Chapter 5

Semantic analysis

Course “Compiler Construction”
Martin Steffen
Spring 2018

Chapter 5

Learning Targets of Chapter “Semantic analysis”.

“attributes”
attribute grammars

synthesized and inherited attributes

ol

various applications of attribute grammars

A5 O

@
NGigas g

Chapter 5

Outline of Chapter “Semantic analysis”.

NIV,
N
STnAS

9

Introduction

Attribute grammars

Section

Introduction

Chapter 5 “Semantic analysis”
Course “Compiler Construction”
Martin Steffen
Spring 2018

Overview over the chapter resp. SA in
general’

= semantic analysis in general

= attribute grammars (AGs)

= symbol tables (not today)

= data types and type checking (not today)

1The slides are a reworked version originally from Birger
Mgller-Pedersen.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-5

Where are we now?

Symbol table
program checked
syntax-tree
tokens syntax -tree with «bindings»
o Y < 2y
Pre - Scanner Parser Checker Code
enerator
processor Partition the . g
toxt int Find the Checks.
Macros lext into @ p structure of usage Usually some
y ‘seexqefgsoe o the program ainst type of
.| Conditional Can b declarations | optimizer, for
compilation Can be Dascribed b efficient
described Be Y| Checksiypes | execution
Files by regular argmmzr in expres-
expressions 9 sions
Symbol table
Tools: Grammars. Attributt
Lex Top-down and bottom-11PUUE grammars

Flex

up parsing.
Tools: Antlr, Yacc,
Bison, CUP, etc

¥
More or less systematic
techniques and methods

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-6

What do we get from the parser?

= output of the parser: (abstract) syntax tree

= often: in anticipation: nodes in the tree contain “space”
to be filled out by SA
= examples:
= for expression nodes: types

= for identifier/name nodes: reference or pointer to the
declaration

assign-expr

/\

subscript expr additive expr
/\ /\
identifier identifier number number

a index 2 4

What do we get from the parser?
= output of the parser: (abstract) syntax tree

= often: in anticipation: nodes in the tree contain “space”
to be filled out by SA
= examples:
= for expression nodes: types
= for identifier/name nodes: reference or pointer to the
declaration

assign—expr
/\
su bscript—expr additive—expr
/\ /\
identiﬁer identifier number number

| | | |
a index 4| :int 2

General: semantic (or static) analysis

Rule of thumb

Check everything which is possible before executing
(run-time vs. compile-time), but cannot already done during
lexing/parsing (syntactical vs. semantical analysis)

= Goal: fill out “semantic” info (typically in the AST)

= typically:
= all names declared? (somewhere/uniquely/before use)
= typing:
= is the declared type consistent with use
= types of (sub)-expression consistent with used
operations
= border between sematical vs. syntactic checking not
always 100% clear
= 1if a then ...: checked for syntax
= if a + b then ...: semantical aspects as well?

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-8

SA is nessessarily approximative

= note: not all can (precisely) be checked at compile-time
= division by zero?
= "array out of bounds”
= “null pointer deref” (like r. a, if r is null)

= but note also: exact type cannot be determined
statically either

if x then 1 else "abc"

= statically: ill-typed®

dynamically (“run-time type"): string or int, or
run-time type error, if x turns out not to be a boolean,
or if it's null

2Unless some fancy behind-the-scence type conversions are done by
the language (the compiler). Perhaps print (if x then 1 else
"abc") is accepted, and the integer 1 is implicitly converted to "1".

