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Run-time environments
Chapter

What
is it

about?
Learning Targets of this Chapter
1. memory management
2. run-time environment
3. run-time stack
4. stack frames and their layout
5. heap
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8.1 Intro

Static & dynamic memory layout at runtime

code area

global/static area

stack

free space

heap

Memory

typical memory layout: for languages (as nowadays basically all) with

• static memory
• dynamic memory:

– stack
– heap
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Translated program code

code for procedure 1 proc. 1

code for procedure 2 proc. 2

⋮
code for procedure n proc. n

Code memory

• code segment: almost always considered as statically allocated⇒ neither moved nor changed at runtime
• compiler aware of all addresses of “chunks” of code: entry points of the procedures
• but:

– generated code often relocatable
– final, absolute adresses given by linker / loader

Activation record

space for arg’s (parameters)

space for bookkeeping
info, including return
address

space for local data

space for local temporaries

Schematic activation record

• schematic organization of activation records/activation block/stack frame . . .
• goal: realize

– parameter passing
– scoping rules /local variables treatment
– prepare for call/return behavior

• calling conventions on a platform
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8.2 Static layout

Full static layout

code for main proc.

code for proc. 1

⋮
code for proc. n

global data area

act. record of main proc.

activation record of proc. 1

⋮
activation record of proc. n

• static addresses of all of memory known to the compiler
– executable code
– variables
– all forms of auxiliary data (for instance big constants in the program, e.g., string

literals)
• for instance: (old) Fortran
• nowadays rather seldom (or special applications like safety critical embedded sys-

tems)

Fortran example

PROGRAM TEST
COMMON MAXSIZE
INTEGER MAXSIZE
REAL TABLE( 1 0 ) ,TEMP
MAXSIZE = 10
READ ∗ , TABLE( 1 ) ,TABLE( 2 ) ,TABLE(3)
CALL QUADMEAN(TABLE, 3 ,TEMP)
PRINT ∗ ,TEMP
END

SUBROUTINE QUADMEAN(A, SIZE ,QMEAN)
COMMON MAXSIZE
INTEGERMAXSIZE, SIZE
REAL A(SIZE) ,QMEAN, TEMP
INTEGER K
TEMP = 0.0
IF ( (SIZE .GT.MAXSIZE) .OR. ( SIZE .LT. 1 ) ) GOTO 99
DO 10 K = 1 , SIZE

TEMP = TEMP + A(K)∗A(K)
10 CONTINUE
99 QMEAN = SQRT(TEMP/SIZE)
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RETURN
END

Static memory layout example/runtime environment

MAXSIZEglobal area

TABLE (1)
(2)
. . .
(10)

TEMP

3

main’s act.
record

A

SIZE

QMEAN

return address

TEMP

K

“scratch area”

Act. record of
QUADMEAN

Static memory layout example/runtime environment

in Fortan (here Fortran77)

• parameter passing as pointers to the actual parameters
• activation record for QUADMEAN contains place for intermediate results, compiler

calculates, how much is needed.
• note: one possible memory layout for FORTRAN 77, details vary, other implemen-

tations exists as do more modern versions of Fortran

8.3 Stack-based runtime environments

Stack-based runtime environments

• so far: no(!) recursion
• everything static, incl. placement of activation records⇒ also return addresses statically known
• ancient and restrictive arrangement of the run-time envs
• calls and returns (also without recursion) follow at runtime a LIFO (= stack-like)

discipline
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Stack of activation records

• procedures as abstractions with own local data⇒ run-time memory arrangement where procedure-local data together with other info
(arrange proper returns, parameter passing) is organized as stack.

• AKA: call stack, runtime stack
• AR: exact format depends on language and platform

Situation in languages without local procedures

• recursion, but all procedures are global
• C-like languages

Activation record info (besides local data, see later)

• frame pointer
• control link (or dynamic link)1

• (optional): stack pointer
• return address

Euclid’s recursive gcd algo

#include <s t d i o . h>

int x , y ;

int gcd ( int u , int v )
{ i f ( v==0) return u ;

else return gcd (v , u % v ) ;
}

int main ( )
{ s c a n f ( "%d%d " ,&x,&y ) ;

p r i n t f ( "%d\n " , gcd (x , y ) ) ;
return 0 ;

