
Course Script
INF 5110: Compiler con-
struction
INF5110, spring 2018

Martin Steffen

http://www.ifi.uio.no/~msteffen

ii Contents

Contents

9 Intermediate code generation 1
9.1 Intro . 1
9.2 Intermediate code . 3
9.3 Three address code . 4
9.4 P-code . 7
9.5 Generating P-code . 9
9.6 Generation of three address code . 14
9.7 Basic: From P-code to 3A-Code and back: static simulation & macro ex-

pansion . 19
9.8 More complex data types . 23
9.9 Control statements and logical expressions 32

9 Intermediate code generation 1

Intermediate code generation
Chapter

What
is it

about?
Learning Targets of this Chapter
1. intermediate code
2. three-address code and P-code
3. translation to those forms
4. translation between those forms

Contents

9.1 Intro 1
9.2 Intermediate code 3
9.3 Three address code 4
9.4 P-code 7
9.5 Generating P-code 9
9.6 Generation of three address

code 14
9.7 Basic: From P-code to 3A-

Code and back: static simu-
lation & macro expansion . . 19

9.8 More complex data types . . 23
9.9 Control statements and log-

ical expressions 32

9.1 Intro

Schematic anatomy of a compiler1

1This section is based on slides from Stein Krogdahl, 2015.

2 9 Intermediate code generation
9.1 Intro

• code generator:
– may in itself be “phased”
– using additional intermediate representation(s) (IR) and intermediate code

A closer look

Various forms of “executable” code

• different forms of code: relocatable vs. “absolute” code, relocatable code from li-
braries, assembler, etc

• often: specific file extensions
– Unix/Linux etc.

∗ asm: *.s
∗ rel: *.a
∗ rel from library: *.a
∗ abs: files without file extension (but set as executable)

– Windows:
∗ abs: *.exe2

• byte code (specifically in Java)
– a form of intermediate code, as well
– executable on the JVM
– in .NET/C♯: CIL

∗ also called byte-code, but compiled further

Generating code: compilation to machine code

• 3 main forms or variations:
1. machine code in textual assembly format (assembler can “compile” it to 2.

and 3.)
2. relocatable format (further processed by loader)

2.exe-files include more, and “assembly” in .NET even more

9 Intermediate code generation
9.2 Intermediate code 3

3. binary machine code (directly executable)
• seen as different representations, but otherwise equivalent
• in practice: for portability

– as another intermediate code: “platform independent” abstract machine code
possible.

– capture features shared roughly by many platforms
∗ e.g. there are stack frames, static links, and push and pop, but exact layout
of the frames is platform dependent

– platform dependent details:
∗ platform dependent code
∗ filling in call-sequence / linking conventions

done in a last step

Byte code generation

• semi-compiled well-defined format
• platform-independent
• further away from any HW, quite more high-level
• for example: Java byte code (or CIL for .NET and C♯)

– can be interpreted, but often compiled further to machine code (“just-in-time
compiler” JIT)

• executed (interpreted) on a “virtual machine” (JVM)
• often: stack-oriented execution code (in post-fix format)
• also internal intermediate code (in compiled languages) may have stack-oriented

format (“P-code”)

9.2 Intermediate code

Use of intermediate code

• two kinds of IC covered
1. three-address code (TAIC)

– generic (platform-independent) abstract machine code
– new names for all intermediate results
– can be seen as unbounded pool of maschine registers
– advantages (portability, optimization . . .)

2. P-code (“Pascal-code”, a la Java “byte code”)
– originally proposed for interpretation
– now often translated before execution (cf. JIT-compilation)
– intermediate results in a stack (with postfix operations)

• many variations and elaborations for both kinds
– addresses symbolically or represented as numbers (or both)
– granularity/“instruction set”/level of abstraction: high-level op’s available e.g.,

for array-access or: translation in more elementary op’s needed.
– operands (still) typed or not

4 9 Intermediate code generation
9.3 Three address code

– . . .

Various translations in the lecture

Text

• AST here: tree structure after semantic analysis, let’s call it AST+ or just simply
AST.

• translation AST ⇒ P-code: appox. as in Oblig 2
• we touch upon many general problems/techniques in “translations”
• one (important one) we ignore for now: register allocation

Picture

AST+

TAIC p-code

9.3 Three address code

Three-address code

• common (form of) IR

TA: Basic format

x = y op z

• x, y, z: names, constants, temporaries . . .
• some operations need fewer arguments

• example of a (common) linear IR
• linear IR: ops include control-flow instructions (like jumps)
• alternative linear IRs (on a similar level of abstraction): 1-address code (stack-

machine code), 2 address code
• well-suited for optimizations
• modern archictures often have 3-address code like instruction sets (RISC-architectures)

9 Intermediate code generation
9.3 Three address code 5

3AC example (expression)

2*a+(b-3)

+

*

2 a

-

b 3

Three-address code

t1 = 2 ∗ a
t2 = b − 3
t3 = t1 + t2

alternative sequence
t1 = b − 3
t2 = 2 ∗ a
t3 = t2 + t1

TAIC instruction set

• basic format: x = y op z
• but also:

– x = op z
– x = y

• operators: +,-,*,/, <, >, and, or
• read x, write x
• label L (sometimes called a “pseudo-instruction”)
• conditional jumps: if_false x goto L
• t1, t2, t3 (or t1, t2, t3, . . .): temporaries (or temporary variables)

– assumed: unbounded reservoir of those
– note: “non-destructive” assignments (single-assignment)

Illustration: translation to TAIC

Source

read x ; { input an integer }
i f 0<x then

f a c t := 1 ;
repeat

f a c t := f a c t ∗ x ;
x := x −1

until x = 0 ;
w r i t e f a c t { output :

f a c t o r i a l of x }
end

6 9 Intermediate code generation
9.3 Three address code

Target: TAIC

read x
t1 = x > 0
i f _ f a l s e t1 goto L1
f a c t = 1
label L2
t2 = f a c t ∗ x
f a c t = t2
t3 = x − 1
x = t3
t4 = x == 0
i f _ f a l s e t4 goto L2
write f a c t
label L1
halt

Variations in the design of TA-code

• provide operators for int, long, float?
• how to represent program variables

– names/symbols
– pointers to the declaration in the symbol table?
– (abstract) machine address?