INF5110 -

Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-9

SA remains tricky

However

= no standard description language
= no standard “theory”

= part of SA may seem ad-hoc, more
A dream “art” than “engineering”, complex

= but: well-established /well-founded
Beskrivelse av sprakets
statiske semantikk

(and non-ad-hoc) fields do exist
Sem-yacc

= type systems, type checking
= data-flow analysis

Semantisk sjekker for - in general
det akluelle sprak = semantic “rules” must be
individually specified and
implemented per language
= rules: defined based on trees (for
AST): often straightforward to
implement
= clean language design includes clean

Section

Attribute grammars

Chapter 5 “Semantic analysis”
Course “Compiler Construction”
Martin Steffen

Spring 2018

Attribute

= a “property” or characteristic feature of something
= here: of language “constructs”. More specific in this
chapter:

Targets & Outline
= of syntactic elements, i.e., for non-terminal and terminal Introduction
nodes in syntax trees

Static vs. dynamic

distinction between static and dynamic attributes
association attribute < element: binding

static attributes: possible to determine at/determined
at compile time

dynamic attributes: the others ...
5-12

http://www.merriam-webster.com/dictionary/attribute

Examples in our context

INF5110 —
Compiler
Construction

= data type of a variable : static/dynamic Targets & Outline
= value of an expression: dynamic (but seldomly static as Introduction
Attribute
We”) grammars

= location of a variable in memory: typically dynamic (but
in old FORTRAN: static)

= object-code: static (but also: dynamic loading possible)

5-13

Attribute grammar in a nutshell

= AG: general formalism to bind “attributes to trees”
(where trees are given by a CFG)3

= two potential ways to calculate “properties” of nodes in

a tree:
“Synthesize” properties “Inherit” properties
define/calculate prop’s define/calculate prop’s
bottom-up top-down

= allows both at the same time

Attribute grammar

CFG + attributes one grammar symbols + rules specifing for
each production, how to determine attributes

= evaluation of attributes: requires some thought, more
complex if mixing bottom-up + top-down dependencies
3Attributes in AG's: static, obviously.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-14

Example: evaluation of numerical
expressions

INF5110 -

Expression grammar (similar as seen before)

Compiler
exp — exp+term | exp—term | term Construction
term — term* factor | factor
Targets & Outline
factor — (erp) | number
Introduction
Attribute

= goal now: evaluate a given expression, i.e., the syntax
tree of an expression, resp:

grammars

more concrete goal

Specify, in terms of the grammar, how expressions are
evaluated

= grammar: describes the “format” or “shape” of (syntax)
trees

= syntax-directedness
= value of (sub-)expressions: attribute here 515

Expression evaluation: how to do if on
one’s own?

= simple problem, easy solvable without having heard of INF5110/
Compiler
AGS Construction

= given an expression, in the form of a syntax tree
= evaluation:
= simple bottom-up calculation of values
= the value of a compound expression (parent node) R
determined by the value of its subnodes grammars
= realizable, for example by a simple recursive procedure*

Targets & Outline

Introduction

Connection to AG’s

= AGs: basically a formalism to specify things like that

= however: general AGs will allow more complex
calculations:
= not just bottom up calculations like here but also
= top-down, including both at the same time®

*Resp. a number of mutually recursive procedures, one for factors, 5-16
one for terms etc See the next slide.

Pseudo code for evaluation

eval_exp(e) =
case
e equals
return
e equals
return
end case

PLUSnode —>
eval_exp(e.left) + eval_term(e.right)
MINUSnode —>
eval_exp(e.left) — eval_term(e.right)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-17

AG for expression evaluation

N O TR W N

expy
erpy
exrp
termq
term
factor
factor

—

Ll bl

expy + term
expy — term
term

terms * factor
factor

(ezp)
number

= specific for this example

productions/grammar rules semantic rules

exp, .val = expy .val + term .val
expy .val = exp, .val — term .val
exp.val = term .val

termy .val = termsy .val * factor .val
term .val = factor .val

factor .val = exp .val

factor .val = number.val

= only one attribute (for all nodes), in general: different
ones possible

= (related to that): only one semantic rule per production

= as mentioned: rules here define values of attributes
“bottom-up” only

= note: subscripts on the symbols for disambiguation
(where needed)

Attributed parse tree

e
;trykk (val = 1302)
T — I

able //—" rern
(val = 31 #42 =1302)
| T

-__—;\"/

> rermn o factor
er (val = 31) (val = 42)
«valy T~ | |
—_ Sacior) numbezr
(val = 31) (val = 42)
(exp)

(val = 34 — 3 =31)

Pl S

exp = term
(val = 34) (val = 3)
\ \
rerm Jactor
(val = 34) (val = 3)
\ \
factor number
{val = 34) (val = 3)
|
number
{val = 34)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-19

1st observations concerning the sample AG

attributes:

defined per grammar symbol (mainly non-terminals),
but

they get their values “per node”
notation exp.val

to be precise: val is an attribute of non-terminal exp
(among others), val in an expression-node in the tree is
an instance of that attribute

instance not the same as the valuel!

