
Course Script
INF 5110: Compiler con-
struction
INF5110, spring 2018

Martin Steffen

http://www.ifi.uio.no/~msteffen

ii Contents

Contents

I 1

10 Code generation 2
10.1 Intro . 2
10.2 2AC and costs of instructions . 4
10.3 Basic blocks and control-flow graphs . 7
10.4 Code generation algo . 21
10.5 Ignore for now . 27
10.6 Global analysis . 27

10 Code generation 1

Code generation
Chapter

What
is it

about?Learning Targets of this Chapter
1. 2AC
2. cost model
3. register allocation
4. control-flow graph
5. local liveness analysis (data flow

analysis)
6. “global” liveness analysis

Contents

10.1 Intro 2
10.2 2AC and costs of instructions 4
10.3 Basic blocks and control-

flow graphs 7
10.4 Code generation algo 21
10.5 Ignore for now 27
10.6 Global analysis 27

10.1 Intro

Code generation

• note: code generation so far: AST+ to intermediate code
– three address code (3AC)
– P-code

• ⇒ intermediate code generation
• i.e., we are still not there . . .
• material here: based on the (old) dragon book [2] (but principles still ok)
• there is also a new edition [1]

This section is based on slides from Stein Krogdahl, 2015. In this section we work with
2AC as machine code (as from the older, classical “dragon book”). An alternative would
be 3AC also on code level (not just intermediate code); details would change, but the
principles would be comparable. Note: the message of the chapter is not: in the last
translation and code generation step, one has to find a way to translate 3-address code
two 2-address code. If one assumed machine code in a 3-address format, the principles
would be similar. The core of the code generation is the (here rather simple) treatment
of registers. In other words, the code generation presented here is rather straightforward
(in the sense that it’s done without much optimizations).

2 10 Code generation
10.1 Intro

Intro: code generation

• goal: translate intermediate code (= 3AI-code) to machine language
• machine language/assembler:

– even more restricted
– here: 2 address code

• limited number of registers
• different address modes with different costs (registers vs. main memory)

Goals

• efficient code
• small code size also desirable
• but first of all: correct code

When not said otherwise: efficiency refers in the following to efficiency of the generated
code. Fastness of compilation may be important, as well (and same for the size of the
compiler itself, as opposed to the size of the generated code). Obviously, there are trade-
offs to be made.

Code “optimization”

• often conflicting goals
• code generation: prime arena for achieving efficiency
• optimal code: undecidable anyhow (and: don’t forget there’s trade-offs).
• even for many more clearly defined subproblems: untractable

“optimization”

interpreted as: heuristics to achieve “good code” (without hope for optimal code)

• due to importance of optimization at code generation
– time to bring out the “heavy artillery”
– so far: all techniques (parsing, lexing, even type checking) are computationally

“easy”
– at code generation/optmization: perhaps invest in agressive, computationally

complex and rather advanced techniques
– many different techniques used

The above statement that everything so far was computationally simple is perhaps an over-
simplication. For example, type inference, aka type reconstruction, is computationally
heavy, at least in the worst case. There are indeed technically advanced type systems
around. Nonetheless, it’s often a valuable goal not to spend too much time in type checking
and furthermore, as far as later optimization is concerned one could give the user the option
how much time he is willing to invest and consequently, how agressive the optimization is
done.

10 Code generation
10.2 2AC and costs of instructions 3

The word “untractable” on the slides refers to computational complexity; untractable are
those for which there is no efficient algorithm to solve them. Tractable refers conventially
to polynomial type efficiency. Note that it does not say how “bad” the polynomial is, so
being tractable in that sense still might mean not useful. For non-tractable problems, it’s
guaranteed that they don’t scale.

10.2 2AC and costs of instructions

2-address machine code used here

• “typical” op-codes, but not a instruction set of a concrete machine
• two address instructions
• Note: cf. 3-address-code interpmediate representation vs. 2-address machine code

– machine code is not lower-level/closer to HW because it has one argument less
than 3AC

– it’s just one illustrative choice
– the new dragon book: uses 3-address-machine code (being more modern)

• 2 address machine code: closer to CISC architectures,
• RISC architectures rather use 3AC.
• translation task from IR to 3AC or 2AC: comparable challenge

2-address instructions format

Format

OP source dest

• note: order of arguments here
• restriction on source and target

– register or memory cell
– source: can additionally be a constant

Also the book Louden [3] uses 2AC. In the 2A machine code there for instance on page
12 or the introductory slides, the order of the arguments is the opposite!

