
Course Script
INF 5110: Compiler con-
struction
INF5110, spring 2018

Martin Steffen

http://www.ifi.uio.no/~msteffen

ii Contents

Contents

7 Types and type checking 1
7.1 Introduction . 1
7.2 Various types and their representation . 4
7.3 Equality of types . 14
7.4 Type checking . 20

7 Types and type checking 1

7
Types and type checking
Chapter

What
is it

about?
Learning Targets of this Chapter
1. the concept of types
2. specific common types
3. type safety
4. type checking
5. polymorphism, subtyping and other

complications

Contents

7.1 Introduction 1
7.2 Various types and their rep-

resentation 4
7.3 Equality of types 14
7.4 Type checking 20

7.1 Introduction

This chapter deals with “types”. Since the material is presented as part of the static
analysis (or semantic analysis) phase of the compiler, we are dealing mostly with static
aspects of types (i.e., static typing etc).

The notion of “type” is very broad and has many different aspects. The study of “types”
is a research field in itself (“type theory”). In some way, types and type checking is the
very essence of semantic analysis, insofar that types can be very “expressive” and can be
used to represent vastly many different aspects of the behavior of a program. By “more
expressive” I mean types that express much more complex one than the ones standard
programmers are familiar with: booleans, integers, structured types, etc. When increasing
the “expressivity”, types might not only capture more complex situations (like types for
higher-order functions), but also unusual aspects, not normally connected with types, like
for instance: bound on memory usage, guarantees of termination, assertions about secure
information flow (like no information leakage), and many more.

As a final random example: a language like Rust is known for its non-standard form of
memory management based on the notion of ownership to a piece of data. Ownership
tells who has the right to access the data when and how, and that’s important to know
as as simultaneous write access leads to trouble. Regulating ownership can and has been
formulated by corresponding “ownership type systems” where the type expresses properties
concerning ownership.

That should give a feeling that, with the notion of types such general, the situation is a
bit as with “attributes” and attribute grammars: “everything” may be an attribute since
an attribute is nothing else than a “property”. The same holds for types. With a loose
interpretation like that, types may represent basically all kinds of concepts: like, when

https://en.wikipedia.org/wiki/Type_theory

2 7 Types and type checking
7.1 Introduction

interested in property “A”, let’s intoduce the notion of “A”-types (with “A” standing
for memory consumption, ownership, and what not). But still: studying type systems
and their expressivity and application to programming languages seems a much broader
and deeper (and more practical) field than the study of attribute grammars. By more
practical, I mean: while attribute grammars certainly have useful applications, stretching
them to new “non-standard” applications may be possible, but it’s, well, stretching it.1
Type systems, on the other hand, span more easily form very simple and practical usages
to very expressive and foundational logical system.

In this lecture, we keep it more grounded and mostly deal with concrete, standard (i.e.,
not very esoteric) types. Simple or “complicated” types, there are at least two aspects of a
type. One is, what a user or programmer sees or is exposed to. The second one is the inside
view of the compiler writer. The user may be informed that it’s allowed to write x + y
where x and y are both integers (carrying the type int), or both strings, in which case +
represents string addition. Or perhaps the language even allows that one variable contains
a string and the other an integer, in which case the + is still string concatenation, where
the integer valued operand has to be converted to its string representation. The compiler
writer needs then to find representations in memory for those data types (ultimately in
binary form) that actually realize the operations described above on an abstract level.
That means choosing an appropriate encoding, choosing the right amount of memory
(long ints need more space than short ints, etc, perhaps even depending on the platform),
and making sure that needed conversions (like from integers to string) actually are done
in the compiled code (most likely arranged statically). Of course, the programmer does
not want to know those details, he typically could not care less, for instance, whether the
machine architecture is “little-endian” or “big-endian” (see https://en.wikipedia.
org/wiki/Endianness). But the compiler writer will have to care when writing the
compiler itself to represent or encode what the programmer calls “an integer” or “a string”.
So, apart from the more esoteric and advanced roles types play in programming languages,
perhaps the most fundamental role is that of abstraction: to shield the programmer from
the dirty details of the actual representation.

Types are a central abstraction for programmers.