}

1Later, we’ll encounter also static links (aka access links).
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Stack gcd

x:15
y:10global/static area

“AR of main”

x:15
y:10

control link

return address

a-record (1st. call)

x:10
y:5

control link

return address

a-record (2nd.
call)

x:5
y:0

control link
fp

return address
sp

a-record (3rd. call)

↓
• control link

– aka: dynamic link
– refers to caller’s FP

• frame pointer FP
– points to a fixed location in the current a-record

• stack pointer (SP)
– border of current stack and unused memory

• return address: program-address of call-site

Local and global variables and scoping

Code

int x = 2 ; /∗ g l o b a l var ∗/
void g ( int ) ; /∗ pro to type ∗/

void f ( int n)
{ stat ic int x = 1 ;

g (n ) ;
x−−;

}

void g ( int m)
{ int y = m−1;

i f ( y > 0)
{ f ( y ) ;

x−−;
g ( y ) ;

}
}

int main ( )
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{ g ( x ) ;
return 0 ;

}

• global variable x
• but: (different) x local to f
• remember C:

– call by value
– static lexical scoping

Activation records and activation trees

• activation of a function: corresponds to: call of a function
• activation record

– data structure for run-time system
– holds all relevant data for a function call and control-info in “standardized” form
– control-behavior of functions: LIFO
– if data cannot outlive activation of a function⇒ activation records can be arranged in as stack (like here)
– in this case: activation record AKA stack frame

GCD

main()

gcd(15,10)

gcd(10,5)

gcd(5,0)

f and g example

main

g(2)

f(1)

g(1)

g(1)
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Variable access and design of ARs

Layout g

• fp: frame pointer
• m (in this example): parameter of g

Possible arrangement of g’s AR

• AR’s: structurally uniform per language (or at least compiler) / platform
• different function defs, different size of AR⇒ frames on the stack differently sized
• note: FP points

– not to the “top” of the frame/stack, but
– to a well-chosen, well-defined position in the frame
– other local data (local vars) accessible relative to that

• conventions
– higher addresses “higher up”
– stack “grows” towards lower addresses
– in the picture: “pointers” to the “bottom” of the meant slot (e.g.: fp points to

the control link: offset 0)

Layout for arrays of statically known size

Code

void f ( int x , char c )
{ int a [ 1 0 ] ;

double y ;
. .

}

name offset
x +5
c +4
a -24
y -32
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1. access of c and y

c : 4( fp )
y : −32( fp )

2. access for A[i]

(−24+2∗ i ) ( fp )

Layout

Back to the C code again (global and local variables)

int x = 2 ; /∗ g l o b a l var ∗/
void g ( int ) ; /∗ pro to type ∗/

void f ( int n)
{ stat ic int x = 1 ;

g (n ) ;
x−−;

}

void g ( int m)
{ int y = m−1;

i f ( y > 0)
{ f ( y ) ;

x−−;
g ( y ) ;

}
}

int main ( )
{ g ( x ) ;

return 0 ;
}
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2 snapshots of the call stack

x:2
x:1 (@f)static

main

m:2

control link

return address

y:1

g

n:1

control link

return address

f

m:1

control link
fp

return address

y:0
sp

g

...

x:1
x:0 (@f)static

main

m:2

control link

return address

y:1

g

m:1

control link
fp

return address

y:0
sp

g

...

• note: call by value, x in f static

How to do the “push and pop”

• calling sequences: AKA as linking conventions or calling conventions
• for RT environments: uniform design not just of

– data structures (=ARs), but also of
– uniform actions being taken when calling/returning from a procedure

• how to do details of “push and pop” on the call-stack
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E.g: Parameter passing

• not just where (in the ARs) to find value for the actual parameter needs to be defined,
but well-defined steps (ultimately code) that copies it there (and potentially reads
it from there)

• “jointly” done by compiler + OS + HW
• distribution of responsibilities between caller and callee:

– who copies the parameter to the right place
– who saves registers and restores them
– . . .

Steps when calling

• For procedure call (entry)
1. compute arguments, store them in the correct positions in the new activation

record of the procedure (pushing them in order onto the runtime stack will
achieve this)

2. store (push) the fp as the control link in the new activation record
3. change the fp, so that it points to the beginning of the new activation record.