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-20

Semantic rules
= aka: attribution rule

= fix for each symbol X: set of attributes®

= attribute: intended as “fields” in the nodes of syntax
trees

= notation: X.a: attribute a of symbol X

= but: attribute obtain values not per symbol, but per
node in a tree (per instance)

Semantic rule for production Xy - X;... X,

Xi.aj = fz‘j(Xo.al, cee ,Xo.akO,Xl.al, .. .Xl.akl, cen ,Xn.al, e ,Xn.akn)

(1)

= X, on the left-hand side: not necessarily head symbol
Xy of the production

= evaluation example: more restricted (to make the
example simple)

5Different symbols may share same attribute with the same name.

Subtle point: terminals

= terminals: can have attributes, yes,

= but looking carefully at the format of semantic rules:

not really specified how terminals get values to their
attribute (apart from inheriting them)
= dependencies for terminals

= attribues of terminals: get value from the token,
especially the token value

= terminal nodes: commonly not allowed to depend on

parents, siblings.

= i.e., commonly: only attributes “synthesized” from the

corresponding token allowed.

= note: without allowing “importing” values from the
number token to the number.val-attributes, the
evaluation example would not work

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-22

Attribute dependencies and graph

Xi.aj = fij(Xo.al, ce ,Xo.akO,Xl.al, RN Xl.akl, N ,Xn.al, N ,Xn.akn)
(2)
= sem. rule: expresses dependence of attribute X;.a; on
the left on all attributes Y.b on the right

= dependence of X;.a;

= in principle, X;.a;: may depend on all attributes for all
X, of the production
= but typically: dependent only on a subset

Possible dependencies

INF5110 —
Compiler
Construction

Possible dependencies (> 1 rule per production possible)

= parent attribute on childen attributes Targets & Outline

Introduction

= attribute in a node dependent on other attribute of the N
same node grammars

= child attribute on parent attribute
= sibling attribute on sibling attribute
= mixture of all of the above at the same time

= but: no immediate dependence across generations

5-24

Attribute dependence graph

= dependencies ultimately between attributes in a syntax
tree (instances) not between grammar symbols as such
= attribute dependence graph (per syntax tree)
= complex dependencies possible:
= evaluation complex

= invalid dependencies possible, if not careful (especially
cyclic)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-25

Sample dependence graph (for later

example)

base
>
-
-
rase num val
|
1
|
ase digit val

|
|
3

G
base digit val ©
1

base-num val
= iy
val basechar base
I
o 1
& |

digit val 5
1

@axe
/b

VAl

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-26

Possible evaluation order

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-27

Restricting dependencies

= general GAs allow bascially any kind of dependencies’

= complex/impossible to meaningfully evaluate (or
understand)

= typically: restrictions, disallowing “mixtures” of
dependencies
= fine-grained: per attribute
= or coarse-grained: for the whole attribute grammar

Synthesized attributes Inherited attributes
bottom-up dependencies only top-down dependencies only
(same-node dependency (same-node and sibling
allowed). dependencies allowed)

" Apart from immediate cross-generation dependencies.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-28

Synthesized attributes (simple)
Synthesized attribute

A synthesized attribute is define wholly in terms of the
node's own attributes, and those of its children (or
constants).

Rule format for synth. attributes

For a synthesized attribute s of non-terminal A, all semantic

rules with A.s on the left-hand side must be of the form
A.SIf(Xl.bl,...Xn.bk) (3)

and where the semantic rule belongs to production
A - X1 coo Xn

= Slight simplification in the formula.

