
Course Script
INF 5110: Compiler con-
struction
INF5110, spring 2018

Martin Steffen

http://www.ifi.uio.no/~msteffen

ii Contents

Contents

6 Symbol tables 1
6.1 Introduction : . 1
6.2 Symbol table design and interface . 2
6.3 Implementing symbol tables . 3
6.4 Block-structure, scoping, binding, name-space organization 9
6.5 Symbol tables as attributes in an AG . 14

6 Symbol tables 1

6
Symbol tables
Chapter

What
is it

about?
Learning Targets of this Chapter
1. symbol table data structure
2. design and implementation choices
3. how to deal with scopes
4. connection to attribute grammars

Contents

6.1 Introduction : 1
6.2 Symbol table design and in-

terface 2
6.3 Implementing symbol tables 3
6.4 Block-structure, scoping,

binding, name-space organi-
zation 9

6.5 Symbol tables as attributes
in an AG 14

6.1 Introduction :

Symbol tables, in general

• central data structure
• “data base” or repository associating properties with “names” (identifiers, symbols)1

• declarations
– constants
– type declarationss
– variable declarations
– procedure declarations
– class declarations
– . . .

• declaring occurrences vs. use occurrences of names (e.g. variables)

Does my compiler need a symbol table?

• goal: associate attributes (properties) to syntactic elements (names/symbols)
• storing once calculated: (costs memory) ↔ recalculating on demand (costs time)
• most often: storing preferred
• but: can’t one store it in the nodes of the AST?

1Remember the (general) notion of “attribute”.

2 6 Symbol tables
6.2 Symbol table design and interface

– remember: attribute grammar
– however, fancy attribute grammars with many rules and complex synthesized/in-

herited attribute (whose evaluation traverses up and down and across the tree):
∗ might be intransparent
∗ storing info in the tree: might not be efficient

⇒ central repository (= symbol table) better

So: do I need a symbol table?

In theory, alternatives exists; in practice, yes, symbol tables is the way to go; most com-
pilers do use symbol tables.

Further side remarks

Often (and in our course), the symbol table is set up once, containing all the symbols that
occur in a given program, and then the semantics analyses (type checking etc) update
the table accordinging. Implicit in that is that the symbol table is static. There are also
some languages, which allow “manipulation” of symbol tables at run time (Racket is one
(formally PLT scheme)).

In the slides, a point was made that basically every compiler has a symbol table (or even
more than one). You find statements in the internet that symbol tables are not needed or
even to be avoided. For instance “no symbol tables in Go” claims that there are no symbol
tables in Go (and in functional languages). It’s not clear how reliable that information
is, because here’s a link https://golang.org/pkg/debug/gosym/ to the official go
implementation, referring to symbol tables .

6.2 Symbol table design and interface

Symbol table as abstract data type

• separate interface from implementation
• ST: “nothing else” than a lookup-table or dictionary,
• associating “keys” with “values”
• here: keys = names (id’s, symbols), values the attribute(s)

Schematic interface: two core functions (+ more)

• insert: add new binding
• lookup: retrieve

besides the core functionality:

• structure of (different?) name spaces in the implemented language, scoping rules
• typically: not one single “flat” namespace ⇒ typically not one big flat look-up table

https://racket-lang.org/
https://stackoverflow.com/questions/1725975/no-symbol-table-in-go
https://golang.org/pkg/debug/gosym/

6 Symbol tables
6.3 Implementing symbol tables 3

⇒ influence on the design/interface of the ST (and indirectly the choice of implemen-
tation)

• necessary to “delete” or “hide” information (delete)

A symbol table is, typically, not just a “flat” dictionary, and that is the case neither
conceptually nor the way it’s implemented. Scoping typically is something that often
complicates the design of the symbol table.

Two main philosophies

traditional table(s)

• central repository, separate from AST
• interface

– lookup(name),
– insert(name, decl),
– delete(name)

• last 2: update ST for declarations and when entering/exiting blocks

decls. in the AST nodes

• do look-up ⇒ tree-search
• insert/delete: implicit, depending on relative positioning in the tree
• look-up:

– efficiency?
– however: optimizations exist, e.g. “redundant” extra table (similar to the tradi-

tional ST)

Here, for concreteness, declarations are the attributes stored in the ST. In general, it is
not the only possible stored attribute. Also, there may be more than one ST.