ADD a b // b := a + b
SUB a b // b := b − a
MUL a b // b := b + a
GOTO i // un c o n d i t i o n a l jump

• further opcodes for conditional jumps, procedure calls

4 10 Code generation
10.2 2AC and costs of instructions

Side remark: 3A machine code

Possible format

OP source1 source2 dest

• but then: what’s the difference to 3A intermediate code?
• apart from a more restricted instruction set:
• restriction on the operands, for example:

– only one of the arguments allowed to be a memory access
– no fancy addressing modes (indirect, indexed . . . see later) for memory cells,

only for registers
• not “too much” memory-register traffic back and forth per machine instruction
• example:

&x = &y + *z

may be 3A-intermediate code, but not 3A-machine code

Cost model

• “optimization”: need some well-defined “measure” of the “quality” of the produced
code

• interested here in execution time
• not all instructions take the same time
• estimation of execution
• factor outside our control/not part of the cost model: effect of caching

cost factors:

• size of instruction
– it’s here not about code size, but
– instructions need to be loaded
– longer instructions ⇒ perhaps longer load

• address modes (as additional costs: see later)
– registers vs. main memory vs. constants
– direct vs. indirect, or indexed access

Instruction modes and additional costs

10 Code generation
10.2 2AC and costs of instructions 5

Mode Form Address Added cost
absolute M M 1
register R R 0
indexed c(R) c + cont(R) 1

indirect register *R cont(R) 0
indirect indexed *c(R) cont(c + cont(R)) 1

literal #M the value M 1 only for source

• indirect: useful for elements in “records” with known off-set
• indexed: useful for slots in arrays

Examples a := b + c

Two variants

1. Using registers

MOV b , R0 // R0 = b
ADD c , R0 // R0 = c + R0
MOV R0 , a // a = R0

c o s t = 6

2. Memory-memory ops

MOV b , a // a = b
ADD c , a // a = c + a

c o s t = 6

Use of registers

1. Data already in registers

MOV ∗R1 , ∗R0 // ∗R0 = ∗R1
ADD ∗R2 , ∗R1 // ∗R1 = ∗R2 + ∗R1

c o s t = 2

Assume R0, R1, and R2 contain addresses for a, b, and c
2. Storing back to memory

ADD R2 , R1 // R1 = R2 + R1
MOV R1 , a // a = R1

c o s t = 3

Assume R1 and R2 contain values for b, and c

6 10 Code generation
10.3 Basic blocks and control-flow graphs

10.3 Basic blocks and control-flow graphs

Basic blocks

• machine code level equivalent of straight-line code
• (a largest possible) sequence of instructions without

– jump out, or
– jump in

• elementary unit of code analysis/optimization1

• amenable to analysis techniques like
– static simulation/symbolic evaluation
– abstract interpretation

• basic unit of code generation

Control-flow graphs

CFG

basically: graph with

• nodes = basic blocks
• edges = (potential) jumps (and “fall-throughs”)

• here (as often): CFG on 3AIC (linear intermediate code)
• also possible CFG on low-level code,
• or also:

– CFG extracted from AST2

– here: the opposite: synthesizing a CFG from the linear code
• explicit data structure (as another intermediate representation) or implicit only.

From 3AC to CFG: “partitioning algo”

• remember: 3AIC contains labels and (conditional) jumps
⇒ algo rather straightforward
• the only complication: some labels can be ignored
• we ignore procedure/method calls here
• concept: “leader” representing the nodes/basic blocks

Leader

• first line is a leader
• GOTO i: line labelled i is a leader
• instruction after a GOTO is a leader

1Those techniques can also be used across basic blocks, but then they become considerably more cost-
ly/challenging.

2See also the exam 2016.