S-attributed grammar:

all attributes are synthesized

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-29

Remarks on the definition of synthesized
attributes

= Note the following aspects

1. a synthesized attribute in a symbol: cannot at the same
time also be “inherited”.
2. a synthesized attribute:
= depends on attributes of children (and other attributes
of the same node) only. However:
= those attributes need not themselves be synthesized
(see also next slide)

= in Louden:

= he does not allow “intra-node” dependencies

= he assumes (in his wordings): attributes are “globally
unique”

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-30

Don’t forget the purpose of the restriction

= ultimately: calculate values of the attributes
= thus: avoid cyclic dependencies

= one single synthesized attribute alone does not help
much

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-31

S-attributed grammar

= restriction on the grammar, not just 1 attribute of one
non-terminal

= simple form of grammar
p g

= remember the expression evaluation example

S-attributed grammar:

all attributes are synthetic

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

Alternative, more complex variant

“Transitive” definition

INF5110 —
Compiler
Construction

As = f(A.il, ooy Ay, X181, ... Xpsk)
Targets & Outline

Introduction

= in the rule: the Xj.s;'s synthesized, the A;.i;'s Attribute
inherited s
= interpret the rule carefully: it says:

= it's allowed to have synthesized & inherited attributes
for A

= it does not say: attributes in A have to be inherited

= it says: in an A-node in the tree: a synthesized
attribute

= can depend on inherited att's in the same node and
= on synthesized attributes of A-children-nodes

5-33

Pictorial representation

General synthesized attributes

Conventional
depiction
f""_‘“‘\\

/ ~ O\,

«d /;)y

arvede tre-node) 7
A ,——ﬁ!

se (X e - /N

.~—-'—’-r.'.\ T - / i
syntetiserte . (\3(T e (\ X2,> ¢ (XS_) *

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

Inherited attributes

INF5110 —
Compiler
Construction

= in Louden’s simpler setting: inherited = non-synthesized = Targets & Outline

Introduction

Inherited attribute Attribute

grammars

An inherited attribute is defined wholly in terms of the
node's own attributes, and those of its siblings or its parent
node (or constants).

5-35

Rule format

INF5110 -

Compiler

Rule format for inh. attributes Construction

For an inherited attribute of a symbol X of X, all semantic
rules mentioning X.i on the left-hand side must be of the
form

Targets & Outline
Introduction

Attribute
grammars

X.i=f(AaX1.by,...,X,...X,,.bg)

and where the semantic rule belongs to production
A->X1...X,... X,

= note: mentioning of “all rules”, avoid conflicts.

5-36

Alternative definition (“transitive”)

Rule format

For an inherited attribute i of a symbol X, all semantic rules
mentioning X.i on the left-hand side must be of the form

X.i=f(Ai, X1b1,...,Xb,... X,,.b;)

and where the semantic rule belongs to production
A->Xp...X... X,

= additional requirement: A.i" inherited
= rest of the attributes: inherited or synthesized

er. b

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-37

Simplistic example (normally done by the
scanner)

INF5110 -

CFG Compiler

Construction

Targets & Outline
number — numberdigit | digit NP

ngZt_>0|1|2|3|4|5|6|7|8|9| Attribute

grammars

Attributes (just synthesized)

number | val
digit val
terminals | [none]

5-38

Numbers: Attribute grammar and
attributed tree

INF5110 —
Compiler
- Construction
attributed tree
A-grammar number Targets & Outline
(val =34 %10 + 5 = 345)
Introduction
Grammar Rule Semantic Rules number digit Attribute
numbery — number, val = (val =3 %10 + 4 = 34) (val = 5) CLCIUTUETE)
member, digit umber; val * 10 + digit.val
number — digit number.val = digit.val |
digit— 0 digitval = 0 . -
digit— 1 digitval = 1 riamtber digir 5
digit— 2 digitval =2 (val = 3) (val = 4)
digit— 3 digitval = 3
digit— 4 digitval = 4 ‘
digit = 5 digitval = 5 4
digit— 6 digit.val = 6 livi
digit— 7 digitval = 7 daigit
digit— 8 digit.val = 8 (val = 3)
digit— 9 digitval =9 [
3