Abstraction in the sense of hiding underlying representional details.2

The lecture will have some look at both aspects of type systems. One is the representa-
tional aspect. That one is more felt in languages like C, which is closer to the operating
system and to memory in hardware than languages that came later. Besides that, we will
also more look at type system as specification of what is allowed at the programmer’s level
(“is it allowed to do a + on an a value of integer type and of string type?”), i.e., how
to specify a type system in a programming language independent from the question how
to choose proper lower-level encodings that the abstraction specified in the type system.

1That’s at least my slightly biased opinion.
2Beside that practical representational aspect, types are also an abstraction in the sense that they can
be viewed as the “set” of all the values of that given type. Like int represents the set of all integers.
Both views are consistent as all members of the “set” int are consistently represented in memory and
consistently treated by functions operating on them. That “consistency” allows us as programmers
to think of them as integers, and forget about details of their representation, and it’s the task of
the compiler writer, to reconcile those two views: the low-level encoding must maintain the high-level
abstraction.

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness

7 Types and type checking
7.1 Introduction 3

General remarks and overview

• Goal here:
– what are types?
– static vs. dynamic typing
– how to describe types syntactically
– how to represent and use types in a compiler

• coverage of various types
– basic types (often predefined/built-in)
– type constructors
– values of a type and operators
– representation at run-time
– run-time tests and special problems (array, union, record, pointers)

• specification and implementation of type systems/type checkers
• advanced concepts

Why types?

• crucial, user-visible abstraction describing program behavior.
• one view: type describes a set of (mostly related) values
• static typing: checking/enforcing a type discipline at compile time
• dynamic typing: same at run-time, mixtures possible
• completely untyped languages: very rare, types were part of PLs from the start.

Milner’s dictum (“type safety”)

Well-typed programs cannot go wrong!

• strong typing:3 rigourously prevent “misuse” of data
• types useful for later phases and optimizations
• documentation and partial specification

In contrast to (standard) types: many other abstractions in SA (like the control-flow graph
or data flow analysis and others) are not directly visible in the source code. However, in
the light of the introductory remarks that “types” can capture a very broad spektrum
of semantic properties of a language if one just makes the notion of type general enough
(“ownership”, “memory consumption”), it should come as no surprise that one can capture
data flow in appropriately complex type systems, as well. . .

Besides that: there are not really any truly untyped languages around, there is always
some discipline (beyond syntax) on what a programmer is allowed to do and what not.
Probably the anarchistic recipe of “anything (syntactically correct) goes” tends to lead to
desaster or is too complex to implement in a rational and understandable manner. Note
that “dynamically typed” or “weakly typed” is not the same as “untyped”.

3Terminology rather fuzzy, and perhaps changed a bit over time. Also what “rigorous” means.

4 7 Types and type checking
7.2 Various types and their representation

Types: in first approximation

Conceptually

• semantic view: A set of values plus a set of corresponding operations
• syntactic view: notation to construct basic elements of the type (its values) plus

“procedures” operating on them
• compiler implementor’s view: data of the same type have same underlying memory

representation

further classification:

• built-in/predefined vs. user-defined types
• basic/base/elementary/primitive types vs. compound types
• type constructors: building more compex types from simpler ones
• reference vs. value types

7.2 Various types and their representation

Some typical base types

base types
int 0, 1, . . . +,−,∗, / integers
real 5.05E4 . . . +,-,* real numbers
bool true, false and or (|) . . . booleans
char ’a’ characters
⋮

• often HW support for some of those (including some of the op’s)
• mostly: elements of int are not exactly mathematical integers, same for real
• often variations offered: int32, int64
• often implicit conversions and relations between basic types

– which the type system has to specify/check for legality
– which the compiler has to implement

Some compound types

compound types
array[0..9] of real a[i+1]
list [], [1;2;3] concat
string "text" concat . . .
struct / record r.x
. . .

• mostly reference types

7 Types and type checking
7.2 Various types and their representation 5

• when built in, special “easy syntax” (same for basic built-in types)
– 4 + 5 as opposed to plus(4,5)
– a[6] as opposed to array_access(a, 6) . . .

• parser/lexer aware of built-in types/operators (special precedences, associativity,
etc.)