6.3 Implementing symbol tables

Data structures to implement a symbol table

• different ways to implement dictionaries (or look-up tables etc.)
– simple (association) lists
– trees

∗ balanced (AVL, B, red-black, binary-search trees)
– association list
– hash tables, often method of choice
– functional vs. imperative implementation

• careful choice influences efficiency
• influenced also by the language being implemented,

4 6 Symbol tables
6.3 Implementing symbol tables

• in particular, by its scoping rules (or the structure of the name space in general)
etc.2

Nested block / lexical scope

for instance: C
{ int i ; . . . ; double d ;

void p (. . .) ;
{

int i ;
. . .

}
int j ;
. . .

more later

Blocks in other languages

TEX

\def\x{a}
{

\def\x{b}
\x

}
\x
\bye

LATEX

\ documentclass { a r t i c l e }
\newcommand{\x}{a}
\begin{document}
\x
{\renewcommand{\x}{b}

\x
}
\x
\end{document}

But: static vs. dynamic binding (see later)

LATEX and TEX are chosen for easy trying out the result oneself (assuming that most
people have access to LATEX and by implication, TEX). TEX is the underlying “core” on
which LATEX is put on top. There are other formats in top of TEX (texi is another
one; texi is involved, for instance, type setting the pdf version of the Compila language
specification)

2Also the language used for implementation (and the availability of libraries therein) may play a role (but
remember “bootstrapping”)

6 Symbol tables
6.3 Implementing symbol tables 5

Hash tables

• classical and common implementation for STs
• “hash table”:

– generic term itself, different general forms of HTs exists
– e.g. separate chaining vs. open addressing

There exists alternative terminology (cf. INF2220), under which separate chaining is also
known as open hashing. The open addressing methods are also called closed hashing. It’s
confusing, but that’s how it is, and it’s just words.

Separate chaining

Code snippet

{
int temp ;
int j ;
real i ;
void s i z e (. . . .) {

{
. . . .

}
}

}

Block structures in programming languages

• almost no language has one global namespace (at least not for variables)
• pretty old concept, seriously started with ALGOL60

Block

• “region” in the program code
• delimited often by { and } or BEGIN and END or similar
• organizes the scope of declarations (i.e., the name space)
• can be nested

6 6 Symbol tables
6.3 Implementing symbol tables

Block-structured scopes (in C)

int i , j ;

int f (int s i z e)
{ char i , temp ;

. . .
{ double j ;

. .
}
. . .
{ char ∗ j ;

. . .
}

}

Nested procedures in Pascal

program Ex ;
var i , j : integer

function f (s i z e : integer) : integer ;
var i , temp : char ;

procedure g ;
var j : real ;
begin

. . .
end ;
procedure h ;
var j : ^char ;
begin

. . .
end ;

begin (∗ f ' s body ∗)
. . .

end ;
begin (∗ main program ∗)

. . .
end .

Block-strucured via stack-organized separate chaining

C code snippet

int i , j ;

int f (int s i z e)
{ char i , temp ;

. . .
{ double j ;

. .

6 Symbol tables
6.3 Implementing symbol tables 7

}
. . .
{ char ∗ j ;

. . .
}

}

“Evolution” of the hash table

Using the syntax tree for lookup following (static links)

lookup (string n) {
k = current , surrounding block
do // search for n in dec l for block k ;

k = k . s l // one ne s t i ng l e v e l up
until found or k == none

}

8 6 Symbol tables
6.3 Implementing symbol tables

The notion of static link will be discussed later, there in connection with the so-called
run-time system and the run-time stack. There we go into more details, but the idea is
the same as here: find a way to “locate” the relevant scope. If they are nested, connect
them via come “parent pointer”, and that pointer is known as static links (again, different
names exists for that, unfortunately).

Alternative representation:

• arrangement different from 1 table with stack-organized external chaining
• each block with its own hash table.3
• standard hashing within each block
• static links to link the block levels
⇒ “tree-of-hashtables”
• AKA: sheaf-of-tables or chained symbol tables representation

3One may say: one symbol table per block, as this form of organization can generally be done for symbol
tables data structures (where hash tables is just one of many possible implementing data structures).

6 Symbol tables
6.4 Block-structure, scoping, binding, name-space organization 9

6.4 Block-structure, scoping, binding, name-space organization

Block-structured scoping with chained symbol tables

• remember the interface
• look-up: following the static link (as seen)4

• Enter a block
– create new (empty) symbol table
– set static link from there to the “old” (= previously current) one
– set the current block to the newly created one

• at exit
– move the current block one level up
– note: no deletion of bindings, just made inaccessible

Lexical scoping & beyond

• block-structured lexical scoping: central in programming languages (ever since AL-
GOL60 . . .)