5-39

Attribute evaluation: works on trees

i.e.: works equally well for
= abstract syntax trees

= ambiguous grammars

Seriously ambiguous expression grammar®

extp — exp+exp | exp-exp | exp*exp | (exp) | number

8 Alternatively: It's meant as grammar describing nice and clean
ASTs for an underlying, potentially less nice grammar used for parsing.

Evaluation: Attribute grammar and

attributed tree

A-grammar

Grammar Rule

Semantic Rules

expy — expy + exp
expy — exps = exps
expy — exps * expy
expy— (expy)
exp — number

expy val = exps
expy val = exps
expy val = exps
expy val = exps

val + exps .val
wval = exps .val
wval * exps val
val

exp.val = number .val

INF5110 —
Compiler
Construction

Attributed tree Targets & Outline

Introduction

Attribute
grammars

*

(val =31 *42 = 1302)

- 42
(val = 34 =3 =31) (val = 42)

34 3
(val = 34) (val = 3)

541

Expressions: generating ASTs

Expression grammar with precedences & assoc.

exp — exp+term | exp-term | term
term — term* factor | factor
factor - (exp) | number

Attributes (just synthesized)

exp, term, factor | tree
number lexval

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-42

Expressions: Attribute grammar and
attributed tree

A-grammar

Grammar Rule

Semantic Rules

expy — expy + term

exp .free =
mkOpNode (+, exp, .tree, term.tree)

expy — expy - term

exp Jtree =
mkOpNode(-, exp, .tree, term.tree)

exp — term

exp.tree = term.iree

termy — term, * factor

term, .tree =
mkOpNode(*, term, .tree, factor.tree)

term — factor

term.tree = factor.tree

Jactor — (exp)

factor.tree = exp.tree

factor — number

factor.iree =

mkNumNode(number.lexval)

A-tree

1 1ayc.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-43

Example: type declarations for variable lists

CFG
INF5110 —
Compiler
. Construction
decl — typewvar-list
type — int
typ ﬂ t Targets & Outline
N
ype . 2= . Introduction
var-list; — id, var-lists R
var-list — id grammars

= Goal: attribute type information to the syntax tree
= attribute: dtype (with values integer and real)®

= complication: “top-down" information flow: type
declared for a list of vars = inherited to the elements of
the list

There are thus 2 different attribute values. We don’t mean “the 5.44
attribute dtype has integer values”, like 0,1,2,...

Types and variable lists: inherited attributes

grammar productions

semantic rules

decl
type
type
var-listy

var-list

—

"

—

type var-list var-list .dtype
int type .dtype
float type .dtype
id, var-listy id.dtype

var-listy .dtype
id id.dtype

= inherited: attribute for id and var-list

= but also synthesized use of attribute dtype: for

type .dtype10

type .dtype
integer

real

var-list; .dtype
var-list; .dtype
var-list .dtype

O Actually, it's conceptually better not to think of it as “the attribute
dtype”, it's better as “the attribute dtype of non-terminal type”
(written type.dtype) etc. Note further: type.dtype is not yet what we
called instance of an attribute.