• how to store/represent TA instructions?
– quadruples: 3 “addresses” + the op
– triple possible (if target-address (left-hand side) is always a new temporary)

Quadruple-representation for TAIC (in C)

9 Intermediate code generation
9.4 P-code 7

9.4 P-code

P-code

• different common intermediate code / IR
• aka “one-address code”3 or stack-machine code
• originally developed for Pascal
• remember: post-fix printing of syntax trees (for expressions) and “reverse polish

notation”

Example: expression evaluation 2*a+(b-3)

ldc 2 ; load c o n s t a n t 2
lod a ; load value o f v a r i a b l e a
mpi ; i n t e g e r m u l t i p l i c a t i o n
lod b ; load value o f v a r i a b l e b
ldc 3 ; load c o n s t a n t 3
sbi ; i n t e g e r s u b s t r a c t i o n
adi ; i n t e g e r a d d i t i o n

P-code for assignments: x := y + 1

• assignments:
– variables left and right: L-values and R-values
– cf. also the values ↔ references/addresses/pointers

lda x ; load a d d r e s s o f x
lod y ; load value o f y
ldc 1 ; load c o n s t a n t 1
adi ; add
sto ; s t o r e top to a d d r e s s

; below top & pop both

P-code of the faculty function

Source

read x ; { input an integer }
i f 0<x then

f a c t := 1 ;
repeat

f a c t := f a c t ∗ x ;
x := x −1

until x = 0 ;
w r i t e f a c t { output :

f a c t o r i a l of x }
end

3There’s also two-address codes, but those have fallen more or less in disuse.

8 9 Intermediate code generation
9.4 P-code

P-code

9 Intermediate code generation
9.5 Generating P-code 9

9.5 Generating P-code

Expression grammar

Grammar

exp1 → id= exp2
exp → aexp

aexp → aexp2 + factor
aexp → factor

factor → (exp)
factor → num
factor → id

(x=x+3)+4

+

x=

+

x 3

4

Generating p-code with a-grammars

• goal: p-code as attribute of the grammar symbols/nodes of the syntax trees
• syntax-directed translation
• technical task: turn the syntax tree into a linear IR (here P-code)
⇒ – “linearization” of the syntactic tree structure

– while translating the nodes of the tree (the syntactical sub-expressions) one-by-
one

• not recommended at any rate (for modern/reasonably complex language): code gen-
eration while parsing4

The use of A-grammars is perhps more a conceptual picture, In practice, one may not use
a-grammars and corresponding tools in the implementation.

4one can use the a-grammar formalism also to describe the treatment of ASTs, not concrete syntax
trees/parse trees.

10 9 Intermediate code generation
9.5 Generating P-code

A-grammar for statements/expressions

• focus here on expressions/assignments: leaving out certain complications
• in particular: control-flow complications

– two-armed conditionals
– loops, etc.

• also: code-generation “intra-procedural” only, rest is filled in as call-sequences
• A-grammar for intermediate code-gen:

– rather simple and straightforwad
– only 1 synthesized attribute: pcode

A-grammar

• “string” concatenation: ++ (construct separate instructions) and ˆ (construct one
instruction)5

productions/grammar rules semantic rules
exp1 → id= exp2 exp1 .pcode = ”lda”ˆid.strval ++

exp2 .pcode ++ ”stn”
exp → aexp exp .pcode = aexp .pcode

aexp1 → aexp2 + factor aexp1 .pcode = aexp2 .pcode
++ factor .pcode
++ ”adi”

aexp → factor aexp .pcode = factor .pcode
factor → (exp) factor .pcode = exp .pcode
factor → num factor .pcode = ”ldc”ˆnum.strval
factor → id factor .pcode = ”lod”ˆnum.strval

(x = x + 3) + 4

Attributed tree

+

x∶=

+

x 3

4

result

lod x ldc 3

lod x
ldc 3
adi

ldc 4

lda x
lod x
ldc 3
adi 3
stn

5So, the result is not 100% linear. In general, one should not produce a flat string already.

9 Intermediate code generation
9.5 Generating P-code 11

“result” attr.

lda x
lod x
ldc 3
adi
stn
ldc 4
adi ; +

Rest

• note: here x=x+3 has side effect and “return” value (as in C . . .):
• stn (“store non-destructively”)

– similar to sto , but non-destructive
1. take top element, store it at address represented by 2nd top
2. discard address, but not the top-value

Overview: p-code data structures

Source

type symbol = s t r i n g

type expr =
| Var of symbol
| Num of i n t
| Plus of expr ∗ expr
| Assign of symbol ∗ expr

Target

type i n s t r = (∗ p−code i n s t r u c t i o n s ∗)
LDC of i n t

| LOD of symbol
| LDA of symbol
| ADI
| STN
| STO

type t r e e = Onel ine of i n s t r
| Seq of t r e e ∗ t r e e

type program = i n s t r l i s t

Rest

• symbols:
– here: strings for simplicity
– concretely, symbol table may be involved, or variable names already resolved in

addresses etc.