If there is an sp, copying the sp into the fp at this point will achieve this.
4. store the return address in the new activation record, if necessary
5. perform a jump to the code of the called procedure.
6. Allocate space on the stack for local var’s by appropriate adjustement of the sp

• procedure exit
1. copy the fp to the sp (inverting 3. of the entry)
2. load the control link to the fp
3. perform a jump to the return address
4. change the sp to pop the arg’s

Steps when calling g

Before call

rest of stack

m:2

control link

return addr.
fp

y:1

...
sp

before call to g
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Pushed m

rest of stack

m:2

control link

return addr.
fp

y:1

m:1

...
sp

pushed param.

Pushed fp

rest of stack

m:2

control link

return addr.
fp

y:1

m:1

control link

...
sp

pushed fp
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Steps when calling g (cont’d)

Return pushed

rest of stack

m:2

control link

return addr.

y:1

m:1

control link

return address
fp

. . .
sp

fp := sp,push return addr.

local var’s pushed

rest of stack

m:2

control link

return addr.

y:1

m:1

control link

return address
fp

y:0

...
sp

alloc. local var y
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Treatment of auxiliary results: “temporaries”

Layout picture

rest of stack

. . .

control link

return addr.
fp

. . .

address of x[i]

result of i+j

result of i/k
sp

new AR for f
(about to be cre-
ated)

...

• calculations need memory for intermediate results.
• called temporaries in ARs.

x [ i ] = ( i + j ) ∗ ( i /k + f ( j ) ) ;

• note: x[i] represents an address or reference, i, j, k represent values2

• assume a strict left-to-right evaluation (call f(j) may change values.)
• stack of temporaries.
• [NB: compilers typically use registers as much as possible, what does not fit there

goes into the AR.]

Variable-length data

Ada code

type Int_Vector i s
array (INTEGER range <>) of INTEGER;

procedure Sum( low , high : INTEGER;
A: Int_Vector ) return INTEGER

i s
i : i n t e g e r

begin
. . .

end Sum ;

• Ada example
• assume: array passed by value (“copying”)
• A[i]: calculated as @6(fp) + 2*i
• in Java and other languages: arrays passed by reference
• note: space for A (as ref) and size of A is fixed-size (as well as low and high)

2integers are good for array-offsets, so they act as “references” as well.
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Layout picture

rest of stack

low:. . .

high:. . .

A:

size of A: 10

control link

return addr.
fp

i:...

A[9]

. . .

A[0]

...
sp

AR of call to SUM

Nested declarations (“compound statements”)

C Code

void p ( int x , double y )
{ char a ;

int i ;
. . . ;

A: { double x ;
int j ;
. . . ;

}
. . . ;

B: { char ∗ a ;
int k ;
. . . ;

} ;
. . . ;

}
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Nested blocks layout (1)

rest of stack

x:

y:

control link

return addr.
fp

a:

i:

x:

j:

...
sp

area for block A allocated

Nested blocks layout (2)

rest of stack

x:

y:

control link

return addr.
fp

a:

i:

a:

k:

...
sp

area for block B allocated
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8.4 Stack-based RTE with nested procedures

Nested procedures in Pascal

program nonLocalRef ;
procedure p ;
var n : integer ;

procedure q ;
begin

(∗ a r e f t o n i s now
non− l o c a l , non− g l o b a l ∗)

end ; (∗ q ∗)

procedure r ( n : integer ) ;
begin

q ;
end ; (∗ r ∗)

begin (∗ p ∗)
n := 1 ;
r ( 2 ) ;

end ; (∗ p ∗)

begin (∗ main ∗)
p ;

end .

• proc. p contains q and r nested
• also “nested” (i.e., local) in p: integer n

– in scope for q and r but
– neither global nor local to q and r

Accessing non-local var’s

Stack layout

vars of main

control link
return addr.

n:1

p

n:2
control link
return addr.

r

control link
fp

return addr.
sp

q

...

calls m → p → r → q

• n in q: under lexical scoping: n declared in procedure p is meant
• this is not reflected in the stack (of course) as this stack represents the run-time call

stack.
• remember: static links (or access links) in connection with symbol tables

Symbol tables

• “name-addressable” mapping
• access at compile time



18 8 Run-time environments
8.4 Stack-based RTE with nested procedures

• cf. scope tree

Dynamic memory

• “adresss-adressable” mapping
• access at run time
• stack-organized, reflecting paths in call graph
• cf. activation tree