Types & var lists: after evaluating the

semantic rules

floatid(x),id(y)

Attributed parse tree

decl
type var-list
(dtype = real) (drype = real)
float id ! var-list
(%) (dtype = real)

(dtype = real) [
id

¥)
(drype = real)

Dependence graph

decl
i) | T

pe 17/)'112 — diype ~ var-list
\ S el

| - ~o
h ~

float dnpe id
(x)

Avhengighets-graf

r o diype var-list
)
I
|
I

dtype id
)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-46

Example: Based numbers (octal & decimal)

= remember: grammar for numbers (in decimal notation)
= evaluation: synthesized attributes

INF5110 -

= now: generalization to numbers with decimal and octal Compiler
notation Construction
CFG Targets & Outline
Introduction
based-num — num base-char —
base-char - o
base-char — d
num — num digit
num — digit
digit — O
digit — 1
digit — 7T
digit — 8

digit — 9 el

Based numbers: attributes

INF5110 -

Attl’ibutes Compiler

Construction

= based-num .val: synthesized
Targets & Outline
= base-char .base: synthesized

Introduction

= for num: Attribute
grammars

= num.val: synthesized
= num .base: inherited

= digit .val: synthesized

= 9 is not an octal character

= attribute val may get value “error"!

5-48

Based numbers:

a-grammar

Grammar Rule

Semantic Rules

based-num —
num basechar

based-num.val = num.val
num.base = basechar.base

bhasechar — o

basechar.base = 8

basechar — a

basechar.base = 10

num, — num; digit

num, .val =
if digit.val = error ox num, .val = error
then error
else numy, val * num, base + digit.val
num, .base = num, .base
digit.base = num, .base

num —» digir

num.val = digit.val
digit.base = num.base

digit — 0 digirval = 0
digit — 1 digitval = 1
digit — 7 digitval =7
digit — 8 digit.val =
if digit.base = 8 then error else 8
digit — 9 digit.val =
if digit.hase = 8 then error else 9
31212015

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-49

Based numbers: after eval of the semantic
rules
Attributed syntax tree

based-num

(val = 229)
// .—_‘_‘—___
num basechar
(val =28 * 8 + 5 = 229) (base = 8)
(base = 8) |
/ ‘—‘___\‘- o
num digit
(val =3 %8 + 4 = 28) (val = 5)
(base = 8) (hase = 8)
num digit 5
(val = 3) (val = 4)
(base = 8) (base = 8)
digir 4
(val = 3)
(base = 8)
3

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-50

Based nums: Dependence graph & possible

evaluation order

INF5110 —
base-num vl Compiler
e mpi
basé mumval basechar base Construction
S !
P Rl ™ !
base aum _val base digic val ©
ol <% .
- = | Targets & Outline
i - = 1
sase mum val bast digit val 5 ;
3 ase ; Introduction
1 1
' ! Attribute
ase digit val 4
I grammars
! @t
3 XX

5-51

Dependence graph & evaluation

= evaluation order must respect the edges in the
dependence graph INF5110 -

Compiler
Construction

= cycles must be avoided!
= directed acyclic graph (DAG)

Targets & Outline
= dependence graph ~ partial order Introduction

Attribute
grammars

= topological sorting: turning a partial order to a
total/linear order (which is consistent with the PO)

= roots in the dependence graph (not the root of the
syntax tree): their values must come "from outside” (or
constant)

= often (and sometimes required): terminals in the syntax
tree:

= terminals synthesized / not inherited
= terminals: roots of dependence graph

= get their value from the parser (token value)
5-52

Evaluation: parse tree method

For acyclic dependence graphs: possible “naive” approach

Parse tree method

Linearize the given partial order into a total order
(topological sorting), and then simply evaluate the equations
following that.

= works only if all dependence graphs of the AG are
acyclic
= acyclicity of the dependence graphs?

= decidable for given AG, but computationally expensive
= don't use general AGs but: restrict yourself to subclasses

11

= disadvantage of parse tree method: also not very
efficient check per parse tree

10On the other hand: the check needs to be done only once.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-53

Observation on the example: Is evalution
(uniquely) possible?

= all attributes: either inherited or synthesized'?

= all attributes: must actually be defined (by some rule)
= guaranteed in that for every production:
= all synthesized attributes (on the left) are defined
= all inherited attributes (on the right) are defined
= local loops forbidden
= since all attributes are either inherited or synthesized:
each attribute in any parse tree: defined, and defined
only one time (i.e., uniquely defined)

2 pase-char base (synthesized) considered different from num .base
(inherited)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-54

Loops

INF5110 —
Compiler
Construction

= AGs: allow to specify grammars where (some) Targets & Outline
Introduction
parse-trees have cycles.
X . Attribute
= however: loops intolerable for evaluation grammars

= difficult to check (exponential complexity).!®

135cyclicity checking for a given dependence graph: not so hard (e.g.,
using topological sorting). Here: for all syntax trees.