12 9 Intermediate code generation
9.5 Generating P-code

Two-stage translation

v a l to_tree : A s t e x p r a s s i g n . expr −> Pcode . t r e e

v a l l i n e a r i z e : Pcode . t r e e −> Pcode . program

v a l to_program : A s t e x p r a s s i g n . expr −> Pcode . program

l e t rec to_tree (e : expr) =
match e with
| Var s −> (Onel ine (LOD s))
| Num n −> (Onel ine (LDC n))
| Plus (e1 , e2) −>

Seq (to_tree e1 ,
Seq (to_tree e2 , Onel ine ADI))

| Assign (x , e) −>
Seq (Onel ine (LDA x) ,

Seq (to_tree e , Onel ine STN))

l e t rec l i n e a r i z e (t : t r e e) : program =
match t with

Onel ine i −> [i]
| Seq (t1 , t2) −> (l i n e a r i z e t1) @ (l i n e a r i z e t2) ; ; // l i s t concat

l e t to_program e = l i n e a r i z e (to_tree e) ; ;

Source language AST data in C

• remember though: there are more dignified ways to design ASTs . . .

Code-generation via tree traversal (schematic)

9 Intermediate code generation
9.5 Generating P-code 13

procedure genCode(T: t r e e n o d e)
begin

i f T /= n i l
then

`` g e n e r a t e code to prepare for code for l e f t c h i l d ' ' // p r e f i x
genCode (l e f t c h i l d of T) ; // p r e f i x ops
`` g e n e r a t e code to prepare for code for r i g h t c h i l d ' ' // i n f i x

genCode (r i g h t c h i l d of T) ; // i n f i x ops
`` g e n e r a t e code to implement a c t i o n (s) for T' ' // p o s t f i x

end ;

Code generation from AST+

Text

• main “challenge”: linearization
• here: relatively simple
• no control-flow constructs
• linearization here (see a-grammar):

– string of p-code
– not necessarily the best choice (p-code might still need translation to “real”

executable code)

Figure

preamble code

calc. of operand 1

fix/adapt/prepare ...

calc. of operand 2

execute operation

14 9 Intermediate code generation
9.6 Generation of three address code

Code generation

First

Second

9.6 Generation of three address code

3AC manual translation again

Source

9 Intermediate code generation
9.6 Generation of three address code 15

read x ; { input an integer }
i f 0<x then

f a c t := 1 ;
repeat

f a c t := f a c t ∗ x ;
x := x −1

until x = 0 ;
w r i t e f a c t { output :

f a c t o r i a l of x }
end

Target: 3AC

read x
t1 = x > 0
i f _ f a l s e t1 goto L1
f a c t = 1
label L2
t2 = f a c t ∗ x
f a c t = t2
t3 = x − 1
x = t3
t4 = x == 0
i f _ f a l s e t4 goto L2
write f a c t
label L1
halt

Expression grammar again

Three-address code data structures (some)

Data structures (1)

type symbol = s t r i n g

type expr =
| Var of symbol
| Num of i n t
| Plus of expr ∗ expr
| Assign of symbol ∗ expr

Data structures (2)

type mem =
Var of symbol

| Temp of symbol
| Addr of symbol (∗ &x ∗)

type operand = Const of i n t
| Mem of mem

type cond = Bool of operand
| Not of operand
| Eq of operand ∗ operand
| Leq of operand ∗ operand
| Le of operand ∗ operand

type rhs = Plus of operand ∗ operand
| Times of operand ∗ operand
| Id of operand

type i n s t r =
Read of symbol

| Write of symbol
| Lab of symbol (∗ pseudo i n s t r u c t i o n ∗)
| Assign of symbol ∗ rhs
| AssignRI of operand ∗ operand ∗ operand (∗ a := b [i] ∗)
| AssignLI of operand ∗ operand ∗ operand (∗ a [i] := b ∗)

16 9 Intermediate code generation
9.6 Generation of three address code

| BranchComp of cond ∗ l a b e l
| Halt
| Nop

type t r e e = Onel ine of i n s t r
| Seq of t r e e ∗ t r e e

type program = i n s t r l i s t

(∗ Branches are not so c l e a r . I t a k e i n s p i r a t i o n f i r s t from ASU. I t seems
t h a t Louden has t h e TAC i f _ f a l s e t g o t o L . The Dragonbook a l l o w s a c t u a l l y
more complex s t r u c t u r e , namely comparisons . However , two−armed b r a n c h e s are
not welcome (t h a t would be a t r e e −IR) ∗)

(∗ Array a c c e s s : For a r r a y a c c e s s e s l i k e a [i +1] = b [j] e t c . one c o u l d add
s p e c i a l commands . Louden i n d i c a t e s t h a t , b u t a l s o i n d i c a t e s t h a t i f one
has i n d i r e c t a d d r e s s i n g and a r i t h m e t i c o p e r a t i o n s , one does not need
t h o s e . In t h e TAC o f t h e dragon books , t h e y have such o p e r a t i o n s , so I
add them h e r e as w e l l . Of c o u r s e one s u r e not a l l o w c o m p l e t e l y f r e e
forms l i k e a [i +1] = b [j] i n TAC, as t h i s i n v o l v e s more than 3
a d d r e s s e s . Louden s u g g e s t s two o p e r a t o r s , ` ` []= ' ' and ` ` [] = ' ' .