Access link as part of the AR

Stack layout

vars of main

(no access link)

control link

return addr.

n:1

n:2

access link

control link

return addr.

access link

control link
fp

return addr.
sp

...

calls m → p → r → q

• access link (or static link): part of AR (at fixed position)
• points to stack-frame representing the current AR of the statically enclosed “proce-

dural” scope

Example with multiple levels

program chain ;

procedure p ;
var x : integer ;

procedure q ;
procedure r ;
begin

x :=2;
. . . ;
i f . . . then p ;

end ; (∗ r ∗)
begin

r ;
end ; (∗ q ∗)

begin
q ;
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end ; (∗ p ∗)

begin (∗ main ∗)
p ;

end .

Access chaining

Layout

AR of main

(no access link)

control link

return addr.

x:1

access link

control link

return addr.

access link

control link
fp

return addr.
sp

...

calls m → p → q → r

• program chain
• access (conceptual): fp.al.al.x
• access link slot: fixed “offset” inside AR (but: AR’s differently sized)
• “distance” from current AR to place of x

– not fixed, i.e.
– statically unknown!

• However: number of access link dereferences statically known
• lexical nesting level

Implementing access chaining

As example:

fp.al.al.al. ... al.x

• access need to be fast => use registers
• assume, at fp in dedicated register

4( fp ) −> reg // 1
4( fp ) −> reg // 2
. . .
4( fp ) −> reg // n = d i f f e r e n c e i n n e s t i n g l e v e l s
6( reg ) // a c c e s s content o f x

• often: not so many block-levels/access chains nessessary
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Calling sequence

• For procedure call (entry)
1. compute arguments, store them in the correct positions in the new activation record of the

procedure (pushing them in order onto the runtume stack will achieve this)
2. – push access link, value calculated via link chaining (“ fp.al.al.... ”)

– store (push) the fp as the control link in the new AR
3. change fp, to point to the “beginning”

of the new AR. If there is an sp, copying sp into fp at this point will achieve this.
1. store the return address in the new AR, if necessary
2. perform a jump to the code of the called procedure.
3. Allocate space on the stack for local var’s by appropriate adjustement of the sp

• procedure exit
1. copy the fp to the sp
2. load the control link to the fp
3. perform a jump to the return address
4. change the sp to pop the arg’s and the access link

Calling sequence: with access links

Layout

AR of main
(no access link)

control link
return addr.

x:...

access link
control link
return addr.
access link
control link
return addr.

no access link
control link
return addr.

x:...

access link
control link
return addr.
access link
control link

fp
return addr.

sp
...

after 2nd call to r

• main → p → q → r → p → q → r
• calling sequence: actions to do the “push & pop”
• distribution of responsibilities between caller and callee
• generate an appropriate access chain, chain-length statically determined
• actual computation (of course) done at run-time
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8.5 Functions as parameters

Nested procedures in Pascal

Access link (again)

Procedures as parameter

program c l o s u r e e x ( output ) ;

procedure p ( procedure a ) ;
begin

a ;
end ;

procedure q ;
var x : integer ;

procedure r ;
begin

writeln ( x ) ; // ``non− l o c a l ' '
end ;

begin
x := 2 ;
p ( r ) ;

end ; (∗ q ∗)

begin (∗ main ∗)
q ;

end .

Procedures as parameters, same example in Go

package main
import ( " fmt " )

var p = func ( a ( func ( ) ( ) ) ) { // ( u n i t −> u n i t ) −> u n i t
a ( )

}

var q = func ( ) {
var x = 0
var r = func ( ) {
fmt . P r i n t f ( " x = %v " , x )
}
x = 2
p ( r ) // r as argument

}

func main ( ) {
q ( ) ;

}

Procedures as parameters, same example in ocaml

l e t p ( a : u n i t −> u n i t ) : u n i t = a ( ) ; ;

l e t q ( ) =
l e t x : i n t r e f = r e f 1
in l e t r = function ( ) −> ( p r i n t _ i n t ! x ) (∗ d e r e f ∗)
in
x := 2 ; (∗ a s s i g n m e n t t o r e f − t y p e d var ∗)
p ( r ) ; ;

q ( ) ; ; (∗ `` body o f main ' ' ∗)
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Closures in [2]

• [2] rather “implementation centric”
• closure there:

– restricted setting
– specific way to achieve closures
– specific semantics of non-local vars (“by reference”)

• higher-order functions:
– functions as arguments and return values
– nested function declaration

• similar problems with: “function variables”
• Example shown: only procedures as parameters, not returned

Closures, schematically

• independent from concrete design of the RTE/ARs:
• what do we need to execute the body of a procedure?