• cf. functionality “built-in/predefined” via libraries

Being a “conceptual” view means, it’s about the “interface”, it’s an abstract view of how
one can make use of members of a type. It not about implementation details, like “integers
are 2 bit-bit-words in such-and-such representation”. See also the notion of abstract data
type on the next slide.

Abstract data types

• unit of data together with functions/procedures/operations . . . operating on them
• encapsulation + interface
• often: separation between exported and internal operations

– for instance public, private . . .
– or via separate interfaces

• (static) classes in Java: may be used/seen as ADTs, methods are then the “opera-
tions”

ADT begin
integer i ;
real x ;
int proc t o t a l (int a) {

return i ∗ x + a // or : `` t o t a l = i ∗ x + a ' '
}

end

Type constructors: building new types

• array type
• record type (also known as struct-types)
• union type
• pair/tuple type
• pointer type

– explict as in C
– implict distinction between reference and value types, hidden from programmers

(e.g. Java)
• signatures (specifying methods / procedures / subroutines / functions) as type
• function type constructor, incl. higher-order types (in functional languages)
• (names of) classes and subclasses
• . . .

Basically all languages support to build more complex types from the basic one and ways
to use and check them. Sometimes it’s not even very visible, for instance, one may already
see strings as compound. For instance in C, which takes a very implementation-centric
view on types, explains strings as

6 7 Types and type checking
7.2 Various types and their representation

one-dimensional array of characters terminated by a null character ’/0’

Of course, there is special syntax to build values of type string, writing "abc" as opposed
to string-cons(’a, string_cons(’b, ...)) or similar. . . This smooth support
of working with strings may make them feel as if being primitive.

In the following we will have a look at a few of composed types in programming languages.
The compila language of the oblig this year supports records but also “names” of records.
We will also discuss the issue of “types as such” vs. “names of types” later (for instance in
connection with the question how to “compare types: when are they equal or compatible,
what about subtping? etc.).

Arrays

Array type

array [< indextype >] of <component type>

• elements (arrays) = (finite) functions from index-type to component type
• allowed index-types:

– non-negative (unsigned) integers?, from ... to ...?
– other types?: enumerated types, characters

• things to keep in mind:
– indexing outside the array bounds?
– are the array bounds (statically) known to the compiler?
– dynamic arrays (extensible at run-time)?

Integer-indexed arrays are typically a very efficent data structure, as they mirror the
layout of standard random access memory and customary hardware.4 Indeed, contiguous
random-access memory can be seen as one big array of “cells” or “words” and standard
hardward supports fast access to to those cells by indirect addressing modes (like making
use of an off-set from a base address, even multiplied by a factor).

One and more-dimensional arrays

• one-dimensional: effienctly implementable in standard hardware (relative memory
addressing, known offset)

• two or more dimensions
array [1 . . 4] of array [1 . . 3] of real
array [1 . . 4 , 1 . . 3] of real

• one can see it as “array of arrays” (Java), an array is typically a reference type
• conceptually “two-dimensional”- linear layout in memory (language dependent)

4There exist unconventional hardware memory architectures which are not accessed via addresses, like
content-addressable memory. Those don’t resemble “arrays”. They are a specialist niche, but have
applications.

https://www.pagiamtzis.com/cam/camintro/

7 Types and type checking
7.2 Various types and their representation 7

Records (“structs”)

struct {
r e a l r ;
int i ;

}

• values: “labelled tuples” (real× int)
• constructing elements, e.g.

struct point { int x ; int y ; } ;
struct point pt = { 300 , 42 } ;

struct point

• access (read or update): dot-notation x.i
• implemenation: linear memory layout given by the (types of the) attributes
• attributes accessible by statically fixed offsets
• fast access
• cf. objects as in Java

Structs in C

The definition, declaration etc. of struct types and structs in C is slightly confusing. For
one thing, in

struct Foo { // Foo i s c a l l e d a `` tag ' '
r e a l r ;
int i

The foo is a tag, which is almost like a type, but not quite, at least as C concerned (i.e.
the definition of C distinguishes even it is not so clear why). Technically, for instance, the
name space for tags is different from that for types. Ignoring details, one can make use of
the tag almost as if it were a type, for instance,

struct f oo b

declares the structure b to adhere to the struct type tagged by foo. Since foo is not
a proper type, what is illegal is a declaration such as foo b. In general the question
whether one should use typedef in commbination with struct tags (or only typedef,
leaving out the tag), seems a matter of debate. In general, the separation between tags
and types (resp. type names) is a messy, ill-considered design.