We c o u l d i n t r o d u c e more complex operands , l i k e a [i] b u t t h e n we would
a l l o w non− t h r e e a d d r e s s code t h i n g s . We don ' t do t h a t (o f course , t h e
s y n t a x i s a l r e a d y s l i g h t l y t o o l i b e r a l . . .)

∗)

Rest

• symbols: again strings for simplicity
• again “trees” not really needed (for simple language without more challenging control

flow)

Translation to three-address code

l e t rec to_tree (e : expr) : t r e e ∗ temp =
match e with

Var s −> (Onel ine Nop , s)
| Num i −> (Onel ine Nop , s t r i n g _ o f _ i n t i)
| Ast . Plus (e1 , e2) −>

(match (to_tree e1 , to_tree e2) with
((c1 , t1) , (c2 , t2)) −>

l e t t = newtemp () in
(Seq (Seq (c1 , c2) ,

Onel ine (
Assign (t ,

Plus (Mem(Temp(t1)) ,Mem(Temp(t2)))))) ,
t))

| Ast . Assign (s ' , e ') −>
l e t (c , t2) = to_tree (e ')
in (Seq (c ,

Onel ine (Assign (s ' ,
Id (Mem(Temp(t2)))))) ,

t2)

Three-address code by synthesized attributes

• similar to the representation for p-code
• again: purely synthesized
• semantics of executing expressions/assignments6

6That’s one possibility of a semantics of assignments (C, Java).

9 Intermediate code generation
9.6 Generation of three address code 17

– side-effect plus also
– value

• two attributes (before: only 1)
– tacode: instructions (as before, as string), potentially empty
– name: “name” of variable or tempary, where result resides7

• evaluation of expressions: left-to-right (as before)

A-grammar

productions/grammar rules semantic rules
exp1 → id= exp2 exp1 .name = exp2 .name

exp1 .tacode = exp2 .tacode ++
id.strvalˆ”=”ˆ exp2 .name

exp → aexp exp .name = aexp .name
exp .tacode = aexp .tacode

aexp1 → aexp2 + factor aexp1 .name = newtemp()
aexp1 .tacode = aexp2 .tacode ++ factor .tacode ++

aexp1 .nameˆ”=”ˆ aexp2 .nameˆ
”+”ˆ factor .name

aexp → factor aexp .name = factor .name
aexp .tacode = factor .tacode

factor → (exp) factor .name = exp .name
factor .tacode = exp .tacode

factor → num factor .name = num.strval
factor .tacode = ””

factor → id factor .name = num.strval
factor .tacode = ””

Another sketch of TA-code generation

switch kind {
case OpKind :

switch op {
case Plus : {

tempname = new temorary name ;
varname_1 = r e c u r s i v e c a l l on l e f t subt ree ;
varname_2 = r e c u r s i v e c a l l on r i g h t subt ree ;
emit (" tempname = varname_1 + varname_2 ") ;
return (tempname) ; }

case Assign : {
varname = id . for v a r i a b l e on l h s (in the node) ;
varname 1 = r e c u r s i v e c a l l in l e f t subt ree ;
emit (" varname = opname ") ;
return (varname) ; }

}
case ConstKind ; { return (constant − s t r i n g) ; } // emit nothing
case IdKind : { return (i d e n t i f i e r) ; } // emit nothing

}

7In the p-code, the result of evaluating expression (also assignments) ends up in the stack (at the top).
Thus, one does not need to capture it in an attribute.

18 9 Intermediate code generation
9.6 Generation of three address code

• “return” of the two attributes
– name of the variable (a temporary): officially returned
– the code: via emit

• note: postfix emission only (in the shown cases)

Generating code as AST methods

• possible: add genCode as method to the nodes of the AST
• e.g.: define an abstract method String genCodeTA() in the Exp class (or Node,

in general all AST nodes where needed)

S t r i n g genCodeTA () { S t r i n g s1 , s2 ; S t r i n g t = NewTemp () ;
s1 = l e f t . GenCodeTA () ;
s2 = r i g h t . GenCodeTA () ;
emit (t + "=" + s1 + op + s2) ;
return t

}

Whether it is a good design from the perspective of modular compiler architecture and
code maintenance, to clutter the AST with methods for code generation and god knows
what else, e.g. type checking, optimization . . . , is a different question.

Translation to three-address code (from before)

let rec to_tree (e : expr) : t r e e ∗ temp =
match e with

Var s −> (Onel ine Nop , s)
| Num i −> (Onel ine Nop , s t r ing_of_int i)
| Ast . Plus (e1 , e2) −>

(match (to_tree e1 , to_tree e2) with
((c1 , t1) , (c2 , t2)) −>

let t = newtemp () in
(Seq (Seq (c1 , c2) ,

Onel ine (
Assign (t ,

Plus (Mem(Temp(t1)) ,Mem(Temp(t2)))))) ,
t))

| Ast . Assign (s ' , e ') −>
let (c , t2) = to_tree (e ')
in (Seq (c ,

Onel ine (Assign (s ' ,
Id (Mem(Temp(t2)))))) ,

t2)

9 Intermediate code generation
9.7 Basic: From P-code to 3A-Code and back: static simulation & macro expansion 19

Attributed tree (x=x+3) + 4

• note: room for optimization

9.7 Basic: From P-code to 3A-Code and back: static simulation
& macro expansion

“Static simulation”

• illustrated by transforming P-code ⇒ 3AC
• restricted setting: straight-line code
• cf. also basic blocks (or elementary blocks)

– code without branching or other control-flow complications (jumps/conditional
jumps. . .)