Closure (abstractly)

A closure is a function body3 together with the values for all its variables, including the non-local ones.3

• individual AR not enough for all variables used (non-local vars)
• in stack-organized RTE’s:

– fortunately ARs are stack-allocated
→ with clever use of “links” (access/static links): possible to access variables that are “nested

further out”/ deeper in the stack (following links)

Organize access with procedure parameters

• when calling p: allocate a stack frame
• executing p calls a => another stack frame
• number of parameters etc: knowable from the type of a
• but 2 problems

“control-flow” problem

currently only RTE, but: how can (the compiler arrange that) p calls a (and allocate a frame for a) if a
is not know yet?

data problem

How can one statically arrange that a will be able to access non-local variables if statically it’s not known
what a will be?

• solution: for a procedure variable (like a): store in AR
– reference to the code of argument (as representation of the function body)
– reference to the frame, i.e., the relevant frame pointer (here: to the frame of q where r is

defined)
• this pair = closure!

3Resp.: at least the possibility to locate them.
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Closure for formal parameter a of the example

• stack after the call to p
• closure ⟨ip, ep⟩
• ep: refers to q’s frame pointer
• note: distinction in calling sequence for

– calling “ordinary” proc’s and
– calling procs in proc parameters (i.e., via closures)

• that may be unified (“closures” only)

After calling a (= r)

• note: static link of the new frame: used from the closure!
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Making it uniform

• note: calling conventions differ
– calling procedures as formal parameters
– “standard” procedures (statically known)

• treatment can be made uniform

Limitations of stack-based RTEs

• procedures: central (!) control-flow abstraction in languages
• stack-based allocation: intuitive, common, and efficient (supported by HW)
• used in many languages
• procedure calls and returns: LIFO (= stack) behavior
• AR: local data for procedure body

Underlying assumption for stack-based RTEs

The data (=AR) for a procedure cannot outlive the activation where they are declared.

• assumption can break for many reasons
– returning references of local variables
– higher-order functions (or function variables)
– “undisciplined” control flow (rather deprecated, goto’s can break any scoping rules, or procedure

abstraction)
– explicit memory allocation (and deallocation), pointer arithmetic etc.

Dangling ref’s due to returning references

int ∗ dangle ( void ) {
int x ; // l o c a l var
return &x ; // a d d r e s s o f x

}

• similar: returning references to objects created via new
• variable’s lifetime may be over, but the reference lives on . . .
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Function variables
program Funcvar ;
var pv : Procedure ( x : integer ) ; (∗ p r o c e d u r var ∗)

Procedure Q( ) ;
var

a : integer ;
Procedure P( i : integer ) ;
begin

a:= a+i ; (∗ a def ' ed o u t s i d e ∗)
end ;

begin
pv := @P; (∗ `` r e t u r n ' ' P ( as s i d e e f f e c t ) ∗)

end ; (∗ "@" d e p e n d e n t on d i a l e c t ∗)
begin (∗ h e r e : f r e e P a s c a l ∗)

Q( ) ;
pv ( 1 ) ;

end .

funcvar
Runtime error 216 at $0000000000400233

$0000000000400233
$0000000000400268
$00000000004001E0

Functions as return values
package main
import ( " fmt " )

var f = func ( ) ( func ( int ) int ) { // u n i t −> ( i n t −> i n t )
var x = 40 // l o c a l v a r i a b l e
var g = func ( y int ) int { // n e s t e d f u n c t i o n

return x + 1
}
x = x+1 // u p d a t e x
return g // f u n c t i o n as r e t u r n v a l u e

}

func main ( ) {
var x = 0
var h = f ( )
fmt . P r i n t l n ( x )
var r = h ( 1 )
fmt . P r i n t f ( " r = %v " , r )

}

• function g
– defined local to f
– uses x, non-local to g, local to f
– is being returned from f

Fully-dynamic RTEs

• full higher-order functions = functions are “data” same as everything else
– function being locally defined
– function as arguments to other functions
– functions returned by functions