8 7 Types and type checking
7.2 Various types and their representation

Tuple/product types

• T1 × T2 (or in ascii T_1 * T_2)
• elements are tuples: for instance: (1, "text") is element of int * string
• generalization to n-tuples:

value type
(1, "text", true) int * string * bool
(1, ("text", true)) int * (string * bool)

• structs can be seen as “labeled tuples”, resp. tuples as “anonymous structs”
• tuple types: common in functional languages,
• in C/Java-like languages: n-ary tuple types often only implicit as input types for

procedures/methods (part of the “signature”)

The two “triples” and their types touches upon an issue discussed later, namely when are
two types equal (and related to that, whether or not the corresponding values (here the
“triples”) are equal.

Union types (C-style again)

union {
r e a l r ;
int i

}

• related to sum types (outside C)
• (more or less) represents disjoint union of values of “participating” types
• access in C (confusingly enough): dot-notation u.i

Union types in C and type safety

• union types is C: bad example for (safe) type disciplines, as it’s simply type-unsafe,
basically an unsafe hack . . .

Union type (in C):

• nothing much more than a directive to allocate enough memory to hold largest mem-
ber of the union.

• in the above example: real takes more space than int

• role of type here is more: implementor’s (= low level) focus and memory allocation
need, not “proper usage focus” or assuring strong typing

⇒ bad example of modern use of types
• better (type-safe) implementations known since

7 Types and type checking
7.2 Various types and their representation 9

⇒ variant record (“tagged”/“discriminated” union) or even inductive data types5

Variant records from Pascal

record case i s R e a l : boolean of
true : (r : real) ;
fa l se : (i : integer) ;

• “variant record”
• non-overlapping memory layout6

• programmer responsible to set and check the “discriminator” self
• enforcing type-safety-wise: not really an improvement :-(

record case boolean of
true : (r : real) ;
fa l se : (i : integer) ;

Pointer types

• pointer type: notation in C: int*
• “ * ”: can be seen as type constructor

int ∗ p ;

• random other languages: ^integer in Pascal, int ref in ML
• value: address of (or reference/pointer to) values of the underlying type
• operations: dereferencing and determining the address of an data item (and C allows

“ pointer arithmetic ”)
var a : ^ integer (∗ p o i n t e r to an i n t e g e r ∗)
var b : integer
. . .
a := &i (∗ i an i n t var ∗)

(∗ a := new i n t e g e r ok too ∗)
b:= ^a + b

Implicit dereferencing

• many languages: more or less hide existence of pointers
• cf. reference vs. value types often: automatic/implicit dereferencing

C r ; //
C r = new C() ;

5Basically: it’s union types done right plus possibility of “recursion”.
6Again, it’s a implementor-centric, not user-centric view

10 7 Types and type checking
7.2 Various types and their representation

• “sloppy” speaking: “ r is an object (which is an instance of class C /which is of type
C)”,

• slightly more precise: variable “ r contains an object. . . ”
• precise: variable “ r will contain a reference to an object”
• r.field corresponds to something like “ (*r).field, similar in Simula

• programming with pointers:
– “popular” source of errors
– test for non-null-ness often required
– explicit pointers: can lead to problems in block-structured language (when han-

dled non-expertly)
– watch out for parameter passing
– aliasing

Function variables

program Funcvar ;
var pv : Procedure (x : integer) ; (∗ procedur var ∗)

Procedure Q() ;
var

a : integer ;
Procedure P(i : integer) ;
begin

a:= a+i ; (∗ a def ' ed o u t s i d e ∗)
end ;

begin
pv := @P; (∗ `` return ' ' P (as s i d e e f f e c t) ∗)

end ; (∗ "@" dependent on d i a l e c t ∗)
begin (∗ here : f r e e Pascal ∗)

Q() ;
pv (1) ;

end .