– often considered as basic building block for static/semantic analyses,
– e.g. basic blocks as nodes in control-flow graphs, the “non-semicolon” control

flow constructs result in the edges
• terminology: static simulation seems not widely established
• cf. abstract interpretation, symbolic execution, etc.

P-code ⇒ 3AC via “static simulation”

• difference:
– p-code operates on the stack

20 9 Intermediate code generation
9.7 Basic: From P-code to 3A-Code and back: static simulation & macro expansion

– leaves the needed “temporary memory” implicit
• given the (straight-line) p-code:

– traverse the code = list of instructions from beginning to end
– seen as “simulation”

∗ conceptually at least, but also
∗ concretely: the translation can make use of an actual stack

From P-code ⇒ 3AC: illustration

P-code ⇐ 3AC: macro expansion

• also here: simplification, illustrating the general technique, only
• main simplification:

– register allocation
– but: better done in just another optmization “phase”

Macro for general 3AC instruction: a = b + c

lda a
lod b ; or `` ldc b ' ' i f b i s a const
lod c : or `` ldc c ' ' i f c i s a const
adi
sto

9 Intermediate code generation
9.7 Basic: From P-code to 3A-Code and back: static simulation & macro expansion 21

Example: P-code ⇐ 3AC ((x=x+3)+4)

Left

1. source 3A-code
t1 = x + 3
x = t2
t2 = t1 + 4

2. Direct P-code
lda x
lod x
ldc 3
adi
stn
ldc 4
adi ; +

P-code via 3A-code by macro exp.

;−−− t1 = x + 3
lda t1
lod x
ldc 3
adi
sto
;−−− x = t1
lda x
lod t1
sto
;−−− t2 = t1 + 4
lda t2
lod t1
ldc 4
adi
sto

Rest

cf. indirect 13 instructions vs. direct: 7 instructions

Indirect code gen: source code ⇒ 3AC ⇒ p-code

• as seen: detour via 3AC leads to sub-optimal results (code size, also efficiency)
• basic deficiency: too many temporaries, memory traffic etc.
• several possibilities

– avoid it altogether, of course (but remember JIT in Java)
– chance for code optimization phase
– here: more clever “macro expansion” (but sketch only)

the more clever macro expansion: some form of static simulation again

22 9 Intermediate code generation
9.7 Basic: From P-code to 3A-Code and back: static simulation & macro expansion

• don’t macro-expand the linear 3AC
– brainlessly into another linear structure (P-code), but
– “statically simulate” it into a more fancy structure (a tree)

“Static simulation” into tree form (sketch)

• more fancy form of “static simulation” of 3AIC
• result: tree labelled with

– operator, together with
– variables/temporaries containing the results

Source

t1 = x + 3
x = t2
t2 = t1 + 4

Tree

+

+

x 3

4

t2

x,t1

note: instruction x = t1 from 3AC: does not lead to more nodes in the tree

P-code generation from the generated tree

Tree from 3AIC

+

+

x 3

4

t2

x,t1

9 Intermediate code generation
9.8 More complex data types 23

Direct code = indirect code

lda x
lod x
ldc 3
adi
stn
ldc 4
adi ; +

Rest

• with the thusly (re-)constructed tree
⇒ p-code generation

– as before done for the AST
– remember: code as synthesized attributes

• the “trick”: reconstruct essential syntactic tree structure (via “static simulation”)
from the 3AI-code

• Cf. the macro expanded code: additional “memory traffic” (e.g. temp. t1)

Compare: AST (with direct p-code attributes)

+

x∶=

+

x 3

4

result

lod x ldc 3

lod x
ldc 3
adi

ldc 4

lda x
lod x
ldc 3
adi 3
stn

9.8 More complex data types

Status update: code generation

• so far: a number of simplifications
• data types:

– integer constants only
– no complex types (arrays, records, references, etc.)

• control flow
– only expressions and
– sequential composition
⇒ straight-line code

24 9 Intermediate code generation
9.8 More complex data types

Address modes and address calculations

• so far,
– just standard “variables” (l-variables and r-variables) and temporaries, as in x
= x + 1

– variables referred to by there names (symbols)
• but in the end: variables are represented by adresses
• more complex address calculations needed

addressing modes in 3AIC:

• &x: address of x (not for temporaries!)
• *t: indirectly via t

addressing modes in P-code

• ind i: indirect load
• ixa a: indexed address

Address calculations in 3AIC: x[10] = 2

• notationally represented as in C
• “pointer arithmetic” and address calculation with the available numerical ops

Code

t1 = &x + 10
∗ t1 = 2

Picture

Rest

• 3-address-code data structure (e.g., quadrupel): extended (adding address mode)

9 Intermediate code generation
9.8 More complex data types 25

Address calculations in P-code: x[10] = 2

• tailor-made commands for address calculation

• ixa i: integer scale factor (here factor 1)

Code

lda x
ldc 10
ixa 1
ldc 2
sto

Picture

Array references and address calculations

int a [SIZE] ; int i , j ;
a [i +1] = a [j ∗2] + 3 ;

• difference between left-hand use and right-hand use
• arrays: stored sequentially, starting at base address
• offset, calculated with a scale factor (dep. on size/type of elements)
• for example: for a[i+1] (with C-style array implementation)8

a + (i+1) * sizeof(int)

• a here directly stands for the base address
8In C, arrays start at a 0-offset as the first array index is 0. Details may differ in other languages.