→ ARs cannot be stack-allocated
• closures needed, but heap-allocated (/= Louden)
• objects (and references): heap-allocated
• less “disciplined” memory handling than stack-allocation
• garbage collection
• often: stack based allocation + fully-dynamic (= heap-based) allocation

The stack discipline can be seen as a particularly simple (and efficient) form of garbage collection: returning
from a function makes it clear that the local data can be thrashed.
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8.6 Parameter passing

Communicating values between procedures

• procedure abstraction, modularity
• parameter passing = communication of values between procedures
• from caller to callee (and back)
• binding actual parameters
• with the help of the RTE
• formal parameters vs. actual parameters
• two modern versions

1. call by value
2. call by reference

CBV and CBR, roughly

Core distinction/question

on the level of caller/callee activation records (on the stack frame): how does the AR of the callee get hold
of the value the caller wants to hand over?

1. callee’s AR with a copy of the value for the formal parameter
2. the callee AR with a pointer to the memory slot of the actual parameter

• if one has to choose only one: it’s call-by-value
• remember: non-local variables (in lexical scope), nested procedures, and even closures:

– those variables are “smuggled in” by reference
– [NB: there are also by value closures]

CBV is in a way the prototypical, most dignified way of parameter passsing, supporting the procedure
abstraction. If one has references (explicit or implicit, of data on the heap, typically), then one has call-
by-value-of-references, which, in some way “feels” for the programmer as call-by-reference. Some people
even call that call-by-reference, even if it’s technically not.

Parameter passing "by-value"

• in C: CBV only parameter passing method
• in some lang’s: formal parameters “immutable”
• straightforward: copy actual parameters → formal parameters (in the ARs).

C examples

void i n c 2 ( int x )
{ ++x , ++x ; }

void i n c 2 ( int ∗ x )
{ ++(∗x ) , ++(∗x ) ; }
/∗ c a l l : i n c (&y ) ∗/

void i n i t ( int x [ ] , int s i z e ) {
int i ;
for ( i =0; i<s i z e ,++ i ) x [ i ]= 0

}
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arrays: “by-reference” data

Call-by-reference

• hand over pointer/reference/address of the actual parameter
• useful especially for large data structures
• typically (for cbr): actual parameters must be variables
• Fortran actually allows things like P(5,b) and P(a+b,c).

void i n c 2 ( int ∗ x )
{ ++(∗x ) , ++(∗x ) ; }
/∗ c a l l : i n c (&y ) ∗/

void P( p1 , p2 ) {
. .
p1 = 3

}
var a , b , c ;
P( a , c )

Call-by-value-result

• call-by-value-result can give different results from cbr
• allocated as a local variable (as cbv)
• however: copied “two-way”

– when calling: actual → formal parameters
– when returning: actual ← formal parameters

• aka: “copy-in-copy-out” (or “copy-restore”)
• Ada’s in and out paremeters
• when are the value of actual variables determined when doing “actual ← formal parameters”

– when calling
– when returning

• not the cleanest parameter passing mechanism around. . .

Call-by-value-result example

void p ( int x , int y )
{

++x ;
++y ;

}

main ( )
{ int a = 1 ;

p ( a , a ) ; // :−O
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return 0 ;
}

• C-syntax (C has cbv, not cbvr)
• note: aliasing (via the arguments, here obvious)
• cbvr: same as cbr, unless aliasing “messes it up”4

Call-by-name (C-syntax)

• most complex (or is it „,?)
• hand over: textual representation (“name”) of the argument (substitution)
• in that respect: a bit like macro expansion (but lexically scoped)
• actual paramater not calculated before actually used!
• on the other hand: if needed more than once: recalculated over and over again
• aka: delayed evaluation
• Implementation

– actual paramter: represented as a small procedure (thunk, suspension), if actual parameter =
expression

– optimization, if actually parameter = variable (works like call-by-reference then)

Call-by-name examples

• in (imperative) languages without procedure parameters:
– delayed evaluation most visible when dealing with things like a[i]
– a[i] is actually like “apply a to index i”
– combine that with side-effects (i++) ⇒ pretty confusing

Example 1

void p ( int x ) { . . . ; ++x ; }

• call as p(a[i])
• corresponds to ++(a[i])
• note:

– ++ _ has a side effect
– i may change in ...