Variable lists (repeated)

INF5110 —
Compiler
Construction

Attributed parse tree Dependence graph

Targets & Outline

decl decl Introduction
— T~ M o RS Attribute

(Jnv,,;lw: real) (rlry‘/;(: -=h-‘rfml) type diype ———— diype ™ var-list grammars
I e l / - >\"\\ S
£float id 2 var-list 1 - i S~
(x) (deype = real) float dnype id 1 diype var-list
(diype = real) | (x) l 1
I
id Avhengighets-graf '
(v) dtype id
(dtype = real) ()

5-56

Typing for variable lists

= code assume: tree given INF5110 —
Compiler
Construction

procedure EvalType (T: treenode); ~ var-list— id

begin
case nodekind of T of Targets & Outline
decl: Introduction

EvalType (type child of T');
Assign divpe of type child of T to var-lisi child of T;
EvalType (var-list child of T)3
npe:
if child of T = int then T.dtype := integer
else T.dtvpe 1= real;
var-list: Dette er
assign T.dtype io first child of T} 0gsa
if third child of T is not nil then skrevet ut
assign T.dtype to third child; som et
EvalType (third child of T); program i
end case; boka!
end EvaiType;

Attribute
grammars

5-57

L-attributed grammars
= goal: AG suitable for “on-the-fly” attribution
= all parsing works left-to-right.
Definition (L-attributed grammar)

An attribute grammar for attributes aj,...,ay is
L-attributed, if for each inherited attribute a; and each

grammar rule
Xo—->X1X5... X, ,

the associated equations for a; are all of the form

Xi.aj = fij(X().a, Xl‘é.. oo Xi,l.é) o

where additionally for X¢.&, only inherited attributes are
allowed.

= X.3: short-hand for X.a; ... X.a
= Note S-attributed grammar = L-attributed grammar

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-58

“Attribution” and LR-parsing

INF5110 —
Compiler
Construction

= easy (and typical) case: synthesized attributes T B @
. for inherited attributes Introduction
= not quite so easy Attribute
= perhaps better: not “on-the-fly"”, i.e., srammer
= better postponed for later phase, when AST available.
= implementation: additional value stack for synthesized
attributes, maintained “besides” the parse stack

5-59

Example: value stack for synth. attributes

Parsing Parsing Value Semantic
Stack Input. Action Stack Action
1 § 3%4+5 % shift 3
21 $a #4458 reduce E— an $n E val = n.val
3 $E *4+5% shift $3
4 SE- 4+5% shift $3-
5| $SE*n +58 reduceE—»a $3*an E .val =g .val
6| SE*E +55 reduce $3%4 E, val =
E—EvE E;.val * Ey val
7 $E +5% shift §12
8 $E+ 5% shift $12+
9 $E+n $ teduce E—n $12+n E val = n.val
10 | SE+E $ reduce $124+5 E\.val =
E->E+E E; val + Ey .val
11} $E $. $17

Sample action

E: E+ E
{ $$ = $1 + $3; }

Value stack manipulation:
that’s what’s going on
behind the scene

in (classic) yacc notation

pop 13 { get E;.val from the value stack }
pop { discard the + token }
pop 12 { get E; .val from the value stack }

=12+ {add }

push ¢l { push the result back onto the value stack }

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Attribute
grammars

5-60

References |

INF5110 —
Compiler
Construction

6-0

References |1

INF5110 —
Compiler
Construction

Chapter 6

*

Ul)lain,t]

Course “Compiler Construction” 6-1
o Martin S+affan

	Semantic analysis
	Targets & Outline
	Introduction
	Attribute grammars

	*

