e f t) − eva l_term (e . r i g h t)
. . .
end case

AG for expression evaluation
productions/grammar rules semantic rules

1 exp1 → exp2 + term exp1 .val = exp2 .val + term .val
2 exp1 → exp2 − term exp1 .val = exp2 .val − term .val
3 exp → term exp .val = term .val
4 term1 → term2 ∗ factor term1 .val = term2 .val ∗ factor .val
5 term → factor term .val = factor .val
6 factor → (exp) factor .val = exp .val
7 factor → number factor .val = number.val

• specific for this example
• only one attribute (for all nodes), in general: different

ones possible
• (related to that): only one semantic rule per production
• as mentioned: rules here define values of attributes

“bottom-up” only
• note: subscripts on the symbols for disambiguation

(where needed)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-19

Attributed parse tree

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-20

1st observations concerning the sample AG

attributes:

• defined per grammar symbol (mainly non-terminals),
but

• they get their values “per node”
• notation exp .val
• to be precise: val is an attribute of non-terminal exp

(among others), val in an expression-node in the tree is
an instance of that attribute

• instance not the same as the value!

Semantic rules
• aka: attribution rule
• fix for each symbol X: set of attributes6

• attribute: intended as “fields” in the nodes of syntax
trees

• notation: X.a: attribute a of symbol X
• but: attribute obtain values not per symbol, but per

node in a tree (per instance)

Semantic rule for production X0 →X1 . . . Xn

Xi.aj = fij(X0.a1, . . . , X0.ak0 , X1.a1, . . . X1.ak1 , . . . , Xn.a1, . . . , Xn.akn)

(1)

• Xi on the left-hand side: not necessarily head symbol
X0 of the production

• evaluation example: more restricted (to make the
example simple)

6Different symbols may share same attribute with the same name.
Those may have different types but the type of an attribute per symbol
is uniform. Cf. fields in classes (and objects).

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-22

Subtle point: terminals

• terminals: can have attributes, yes,
• but looking carefully at the format of semantic rules:

not really specified how terminals get values to their
attribute (apart from inheriting them)

• dependencies for terminals
• attribues of terminals: get value from the token,

especially the token value
• terminal nodes: commonly not allowed to depend on

parents, siblings.
• i.e., commonly: only attributes “synthesized” from the

corresponding token allowed.
• note: without allowing “importing” values from the

number token to the number.val-attributes, the
evaluation example would not work

Attribute dependencies and graph

Xi.aj = fij(X0.a1, . . . , X0.ak0 , X1.a1, . . . X1.ak1 , . . . , Xn.a1, . . . , Xn.akn)

(2)

• sem. rule: expresses dependence of attribute Xi.aj on
the left on all attributes Y.b on the right

• dependence of Xi.aj

• in principle, Xi.aj : may depend on all attributes for all
Xk of the production

• but typically: dependent only on a subset

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-24

Possible dependencies

Possible dependencies (> 1 rule per production possible)

• parent attribute on childen attributes
• attribute in a node dependent on other attribute of the

same node
• child attribute on parent attribute
• sibling attribute on sibling attribute
• mixture of all of the above at the same time
• but: no immediate dependence across generations

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-25

Attribute dependence graph

• dependencies ultimately between attributes in a syntax
tree (instances) not between grammar symbols as such

⇒ attribute dependence graph (per syntax tree)
• complex dependencies possible:

• evaluation complex
• invalid dependencies possible, if not careful (especially

cyclic)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-26

Sample dependence graph (for later
example)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-27

Possible evaluation order

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-28

Restricting dependencies

• general GAs allow bascially any kind of dependencies7

• complex/impossible to meaningfully evaluate (or
understand)

• typically: restrictions, disallowing “mixtures” of
dependencies

• fine-grained: per attribute
• or coarse-grained: for the whole attribute grammar

Synthesized attributes
bottom-up dependencies only
(same-node dependency
allowed).

Inherited attributes
top-down dependencies only
(same-node and sibling
dependencies allowed)

7Apart from immediate cross-generation dependencies.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-29

Synthesized attributes (simple)
Synthesized attribute
A synthesized attribute is define wholly in terms of the
node’s own attributes, and those of its children (or
constants).

Rule format for synth. attributes
For a synthesized attribute s of non-terminal A, all semantic
rules with A.s on the left-hand side must be of the form

A.s = f(X1.b1, . . . Xn.bk) (3)

and where the semantic rule belongs to production
A→X1 . . . Xn

• Slight simplification in the formula.