Example 2

int i ;
int a [ 1 0 ] ;
void p ( int x ) {

++i ;
++x ;

}

main ( ) {
i = 1 ;
a [ 1 ] = 1 ;
a [ 2 ] = 2 ;
p ( a [ i ] ) ;
return 0 ;

}

4One can ask though, if not call-by-reference would be messed-up in the example already.
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Another example: “swapping”

int i ; int a [ i ] ;

swap ( int a , b ) {
int i ;
i = a ;
a = b ;
b = i ;

}

i = 3 ;
a [ 3 ] = 6 ;

swap ( i , a [ i ] ) ;

• note: local and global variable i

Call-by-name illustrations

Code

procedure P( par ) : name par , i n t par
begin

i n t x , y ;
. . .
par := x + y ; (∗ a l t e r n a t i v e : x := par + y ∗)

end ;

P( v ) ;
P( r . v ) ;
P ( 5 ) ;
P( u+v )

v r.v 5 u+v
par := x+y ok ok error error
x := par +y ok ok ok ok

Call by name (Algol)

begin comment Simple a r r a y example ;
p r o c e d u r e z e r o ( Arr , i , j , u1 , u2 ) ;
i n t e g e r Arr ;
i n t e g e r i , j , u1 , u2 ;

b e g i n
f o r i := 1 s t e p 1 u n t i l u1 do

f o r j := 1 s t e p 1 u n t i l u2 do
Arr := 0

end ;

i n t e g e r a r r a y Work [ 1 : 1 0 0 , 1 : 2 0 0 ] ;
i n t e g e r p , q , x , y , z ;
x := 1 0 0 ;
y := 200
z e r o ( Work [ p , q ] , p , q , x , y ) ;
end

Lazy evaluation

• call-by-name
– complex & potentially confusing (in the presence of side effects)
– not really used (there)

• declarative/functional languages: lazy evaluation
• optimization:
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– avoid recalculation of the argument
⇒ remember (and share) results after first calculation (“memoization”)
– works only in absence of side-effects

• most prominently: Haskell
• useful for operating on infinite data structures (for instance: streams)

Lazy evaluation / streams

magic : : Int −> Int −> [ Int ]
magic 0 _ = [ ]
magic m n = m : ( magic n (m+n ) )

g e t I t : : [ Int ] −> Int −> Int
g e t I t [ ] _ = undefined
g e t I t ( x : xs ) 1 = x
g e t I t ( x : xs ) n = g e t I t xs ( n−1)

8.7 Virtual methods in OO

Object-orientation

• class-based/inheritance-based OO
• classes and sub-classes
• typed references to objects
• virtual and non-virtual methods

Virtual and non-virtual methods + fields

c l a s s A {
int x , y

void f ( s , t ) { . . . FA . . . } ;
virtual void g ( p , q ) { . . . GA . . . } ;

} ;

c l a s s B extends A {
int z

void f ( s , t ) { . . . FB . . . } ;
r e d e f void g ( p , q ) { . . . GB . . . } ;
virtual void h ( r ) { . . . HB . . . }

} ;

c l a s s C extends B {
int u ;
r e d e f void h ( r ) { . . . HC . . . } ;

}
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Call to virtual and non-virtual methods

non-virtual method f

call target
rA.f FA

rB .f FB

rC .f FB

virtual methods g and h

call target
rA.g GA or GB

rB .g GB

rC .g GB

rA.h illegal
rB .h HB or HC

rC .h HC
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Late binding/dynamic binding

• details very much depend on the language/flavor of OO
– single vs. multiple inheritance?
– method update, method extension possible?
– how much information available (e.g., static type information)?

• simple approach: “embedding” methods (as references)
– seldomly done (but needed for updateable methods)

• using inheritance graph
– each object keeps a pointer to its class (to locate virtual methods)

• virtual function table
– in static memory
– no traversal necessary
– class structure need be known at compile-time
– C++

Virtual function table

• static check (“type check”) of rX .f()
– for virtual methods: f must be defined in X or one of its superclasses

• non-virtual binding: finalized by the compiler (static binding)
• virtual methods: enumerated (with offset) from the first class with a virtual method, redefinitions

get the same “number”
• object “headers”: point to the class’s virtual function table
• rA.g():

c a l l r_A . v i r t t a b [ g _ o f f s e t ]