Function variables and nested scopes

• tricky part here: nested scope + function definition escaping surrounding function/s-
cope.

• here: inner procedure “returned” via assignment to function variable7

• think about stack discipline of dynamic memory management?
• related also: functions allowed as return value?

– Pascal: not directly possible (unless one “returns” them via function-typed ref-
erence variables like here)

– C: possible, but nested function definitions not allowed
• combination of nested function definitions and functions as official return values (and

arguments): higher-order functions
• Note: functions as arguments less problematic than as return values.

7For the sake of the lecture: Let’s not distinguish conceptually between functions and procedures. But
in Pascal, a procedure does not return a value, functions do.

7 Types and type checking
7.2 Various types and their representation 11

Function signatures

• define the “header” (also “signature”) of a function8

• in the discussion: we don’t distinguish mostly: functions, procedures, methods, sub-
routines.

• functional type (independent of the name f): int→int

Modula-2

var f : procedure (integer) : integer ;

C

int (∗ f) (int)

• values: all functions . . . with the given signature
• problems with block structure and free use of procedure variables.

Escaping: function var’s outside the block structure

1 program Funcvar ;
2 var pv : Procedure (x : integer) ; (∗ procedur var ∗)
3
4 Procedure Q() ;
5 var
6 a : integer ;
7 Procedure P(i : integer) ;
8 begin
9 a:= a+i ; (∗ a def ' ed o u t s i d e ∗)

10 end ;
11 begin
12 pv := @P; (∗ `` return ' ' P (as s i d e e f f e c t) ∗)
13 end ; (∗ "@" dependent on d i a l e c t ∗)
14 begin (∗ here : f r e e Pascal ∗)
15 Q() ;
16 pv (1) ;
17 end .

• at line 15: variable a no longer exists
• possible safe usage: only assign to such variables (here pv) a new value (= function)

at the same blocklevel the variable is declared
• note: function parameters less problematic (stack-discipline still doable)

8Actually, an identfier of the function is mentioned as well.

12 7 Types and type checking
7.2 Various types and their representation

Classes and subclasses

Parent class

class A {
int i ;
void f () { . . . }

}

Subclass B

class B extends A {
int i
void f () { . . . }

}

Subclass C

class C extends A {
int i
void f () { . . . }

}

• classes resemble records, and subclasses variant types, but additionally
– visibility: local methods possible (besides fields)
– subclasses
– objects mostly created dynamically, no references into the stack
– subtyping and polymorphism (subtype polymorphism): a reference typed by A

can also point to B or C objects

• special problems: not really many, nil-pointer still possible

Access to object members: late binding

• notation rA.i or rA.f()
• dynamic binding, late-binding, virtual access, dynamic dispatch . . . : all mean roughly

the same
• central mechanism in many OO language, in connection with inheritance

Virtual access rA.f() (methods)

“deepest” f in the run-time class of the object, rA points to (independent from the static
class type of rA.

• remember: “most-closely nested” access of variables in nested lexical block
• Java:

7 Types and type checking
7.2 Various types and their representation 13

– methods “in” objects are only dynamically bound (but there are class methods
too)

– instance variables not, neither static methods “in” classes.

Example: fields and methods

public class Shadow {
public stat ic void main (S t r i n g [] a rgs){

C2 c2 = new C2 () ;
c2 . n () ;

}
}

class C1 {
S t r i n g s = "C1" ;
void m () {System . out . p r i n t (this . s) ; }

}

class C2 extends C1 {
S t r i n g s = "C2" ;
void n () { this .m() ; }

}

Inductive types in ML and similar

• type-safe and powerful
• allows pattern matching

I sRea l of r e a l | I s I n t e g e r of i n t

• allows recursive definitions ⇒ inductive data types:

type i n t_b int r ee =
Node of i n t ∗ in t_b int r ee ∗ b i n t r e e

| Ni l

• Node, Leaf, IsReal: constructors (cf. languages like Java)
• constructors used as discriminators in “union” types

type exp =
Plus of exp ∗ exp

| Minus of exp ∗ exp
| Number of i n t
| Var of s t r i n g

14 7 Types and type checking
7.3 Equality of types

Recursive data types in C

does not work

struct intBST {
int va l ;
int i s N u l l ;
struct intBST l e f t , r i g h t ;