S-attributed grammar:
all attributes are synthesized

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-30

Remarks on the definition of synthesized
attributes

• Note the following aspects
1. a synthesized attribute in a symbol: cannot at the same

time also be “inherited”.
2. a synthesized attribute:

• depends on attributes of children (and other attributes
of the same node) only. However:

• those attributes need not themselves be synthesized
(see also next slide)

• in Louden:
• he does not allow “intra-node” dependencies
• he assumes (in his wordings): attributes are “globally

unique”

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-31

Don’t forget the purpose of the restriction

• ultimately: calculate values of the attributes
• thus: avoid cyclic dependencies
• one single synthesized attribute alone does not help

much

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-32

S-attributed grammar

• restriction on the grammar, not just 1 attribute of one
non-terminal

• simple form of grammar
• remember the expression evaluation example

S-attributed grammar:
all attributes are synthetic

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-33

Alternative, more complex variant

“Transitive” definition

A.s = f(A.i1, . . . , A.im, X1.s1, . . . Xn.sk)

• in the rule: the Xi.sj ’s synthesized, the Ai.ij ’s
inherited

• interpret the rule carefully: it says:
• it’s allowed to have synthesized & inherited attributes

for A
• it does not say: attributes in A have to be inherited
• it says: in an A-node in the tree: a synthesized

attribute
• can depend on inherited att’s in the same node and
• on synthesized attributes of A-children-nodes

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-34

Pictorial representation

Conventional
depiction

General synthesized attributes

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-35

Inherited attributes

• in Louden’s simpler setting: inherited = non-synthesized

Inherited attribute
An inherited attribute is defined wholly in terms of the
node’s own attributes, and those of its siblings or its parent
node (or constants).

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-36

Rule format

Rule format for inh. attributes
For an inherited attribute of a symbol X of X, all semantic
rules mentioning X.i on the left-hand side must be of the
form

X.i = f(A.a, X1.b1, . . . , X, . . . Xn.bk)

and where the semantic rule belongs to production
A→X1 . . . X, . . . Xn

• note: mentioning of “all rules”, avoid conflicts.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-37

Alternative definition (“transitive”)
Rule format
For an inherited attribute i of a symbol X, all semantic rules
mentioning X.i on the left-hand side must be of the form

X.i = f(A.i′, X1.b1, . . . , X.b, . . . Xn.bk)

and where the semantic rule belongs to production
A→X1 . . . X . . . Xn

• additional requirement: A.i′ inherited
• rest of the attributes: inherited or synthesized

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-38

Simplistic example (normally done by the
scanner)

CFG

number → numberdigit ∣ digit
digit → 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9 ∣

Attributes (just synthesized)

number val
digit val
terminals [none]

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-39

Numbers: Attribute grammar and
attributed tree

A-grammar

attributed tree

Attribute evaluation: works on trees

i.e.: works equally well for
• abstract syntax trees
• ambiguous grammars

Seriously ambiguous expression grammar8

exp → exp + exp ∣ exp − exp ∣ exp ∗ exp ∣ (exp) ∣ number

8Alternatively: It’s meant as grammar describing nice and clean
ASTs for an underlying, potentially less nice grammar used for parsing.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-41

Evaluation: Attribute grammar and
attributed tree

A-grammar
Attributed tree

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-42

Expressions: generating ASTs

Expression grammar with precedences & assoc.
exp → exp + term ∣ exp − term ∣ term

term → term ∗ factor ∣ factor
factor → (exp) ∣ number

Attributes (just synthesized)

exp, term, factor tree
number lexval

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-43

Expressions: Attribute grammar and
attributed tree

A-grammar

A-tree

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-44

Example: type declarations for variable lists

CFG

decl → type var-list
type → int
type → float

var-list1 → id, var-list2
var-list → id

• Goal: attribute type information to the syntax tree
• attribute: dtype (with values integer and real)9

• complication: “top-down” information flow: type
declared for a list of vars ⇒ inherited to the elements of
the list

9There are thus 2 different attribute values. We don’t mean “the
attribute dtype has integer values”, like 0, 1, 2, . . .