• but: other scoping mechanism exists (and exist side-by-side)
• example: C++

– member functions declared inside a class
– defined outside

• still: method supposed to be able to access names defined in the scope of the class
definition (i.e., other members, e.g. using this)

C++class and member function

class A {
. . . int f () ; . . . // member func t i on

}

A : : f () {} // de f . o f f `` in ' ' A

Java analogon

class A {
int f () { . . . } ;
boolean b ;
void h () { . . . } ;

}

4The notion of static links will be encountered later again when dealing with run-time environments (and
for analogous purposes: identfying scopes in “block-stuctured” languages).

10 6 Symbol tables
6.4 Block-structure, scoping, binding, name-space organization

Scope resolution in C++

• class name introduces a name for the scope5 (not only in C++)
• scope resolution operator ::
• allows to explicitly refer to a “scope”’

• to implement
– such flexibility,
– also for remote access like a.f()

• declarations must be kept separately for each block (e.g. one hash table per class,
record, etc., appropriately chained up)

Same-level declarations

Same level

typedef int i
int i ;

• often forbidden (e.g. in C)
• insert: requires check (= lookup) first

Sequential vs. “collateral” declarations

1. Sequential in C
int i = 1 ;
void f (void)

{ int i = 2 , j = i +1,
. . .

}

2. Collateral in ocaml/ML/Lisp
let i = 1 ; ;
let i = 2 and y = i +1; ;

pr int_int (y) ; ;

I think the name “collateral” infortunate. A better word would be simultaneous.
5Besides that, class names themselves are subject to scoping themselves, of course . . .

6 Symbol tables
6.4 Block-structure, scoping, binding, name-space organization 11

Recursive declarations/definitions

• for instance for functions/procedures
• also classes and their members

Direct recursion

int gcd (int n , int m) {
i f (m == 0) return n ;
else return gcd (m, n % m) ;

}

Indirect recursion/mutual recursive def’s

void f (void) {
. . . g () . . . }

void g (void) {
. . . f () . . . }

Before treating the body, parser must add gcd into the symbol table (similar for the other
example).

Mutual recursive defintions

void g (void) ; /∗ func t ion pro to type d e c l . ∗/

void f (void) {
. . . g () . . . }

void g (void) {
. . . f () . . . }

• different solutions possible
• Pascal: forward declarations
• or: treat all function definitions (within a block or similar) as mutually recursive
• or: special grouping syntax

Example syntax-es for mutual recursion

ocaml

let rec f (x : i n t) : i n t =
g (x+1)

and g (x : i n t) : i n t =
f (x +1) ; ;

12 6 Symbol tables
6.4 Block-structure, scoping, binding, name-space organization

Go

func f (x int) (int) {
return g (x) +1

}

func g (x int) (int) {
return f (x) −1

}

Static vs dynamic scope

• concentration so far on:
– lexical scoping/block structure, static binding
– some minor complications/adaptations (recursion, duplicate declarations, . . .)

• big variation: dynamic binding / dynamic scope
• for variables: static binding/ lexical scoping the norm
• however: cf. late-bound methods in OO

Static scoping in C

Code snippet

#include <s t d i o . h>

int i = 1 ;
void f (void) {

p r i n t f ("%d\n " , i) ;
}

void main (void) {
int i = 2 ;
f () ;
return 0 ;

}

• which value of i is printed then?

Dynamic binding example

1 void Y () {
2 int i ;
3 void P() {
4 int i ;
5 . . . ;
6 Q() ;
7 }
8 void Q(){
9 . . . ;

10 i = 5 ; // which i i s meant?
11 }
12 . . . ;
13

6 Symbol tables
6.4 Block-structure, scoping, binding, name-space organization 13

14 P() ;
15 . . . ;
16 }

for dynamic binding: the one from line 4

Static or dynamic?

TEX

\def\ a s t r i n g {a1}
\def\x{\ a s t r i n g }
\x
{

\def\ a s t r i n g {a2}
\x

}
\x
\bye

LATEX

\ documentclass { a r t i c l e }
\newcommand{\ a s t r i n g }{ a1}
\newcommand{\x}{\ a s t r i n g }
\begin{document}
\x
{

\renewcommand{\ a s t r i n g }{ a2}
\x

}
\x
\end{document}

emacs lisp (not Scheme)

(s e tq a s t r i n g " a1 ") ; ; ``assignment ' '
(defun x () a s t r i n g) ; ; d e f i n e `` v a r i a b l e x ' '
(x) ; ; read va lue
(let ((a s t r i n g " a2 "))

(x))

Again, it’s very easy to check by invoking TEX or LATEX, or firing off emacs and evaluate
the lisp snippet in a buffer, for instance.