}

“indirect” recursion

struct intBST {
int va l ;
struct intBST ∗ l e f t , ∗ r i g h t ;

} ;
typedef struct intBST ∗ intBST ;

In Java: references implicit

class BSTnode {
int va l ;
BSTnode l e f t , r i g h t ;

• note: implementation in ML: also uses “pointers” (but hidden from the user)
• no nil-pointers in ML (and NIL is not a nil-point, it’s a constructor)

7.3 Equality of types

Classes as types

• classes = types? Not so fast
• more precise view:

– design decision in Java and similar languages (but not all/even not all class-based
OOLs): that class names are used in the role of (names of) types.

• other roles of classes (in class-based OOLs)
– generator of objects (via constructor, again with the same name)9

– containing code that implements the instances

C x = new C()

9Not for Java’s static classes etc, obviously.

7 Types and type checking
7.3 Equality of types 15

Example with interfaces

interface I1 { int m (int x) ; }
interface I2 { int m (int x) ; }
class C1 implements I1 {

public int m(int y) {return y++; }
}
class C2 implements I2 {

public int m(int y) {return y++; }
}

public class Noduck1 {
public stat ic void main (S t r i n g [] arg) {

I1 x1 = new C1 () ; // I2 not p o s s i b l e
I2 x2 = new C2 () ;
x1 = x2 ;

}
}

analogous effects when using classes in their roles as types

When are 2 types “equal”?

• type equivalence
• surprisingly many different answers possible
• implementor’s focus (deprecated): type int and short are equal, because they are

both 2 byte
• type checker must often decide such “equivalence”
• related to a more fundamental question: what’s a type?

Example: pairs of integers

type pai r_of_ints = i n t ∗ i n t ; ;
let x : pa i r_of_ints = (1 , 4) ; ;

Questions

• Is “the” type of (values of) x pair_of_ints, or
• is “the” type of (values of) x the product type int * int ,
• or both, because they are equal, i.e., pair_of_int simply an abbreviation of the

product type (type synonym)?

16 7 Types and type checking
7.3 Equality of types

Structural vs. nominal equality

a, b

var a , b : r ecord
int i ;
double d

end

c

var c : r ecord
int i ;
double d

end

typedef

typedef idRecord : r ecord
int i ;
double d

end

var d : idRecord ;
var e : idRecord ; ;

what’s possible?

a := c ;
a := d ;

a := b ;
d := e ;

Types in the AST

• types are part of the syntax, as well
• represent: either in a separate symbol table, or part of the AST

7 Types and type checking
7.3 Equality of types 17

Record type

r ecord
x : p o i n t e r to real ;
y : array [1 0] of int

end

Procedure header

proc (bool ,
union a : real ; b : char end ,
int) : void

end

Structured types without names

var-decls → var-decls ; var-decl ∣ var-decl
var-decl → id ∶ type-exp
type-exp → simple-type ∣ structured-type

simple-type → int ∣ bool ∣ real ∣ char ∣ void
structured-type → array [num] ∶ type-exp

∣ record var-decls end
∣ union var-decls end
∣ pointerto type-exp
∣ proc (type-exps) type-exp

type-exps → type-exps , type-exp ∣ type-exp

18 7 Types and type checking
7.3 Equality of types

Structural equality

Types with names

var-decls → var-decls ; var-decl ∣ var-decl
var-decl → id ∶ simple-type-exp

type-decls → type-decls ; type-decl ∣ type-decl
type-decl → id= type-exp
type-exp → simple-type-exp ∣ structured-type

simple-type-exp → simple-type ∣ id identifiers
simple-type → int ∣ bool ∣ real ∣ char ∣ void

structured-type → array [num] ∶ simple-type-exp
∣ record var-decls end
∣ union var-decls end
∣ pointerto simple-type-exp
∣ proc (type-exps) simple-type-exp

type-exps → type-exps , simple-type-exp
∣ simple-type-exp

7 Types and type checking
7.3 Equality of types 19

Name equality

• all types have “names”, and two types are equal iff their names are equal
• type equality checking: obviously simpler
• of course: type names may have scopes. . . .