26 9 Intermediate code generation
9.8 More complex data types

Array accesses in 3AI code

• one possible way: assume 2 additional 3AIC instructions
• remember: 3AIC can be seen as intermediate code, not as instruction set of a partic-

ular HW!
• 2 new instructions9

t2 = a [t1] ; f e t c h value o f array element

a [t2] = t1 ; a s s i g n to the address o f an array element

Source code

a [i +1] = a [j ∗2] + 3 ;

TAC

t1 = j ∗ 2
t2 = a [t1]
t3 = t2 + 3
t4 = i + 1
a [t4] = t3

Or “expanded”: array accesses in 3AI code (2)

Expanding t2=a[t1]

t3 = t1 ∗ e lem_size (a)
t4 = &a + t3
t2 = ∗ t4

Expanding a[t2]=t1

t3 = t2 ∗ e lem_size (a)
t4 = &a + t3
∗ t4 = t1

9Still in 3AIC format. Apart from the “readable” notation, it’s just two op-codes, say =[] and []=.

9 Intermediate code generation
9.8 More complex data types 27

Rest

• “expanded” result for a[i+1] = a[j*2] + 3

t1 = j ∗ 2
t2 = t1 ∗ e lem_size (a)
t3 = &a + t2
t4 = ∗ t3
t5 = t4 +3
t6 = i + 1
t7 = t6 ∗ e lem_size (a)
t8 = &a + t7
∗ t8 = t5

Array accessses in P-code

Expanding t2=a[t1]

lda t2
lda a
lod t1
ixa e lement_size (a)
ind 0
sto

Expanding a[t2]=t1

lda a
lod t2
ixa e lem_size (a)
lod t1
sto

Rest

• “expanded” result for a[i+1] = a[j*2] + 3

lda a
lod i
ldc 1
adi
ixa elem_size (a)
lda a
lod j
ldc 2
mpi
ixa elem_size (a)
ind 0
ldc 3
adi
sto

28 9 Intermediate code generation
9.8 More complex data types

Extending grammar & data structures

• extending the previous grammar

exp → subs = exp2 ∣ aexp
aexp → aexp + factor ∣ factor

factor → (exp) ∣ num ∣ subs
subs → id ∣ id [exp]

Syntax tree for (a[i+1]=2)+a[j]

+

=

a[]

+

i 1

2

a[]

j

Code generation for P-code

void genCode (SyntaxTree , int i sAddr) {
char c o d e s t r [CODESIZE] ;
/∗ CODESIZE = max l e n g t h o f 1 l i n e o f P−code ∗/
i f (t != NULL) {

switch (t−>kind) {
case OpKind :

{ switch (t−>op) {
case Plus :

i f (i s A d d r e s s) emitCode(" Error ") ; // new c h e c k
e l s e { // unchanged

genCode(t−>l c h i l d , FALSE) ;
genCode(t−>r c h i l d , FALSE) ;
emitCode(" adi ") ; // a d d i t i o n

}
break ;

case Assign :
genCode(t−>l c h i l d ,TRUE) ; // `` l − v a l u e ' '
genCode(t−>r c h i l d , FALSE) ; // ``r− v a l u e ' '
emitCode(" stn ") ;

Code generation for P-code (“subs”)

• new code, of course

9 Intermediate code generation
9.8 More complex data types 29

case Subs :
s p r i n t f (c o d e s t r i n g , "%s %s " , " lda " , t−> s t r v a l) ;
emitCode(c o d e s t r i n g) ;
genCode(t−> l c h i l d . FALSE) ;
s p r i n t f (c o d e s t r i n g , "%s %s %s " ,

" i x a elem_size (" , t−>s t r v a l , ") ") ;
emitCode(c o d e s t r i n g) ;
i f (! i sAddr) emitCode(" ind 0 ") ; // i n d i r e c t l o a d
break ;

default :
emitCode(" Error ") ;
break ;

Code generation for P-code (constants and identifiers)

case ConstKind :
i f (i sAddr) emitCode(" Error ") ;
e l s e {

s p r i n t f (c o d e s t r , "%s %s " , " l d s " , t−> s t r v a l) ;
emitCode(c o d e s t r) ;

}
break ;

case IdKind :
i f (i sAddr)

s p r i n t f (c o d e s t r , "%s %s " , " l da " , t−> s t r v a l) ;
e l s e

s p r i n t f (c o d e s t r , "%s %s " , " l od " , t−> s t r v a l) ;
emitCode(c o d e s t r) ;
break ;

default :
emitCode(" Error ") ;
break ;

}
}

}

Access to records

C-Code

typedef struct r e c {
int i ;
char c ;
int j ;

} Rec ;
. . .

Rec x ;

30 9 Intermediate code generation
9.8 More complex data types

Layout

Rest

• fields with (statically known) offsets from base address
• note:

– goal: intermediate code generation platform independent
– another way of seeing it: it’s still IR, not final machine code yet.

• thus: introduce function field_offset(x,j)
• calculates the offset.
• can be looked up (by the code-generator) in the symbol table
⇒ call replaced by actual off-set

Records/structs in 3AIC

• note: typically, records are implicitly references (as for objects)
• in (our version of a) 3AIC: we can just use &x and *x

simple record access x.j

t1 = &x + f i e l d _ o f f s e t (x , j)

9 Intermediate code generation
9.8 More complex data types 31

left and right: x.j = x.i

t1 = &x + f i e l d _ o f f s e t (x , j)
t2 = &x + f i e l d _ o f f s e t (x , i)
∗ t1 = ∗ t2

Field selection and pointer indirection in 3AIC

C code

typedef struct treeNode {
int v a l ;
struct treeNode ∗ l c h i l d ,

∗ r c h i l d ;
} treeNode
. . .