• compiler knows
– g_offset = 0
– h_offset = 1
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Virtual method implementation in C++

• according to [2]

c l a s s A {
p u b l i c :
double x , y ;
void f ( ) ;
v i r t u a l void g ( ) ;

} ;

c l a s s B: p u b l i c A {
p u b l i c :
double z ;
void f ( ) ;
v i r t u a l void h ( ) ;

} ;

Untyped references to objects (e.g. Smalltalk)

• all methods virtual
• problem of virtual-tables now: virtual tables need to contain all methods of all classes
• additional complication: method extension, extension methods
• Thus: implementation of r.g() (assume: f omitted)

– go to the object’s class
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– search for g following the superclass hierarchy.

8.8 Garbage collection

Management of dynamic memory: GC & alternatives

• dynamic memory: allocation & deallocation at run-time
• different alternatives

1. manual
– “alloc”, “free”
– error prone

2. “stack” allocated dynamic memory
– typically not called GC

3. automatic reclaim of unused dynamic memory
– requires extra provisions by the compiler/RTE

Heap

• “heap” unrelated to the well-known heap-data structure from A&D
• part of the dynamic memory
• contains typically

– objects, records (which are dynamocally allocated)
– often: arrays as well
– for “expressive” languages: heap-allocated activation records

∗ coroutines (e.g. Simula)
∗ higher-order functions

https://en.wikipedia.org/wiki/Simula
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code area

global/static area

stack

free space

heap

Memory

Problems with free use of pointers

int ∗ dangle ( void ) {
int x ; // l o c a l var
return &x ; // a d d r e s s o f x

}

typedef int (∗ proc ) ( void ) ;

proc g ( int x ) {
int f ( void ) { /∗ i l l e g a l ∗/

return x ;
}
return f ;

}

main ( ) {
proc c ;
c = g ( 2 ) ;
p r i n t f ( "%d\n " , c ( ) ) ; /∗ 2? ∗/
return 0 ;

}

• as seen before: references, higher-order functions, coroutines etc ⇒ heap-allocated ARs
• higher-order functions: typical for functional languages,
• heap memory: no LIFO discipline
• unreasonable to expect user to “clean up” AR’s (already alloc and free is error-prone)
• ⇒ garbage collection (already dating back to 1958/Lisp)

Some basic design decisions

• gc approximative, but non-negotiable condition: never reclaim cells which may be used in the future
• one basic decision:

1. never move “objects”
– may lead to fragmentation

2. move objects which are still needed
– extra administration/information needed
– all reference of moved objects need adaptation
– all free spaces collected adjacently (defragmentation)

• when to do gc?
• how to get info about definitely unused/potentially used obects?

– “monitor” the interaction program ↔ heap while it runs, to keep “up-to-date” all the time
– inspect (at approriate points in time) the state of the heap

Objects here are meant as heap-allocated entities, which in OO languages includes objects, but here
referring also to other data (records, arrays, closures . . . ).
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Mark (and sweep): marking phase

• observation: heap addresses only reachable

directly through variables (with references), kept in the run-time stack (or registers)
indirectly following fields in reachable objects, which point to further objects . . .

• heap: graph of objects, entry points aka “roots” or root set
• mark: starting from the root set:

– find reachable objects, mark them as (potentially) used
– one boolean (= 1 bit info) as mark
– depth-first search of the graph

Marking phase: follow the pointers via DFS

• layout (or “type”) of objects need to be known to determine where pointers are
• food for thought: doing DFS requires a stack, in the worst case of comparable size as the heap itself

. . . .

Compactation

Marked
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Compacted

After marking?

• known classification in “garbage” and “non-garbage”
• pool of “unmarked” objects
• however: the “free space” not really ready at hand:
• two options:

1. sweep
– go again through the heap, this time sequentially (no graph-search)
– collect all unmarked objects in free list
– objects remain at their place
– RTE need to allocate new object: grab free slot from free list

2. compaction as well:
– avoid fragmentation
– move non-garbage to one place, the rest is big free space
– when moving objects: adjust pointers

Stop-and-copy

• variation of the previous compactation
• mark & compactation can be done in recursive pass
• space for heap-managment

– split into two halves
– only one half used at any given point in time
– compactation by copying all non-garbage (marked) to the currently unused half
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Step by step
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