Type aliases

• languages with type aliases (type synonyms): C, Pascal, ML
• often very convenient (type Coordinate = float * float)
• light-weight mechanism

type alias; make t1 known also under name t2

t2 = t1 // t2 i s the ``same type ' ' .

• also here: different choices wrt. type equality

Alias, for simple types

t1 = int ;
t2 = int ;

• often: t1 and t2 are the “same” type

Alias of structured types

t1 = array [1 0] of int ;
t2 = array [1 0] of int ;
t3 = t2

• mostly t3 /= t1 /= t2

20 7 Types and type checking
7.4 Type checking

7.4 Type checking

Type checking of expressions (and statements)

• types of subexpressions must “fit” to the expected types the contructs can operate
on10

• type checking: a bottom-up task
⇒ synthesized attributes, when using AGs
• Here: using an attribute grammar specification of the type checker

– type checking conceptually done while parsing (as actions of the parser)
– also common: type checker operates on the AST after the parser has done its

job11

• type system vs. type checker
– type system: specification of the rules governing the use of types in a language,

type discipline
– type checker: algorithmic formulation of the type system (resp. implementation

thereof)

Grammar for statements and expressions

program → var-decls ; stmts
var-decls → var-decls ; var-decl ∣ var-decl
var-decl → id ∶ type-exp
type-exp → int ∣ bool ∣ array [num] ∶ type-exp

stmts → stmts ; stmt ∣ stmt
stmt → if exp then stmt ∣ id ∶= exp
exp → exp + exp ∣ exp or exp ∣ exp [exp]

10In case (operator) overloading: that may complicate the picture slightly. Operators are selected depend-
ing on the type of the subexpressions.

11one can, however, use grammars as specification of that abstract syntax tree as well, i.e., as a “second”
grammar besides the grammar for concrete parsing.

7 Types and type checking
7.4 Type checking 21

Type checking as semantic rules

Type checking (expressions)

Γ(x) = T
TE-Id

Γ ⊢ x ∶ T

TE-True
Γ ⊢ true ∶ bool

T-False
Γ ⊢ false ∶ bool

TE-Num
Γ ⊢ n ∶int

Γ ⊢ exp2 ∶ array_ofT Γ ⊢ exp3 ∶int
TE-Array

Γ ⊢ exp2 [exp3] ∶ T

Γ ⊢ exp1 ∶ bool Γ ⊢ exp3 ∶ bool
Te-Or

Γ ⊢ exp2 or exp3 ∶ bool

Γ ⊢ exp1 ∶ int Γ ⊢ exp3 ∶ int
TE-Plus

Γ ⊢ exp3 + exp3 ∶ int

22 7 Types and type checking
7.4 Type checking

Diverse notions

• Overloading
– common for (at least) standard, built-in operations
– also possible for user defined functions/methods . . .
– disambiguation via (static) types of arguments
– “ad-hoc” polymorphism
– implementation:

∗ put types of parameters as “part” of the name
∗ look-up gives back a set of alternatives

• type-conversions: can be problematic in connection with overloading
• (generic) polymporphism

swap(var x,y: anytype)

Index
Index 23

Index

array type, 5, 6

base type, 4
basic type, 3

compound type, 4
constructor, 13

dereference, 9
dynamic typing, 3

function
higher-order, 10

function type, 5

higher-order function, 10

inductive data type, 13

Milner’s dictum, 3
ML, 13

Pascal, 9
pattern matching, 13
pointer

dereference, 9
pointer arithmetic, 9
pointer type, 5, 9
product type, 8

record type, 5, 7
reference type, 4
run-time type, 3

signature, 5
static typing, 3
struct

tag, 7
sum type, 8

tuple type, 5, 8
type, 1, 3

array, 5
basic, 3

type checking, 1
type constructor, 3
type cosntructor, 5
type safety, 3

union type, 5, 8

value type, 4
variant record, 9

	Contents
	Types and type checking
	Introduction
	Various types and their representation
	Equality of types
	Type checking