Treenode ∗p ;

Assignment involving fields

p −> l c h i l d = p ;
p = p−> r c h i l d ;

1. 3AIC
t1 = p + f i e l d _ a c c e s s (∗ p , l c h i l d)
∗ t1 = p
t2 = p + f i e l d _ a c c e s s (∗ p , r c h i l d)
p = ∗ t2

Structs and pointers in P-code

• basically same basic “trick”
• make use of field_offset(x,j)

3AIC

p −> l c h i l d = p ;
p = p−> r c h i l d ;

lod p
ldc f i e l d _ o f f s e t (∗ p , l c h i l d)
ixa 1
lod p
sto
lda p
lod p
ind f i e l d _ o f f s e t (∗ p , r c h i l d)
sto

32 9 Intermediate code generation
9.9 Control statements and logical expressions

9.9 Control statements and logical expressions

So far, we have dealt with straight-line code only. The main “complication” were com-
pound expression, which do not exist in the intermediate code, neither in 3AIC nor in
the p-code. That reqired the introduction of temporaries resp. the use of the stack to
store those intermediate results. The core addition to deal with control statements is the
use of labels. Labels can be seen as “symbolic” respresentations of “programming lines”
or “control points”. Ultimately, in the final binary, the platform will support jumps and
conditional jumps which will “transfer” control (= program pointer) from one address to
another, “jumping to an address”. Since we are still at an intermediate code level, we do
jumps not to real addressed but to labels (referring to the starting point of seqquences
of intermediate code). As a side remark: also assembly language editors will in general
support labels the assembly programmer can use to make the program at least a bit more
humandly readable (and relocatable). Labels and goto statements are also known in (not-
so-)high-level languages such as classic Basic (and even Java has goto as reserved word,
even if it makes no use of it).

Besides the treatment of control constructs, we discuss a related issue namely a particular
use of boolean expression. It’s discussed here as well, as (in some languages) boolean
expression can behave as control-constructs, as well. Consequently, the translation of that
form of booleans, require similar mechanisms (labels) as the translation of standard-control
statements. In C-like languages, that’s know as short-circuiting.

As side not-so-important side remark: Concretely in C, “booleans” and conditions operate
also on more than just a boolean two valued domain (containting true and false or
0 and 1). In C, “everything” that’s not 0 is treated as 1. That may sounds not too
“logical” but reflects how certain hardware instructions where . Doing some operations
sets “ hardware flags” which then are used for conditional jumps: jump-on-zero checks
whether the corresponds flag is set accordingly. Furthermore, in functional languges, the
phenomenon also occurs (but typically not called short-circuiting), and in general there,
the dividing line between control and data is blurred anyway.

Control statements

• so far: basically straight-line code
• general (intra-procedural) control more complex thanks to control-statements

– conditionals, switch/case
– loops (while, repeat, for . . .)
– breaks, gotos, exceptions . . .

important “technical” device: labels

• symbolic representation of addresses in static memory

• specifically named (= labelled) control flow points
• nodes in the control flow graph

• generation of labels (cf. also temporaries)

9 Intermediate code generation
9.9 Control statements and logical expressions 33

Intra-procedural means “inside” a procedure. Inter-procedural control-flow refers to calls
and returns, which is handled by calling sequences (which also maintain (in standard C-like
languages) the call-stack of the RTE).

Concerning gotos: gotos (if the language supports them) are almost trivial in code gener-
ation, as they are basically available at machine code level. Nonetheless, they are “con-
sidered harmful”, as they mess up/break abstractions and other things in a compiler/lan-
guage.

Loops and conditionals: linear code arrangement

if -stmt → if (exp) stmt else stmt
while-stmt → while (exp) stmt

• challenge:
– high-level syntax (AST) well-structured (= tree) which implicitly (via its struc-

ture) determines complex control-flow beyond SLC
– low-level syntax (3AIC/P-code): rather flat, linear structure, ultimately just a

sequence of commands

Arrangement of code blocks and cond. jumps

Conditional

34 9 Intermediate code generation
9.9 Control statements and logical expressions

While

The “graphical” representation can also be understood as control flow. graph. The nodes
contain sequences of “basic statements” of the form we covered before (like one-line 3AIC
assignments) but not conditionals and similar and no procedure calls (we don’t cover them
in the chapter anyhow). So the nodes (also known as basic blocks) contain staight-line
code.

In the following we show how to translate conditionals and while statements into inter-
mediate code, both for 3AIC and p-code. The translation is rather straightforward (and
actually very similar for both cases, both making use of labels).

To do the translation, we need to enhance the set of available “op-codes” (= available
commands). We need a mechanism for labelling and a mechanism for conditional jumps.
Both kind of statement need to be added to 3AIC and p-code, and it basically works the
same, except that the actual syntax of the commands is different. But that’s details.