Static binding is not about “value”

• the “static” in static binding is about
– binding to the declaration / memory location,
– not about the value

14 6 Symbol tables
6.5 Symbol tables as attributes in an AG

• nested functions used in the example (Go)
• g declared inside f

package main
import (" fmt ")

var f = func () {
var x = 0
var g = func () { fmt . P r i n t f (" x = %v " , x)}
x = x + 1

{
var x = 40 // l o c a l v a r i a b l e
g ()
fmt . P r i n t f (" x = %v " , x)}

}
func main () {

f ()
}

Static binding can be come tricky

package main
import (" fmt ")

var f = func () (func (int) int) {
var x = 40 // l o c a l v a r i a b l e
var g = func (y int) int { // nes ted func t i on

return x + 1
}
x = x+1 // update x
return g // func t ion as re turn va lue

}

func main () {
var x = 0
var h = f ()
fmt . P r i n t l n (x)
var r = h (1)
fmt . P r i n t f (" r = %v " , r)

}

• example uses higher-order functions

6.5 Symbol tables as attributes in an AG

Nested lets in ocaml

let x = 2 and y = 3 in
(let x = x+2 and y =

(let z = 4 in x+y+z)
in pr int_int (x+y))

• simple grammar (using , for “collateral” = simultaneous declarations)

6 Symbol tables
6.5 Symbol tables as attributes in an AG 15

S → exp
exp → (exp) ∣ exp + exp ∣ id ∣ num ∣ let dec - list in exp

dec - list → dec - list , decl ∣ decl
decl → id= exp

1. no identical names in the same let-block
2. used names must be declared
3. most-closely nested binding counts
4. sequential (non-simultaneous) declaration (/= ocaml/ML/Haskell . . .)

let x = 2 , x = 3 in x + 1 (∗ no , d u p l i c a t e ∗)

let x = 2 in x+y (∗ no , y unbound ∗)

let x = 2 in (let x = 3 in x) (∗ d e c l . wi th 3 counts ∗)

let x = 2 , y = x+1 (∗ one a f t e r the o ther ∗)
in (let x = x+y ,

y = x+y
in y)

Goal

Design an attribute grammar (using a symbol table) specifying those rules. Focus on: error
attribute.

Attributes and ST interface

symbol attributes kind
exp symtab inherited

nestlevel inherited
err synthesis

dec - list, decl intab inherited
outtab synthesized
nestlevel inherited

id name injected by scanner

Symbol table functions

• insert(tab,name,lev): returns a new table
• isin(tab,name): boolean check
• lookup(tab,name): gives back level
• emptytable: you have to start somewhere
• errtab: error from declaration (but not stored as attribute)

As for the information stored and especially for the look-up function: Realistically, more
info would be stored, as well, for instance types etc.

16 6 Symbol tables
6.5 Symbol tables as attributes in an AG

Attribute grammar (1): expressions

• note: expression in let’s can introduce scope themselves!
• interpretation of nesting level: expressions vs. declarations6

Attribute grammar (2): declarations

6I would not have recommended doing it like that (though it works)

6 Symbol tables
6.5 Symbol tables as attributes in an AG 17

Final remarks concerning symbol tables

• strings as symbols i.e., as keys in the ST: might be improved
• name spaces can get complex in modern languages,
• more than one “hierarchy”

– lexical blocks
– inheritance or similar
– (nested) modules

• not all bindings (of course) can be solved at compile time: dynamic binding
• can e.g. variables and types have same name (and still be distinguished)
• overloading (see next slide)

Final remarks: name resolution via overloading

• corresponds to “in abuse of notation” in textbooks
• disambiguation not by name, but differently especially by “argument types” etc.
• variants :

– method or function overloading
– operator overloading
– user defined?

i + j // i n t e g e r a d d i t i o n
r + s // rea l −a d d i t i o n

void f (int i)
void f (int i , int j)
void f (double r)

18 Bibliography
Bibliography

Bibliography

[1] Cooper, K. D. and Torczon, L. (2004). Engineering a Compiler. Elsevier.

[2] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

	Contents
	Symbol tables
	Introduction :
	Symbol table design and interface
	Implementing symbol tables
	Block-structure, scoping, binding, name-space organization
	Symbol tables as attributes in an AG