Types and variable lists: inherited attributes

grammar productions semantic rules
decl → type var-list var-list .dtype = type .dtype
type → int type .dtype = integer
type → float type .dtype = real

var-list1 → id, var-list2 id.dtype = var-list1 .dtype
var-list2 .dtype = var-list1 .dtype

var-list → id id.dtype = var-list .dtype

• inherited: attribute for id and var-list
• but also synthesized use of attribute dtype: for

type .dtype10

10Actually, it’s conceptually better not to think of it as “the attribute
dtype”, it’s better as “the attribute dtype of non-terminal type”
(written type .dtype) etc. Note further: type .dtype is not yet what we
called instance of an attribute.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-46

Types & var lists: after evaluating the
semantic rules

floatid(x),id(y)

Attributed parse tree Dependence graph

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-47

Example: Based numbers (octal & decimal)
• remember: grammar for numbers (in decimal notation)
• evaluation: synthesized attributes
• now: generalization to numbers with decimal and octal

notation
CFG

based-num → num base-char
base-char → o
base-char → d

num → num digit
num → digit
digit → 0
digit → 1

. . .
digit → 7
digit → 8
digit → 9

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-48

Based numbers: attributes

Attributes

• based-num .val: synthesized
• base-char .base: synthesized
• for num:

• num .val: synthesized
• num .base: inherited

• digit .val: synthesized

• 9 is not an octal character
⇒ attribute val may get value “error”!

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-49

Based numbers: a-grammar

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-50

Based numbers: after eval of the semantic
rules
Attributed syntax tree

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-51

Based nums: Dependence graph & possible
evaluation order

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-52

Dependence graph & evaluation

• evaluation order must respect the edges in the
dependence graph

• cycles must be avoided!
• directed acyclic graph (DAG)
• dependence graph ∼ partial order
• topological sorting: turning a partial order to a

total/linear order (which is consistent with the PO)
• roots in the dependence graph (not the root of the

syntax tree): their values must come “from outside” (or
constant)

• often (and sometimes required): terminals in the syntax
tree:

• terminals synthesized / not inherited
⇒ terminals: roots of dependence graph
⇒ get their value from the parser (token value)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-53

Evaluation: parse tree method

For acyclic dependence graphs: possible “naive” approach

Parse tree method
Linearize the given partial order into a total order
(topological sorting), and then simply evaluate the equations
following that.

• works only if all dependence graphs of the AG are
acyclic

• acyclicity of the dependence graphs?
• decidable for given AG, but computationally expensive11

• don’t use general AGs but: restrict yourself to subclasses

• disadvantage of parse tree method: also not very
efficient check per parse tree

11On the other hand: the check needs to be done only once.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-54

Observation on the example: Is evalution
(uniquely) possible?

• all attributes: either inherited or synthesized12

• all attributes: must actually be defined (by some rule)
• guaranteed in that for every production:

• all synthesized attributes (on the left) are defined
• all inherited attributes (on the right) are defined
• local loops forbidden

• since all attributes are either inherited or synthesized:
each attribute in any parse tree: defined, and defined
only one time (i.e., uniquely defined)

12base-char .base (synthesized) considered different from num .base
(inherited)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-55

Loops

• AGs: allow to specify grammars where (some)
parse-trees have cycles.

• however: loops intolerable for evaluation
• difficult to check (exponential complexity).13

13acyclicity checking for a given dependence graph: not so hard (e.g.,
using topological sorting). Here: for all syntax trees.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-56

Variable lists (repeated)

Attributed parse tree Dependence graph

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-57

Typing for variable lists

• code assume: tree given

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-58

L-attributed grammars
• goal: AG suitable for “on-the-fly” attribution
• all parsing works left-to-right.

Definition (L-attributed grammar)

An attribute grammar for attributes a1, . . . , ak is
L-attributed, if for each inherited attribute aj and each
grammar rule

X0 →X1X2 . . . Xn ,

the associated equations for aj are all of the form

Xi.aj = fij(X0.a⃗, X1.a⃗ . . . Xi−1.a⃗) .

where additionally for X0.a⃗, only inherited attributes are
allowed.

• X.a⃗: short-hand for X.a1 . . . X.ak

• Note S-attributed grammar ⇒ L-attributed grammar

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-59

“Attribution” and LR-parsing

• easy (and typical) case: synthesized attributes
• for inherited attributes

• not quite so easy
• perhaps better: not “on-the-fly”, i.e.,
• better postponed for later phase, when AST available.

• implementation: additional value stack for synthesized
attributes, maintained “besides” the parse stack

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Attribute
grammars

5-60

Example: value stack for synth. attributes

Sample action

E : E + E
{ $$ = $1 + $3 ; }

in (classic) yacc notation

Value stack manipulation:
that’s what’s going on
behind the scene

INF5110 –
Compiler

Construction

6-0

References I

INF5110 –
Compiler

Construction

6-1

References II

[plain,t]

Chapter 6
*

Course “Compiler Construction”
Martin Steffen
Spring 2018

Bibliography

	Semantic analysis
	Targets & Outline
	Introduction
	Attribute grammars

	*