Jumps and labels: conditionals

if (E) then S1 else S2

3AIC for conditional

<code to e v a l E to t1>
i f _ f a l s e t1 goto L1

<code f o r S1>
goto L2
label L1

<code f o r S2>
label L2

9 Intermediate code generation
9.9 Control statements and logical expressions 35

P-code for conditional

<code to e v a l u a t e E>
f j p L1

<code f o r S1>
ujp L2
lab L1
<code f o r S2>
lab L2

3 new op-codes:

• ujp: unconditional jump (“goto”)
• fjp: jump on false
• lab: label (for pseudo instructions)

Jumps and labels: while

while (E) S

3AIC for while

label L1
<code to e v a l u a t e E to t1>
i f _ f a l s e t1 goto L2

<code f o r S>
goto L1
label L2

P-code for while

lab L1
<code to e v a l u a t e E>
f j p L2

<code f o r S>
ujp L1
lab L2

Boolean expressions

• two alternatives for treatment
1. as ordinary expressions
2. via short-circuiting

• ultimate representation in HW:
– no built-in booleans (HW is generally untyped)
– but “arithmetic” 0, 1 work equivalently & fast
– bitwise ops which corresponds to logical ∧ and ∨ etc

• comparison on “booleans”: 0 < 1?
• boolean values vs. jump conditions

36 9 Intermediate code generation
9.9 Control statements and logical expressions

Short circuiting boolean expressions

Short circuit illustration

i f ((p!=NULL) && p −> v a l ==0)) . . .

• done in C, for example
• semantics must fix evaluation order
• note: logically equivalent a ∧ b = b ∧ a
• cf. to conditional expressions/statements (also left-to-right)

a and b ≜ if a then b else false
a or b ≜ if a then true else b

Pcode

lod x
ldc 0
neq ; x!=0 ?
f j p L1 ; jump , i f x=0
lod y
lod x
equ ; x =? y
ujp L2 ; hop over
lab L1
ldc FALSE
lab L2

• new op-codes
– equ
– neq

The code is a bit cryptic (one should ponder what it computes . . .). It might not be also
the best represetation, for instance, one may come up with a different solution that does
not load x two times.

A side remark: we are still at intermediate code. Optimizations and the use of registers
have not yet entered the picture. That is to say, that the above remark that x is loaded two
times might be of not so much concern ultimately, as an optimizer and register allocator
should be able to do something about it. On the other hand: why generate inefficient
code in the hope the optimizer will clean it up.

Grammar for loops and conditionals

stmt → if -stmt ∣ while-stmt ∣ break ∣ other
if -stmt → if (exp) stmt else stmt

while-stmt → while (exp) stmt
exp → true ∣ false

• note: simplistic expressions, only true and false

9 Intermediate code generation
9.9 Control statements and logical expressions 37

typedef enum {ExpKind , I f k i n d , Whilekind ,
BreakKind , OtherKind} NodeKind ;

typedef struct s t r e e n o d e {
NodeKind kind ;
struct s t r e e n o d e ∗ c h i l d [3] ;
int v a l ; /∗ used w i t h ExpKind ∗/

/∗ used f o r t r u e v s . f a l s e ∗/
} STreeNode ;

type StreeNode ∗ SyntaxTree ;

Translation to P-code

i f (t r u e) while (t r u e) i f (f a l s e) break e l s e o t h e r

Syntax tree

P-code

ldc t r u e
f j p L1
lab L2
ldc t r u e
f j p L3
ldc f a l s e
f j p L4
ujp L3
ujp L5
lab L4
Other
lab L5
ujp L2
lab L3
lab L1

Code generation

• extend/adapt genCode
• break statement:

– absolute jump to place afterwards

38 9 Intermediate code generation
9.9 Control statements and logical expressions

– new argument: label to jump-to when hitting a break
• assume: label generator genLabel()
• case for if-then-else

– has to deal with one-armed if-then as well: test for NULL-ness

• side remark: control-flow graph (see also later)
– labels can (also) be seen as nodes in the control-flow graph
– genCode generates labels while traversing the AST
⇒ implict generation of the CFG
– also possible:

∗ separately generate a CFG first
∗ as (just another) IR
∗ generate code from there

Code generation procedure for P-code

9 Intermediate code generation
9.9 Control statements and logical expressions 39

Code generation (1)

Code generation (2)

40 9 Intermediate code generation
9.9 Control statements and logical expressions

More on short-circuiting (now in 3AIC)

• boolean expressions contain only two (official) values: true and false
• as stated: boolean expressions are often treated special: via short-circuiting
• short-circuiting especially for boolean expressions in conditionals and while-loops and

similar
– treat boolean expressions different from ordinary expressions
– avoid (if possible) to calculate boolean value “till the end”

• short-circuiting: specified in the language definition (or not)

Example for short-circuiting

Source

i f a < b | |
(c > d && e >= f)

then
x = 8

e l s e
y = 5

endif

3AIC

t1 = a < b
if_true t1 goto 1 // s h o r t c i r c u i t
t2 = c > d
i f _ f a l s e goto 2 // s h o r t c i r c u i t
t3 = e >= f
i f _ f a l s e t3 goto 2
label 1
x = 8
goto 3
label 2
y = 5
label 3

9 Intermediate code generation
9.9 Control statements and logical expressions 41

Code generation: conditionals (as seen)

Alternative P/3A-Code generation for conditionals

• Assume: no break in the language for simplicity
• focus here: conditionals
• not covered of [?]

42 9 Intermediate code generation
9.9 Control statements and logical expressions

Alternative 3A-Code generation for boolean expressions

	Contents
	Intermediate code generation
	Intro
	Intermediate code
	Three address code
	P-code
	Generating P-code
	Generation of three address code
	Basic: From P-code to 3A-Code and back: static simulation & macro expansion
	More complex data types
	Control statements and logical expressions