10 Code generation
10.3 Basic blocks and control-flow graphs 7

Basic block

instruction sequence from (and including) one leader to (but excluding) the next leader
or to the end of code

Partitioning algo

• note: no line jumps to L2

3AIC for faculty (from before)

read x
t1 = x > 0
i f_false t1 goto L1
f a c t = 1
label L2
t2 = f a c t ∗ x
f a c t = t2
t3 = x − 1
x = t3
t4 = x == 0
i f_false t4 goto L2
write f a c t
label L1
halt

8 10 Code generation
10.3 Basic blocks and control-flow graphs

Faculty: CFG

CFG picture

Remarks

• goto/conditional goto: never inside block
• not every block

– ends in a goto
– starts with a label

• ignored here: function/method calls, i.e., focus on
• intra-procedural cfg

Intra-procedural refers to “inside” one procedure. The oppositite is inter-procedural. Intra-
procedural analyses and inter-procedural optimizations are quite harder than intra-procedural.
In this lecture, we don’t cover inter-procedural considerations. Except that call sequences
and parameter passing has to do of course with relating different procedures and in that
case deal with inter-procedural aspects. But that was in connection with the run-time
environments, not what to do about in connection with analysis, register allocation, or
optimization. So, in this lecture resp. this chapter, “local” refers to inside one basic block,
“global” refers to across many blocks (but inside one procedure). Later, we have a short

10 Code generation
10.3 Basic blocks and control-flow graphs 9

look at “global” liveness analysis. As mentioned, we dont’ cover analyses across proce-
dures, in the terminogy used here, they would be even “more global” than what we call
“global”.

Levels of analysis

• here: three levels where to apply code analysis / optimizations
1. local: per basic block (block-level)
2. global: per function body/intra-procedural CFG
3. inter-procedural: really global, whole-program analysis

• the “more global”, the more costly the analysis and, especially the optimization (if
done at all)

Loops in CFGs

• loop optimization: “loops” are thankful places for optimizations
• important for analysis to detect loops (in the cfg)
• importance of loop discovery: not too important any longer in modern languages.

Loops in a CFG vs. graph cycles

• concept of loops in CFGs not identical with cycles in a graph
• all loops are graph cycles but not vice versa

• intuitively: loops are cycles originating from source-level looping constructs (“while”)
• goto’s may lead to non-loop cycles in the CFG
• importants of loops: loops are “well-behaved” when considering certain optimiza-

tions/code transformations (goto’s can destroy that. . .)

Cycles in a graph are well-known. The definition of loops here, while closely related, is
not identical with that. So, loop-detection is not the same as cycle-detection (otherwise
there’d be no much point discussing it, since cycle detection in graphs is well known, for
instance covered in standard algorithms and data structures courses like INF2220.

Loops are considered for specific graphs, namely CFGs. They are those kinds of cycles
which come from high-level looping constructs (while, for, repeat-until).

Loops in CFGs: definition

• remember: strongly connected components

10 10 Code generation
10.3 Basic blocks and control-flow graphs

Loop

A loop L in a CFG is a collection of nodes s.t.:

• strongly connected component (with edges completely in L
• 1 (unique) entry node of L, i.e. no node in L has an incoming edge3 from outside

the loop except the entry

• often additional assumption/condition: “root” node of a CFG (there’s only one) is
not itself an entry of a loop

Loop

CFG

B0

B1

B2 B3

B4

B5

• Loops:
– {B3, B4}
– {B4, B3, B1, B5, B2}

• Non-loop:
– {B1, B2, B5}

• unique entry marked red

Loops as fertile ground for optimizations

while (i < n) { i ++; A[i] = 3∗k }

• possible optimizations
– move 3*k “out” of the loop
– put frequently used variables into registers while in the loop (like i)

• when moving out computation from the loop:
• put it “right in front of the loop”

3alternatively: general reachability

10 Code generation
10.3 Basic blocks and control-flow graphs 11

⇒ add extra node/basic block in front of the entry of the loop4

Loop non-examples

Data flow analysis in general

• general analysis technique working on CFGs
• many concrete forms of analyses
• such analyses: basis for (many) optimizations
• data: info stored in memory/temporaries/registers etc.
• control:

– movement of the instruction pointer
– abstractly represented by the CFG

∗ inside elementary blocks: increment of the IS
∗ edges of the CFG: (conditional) jumps
∗ jumps together with RTE and calling convention

Data flowing from (a) to (b)

Given the control flow (normally as CFG): is it possible or is it guaranteed (“may” vs.
“must” analysis) that some “data” originating at one control-flow point (a) reaches control
flow point (b).

Data flow as abstraction

• data flow analysis DFA: fundamental and important static analysis technique
• it’s impossible to decide statically if data from (a) actually “flows to” (b)
⇒ approximative (= abstraction)
• therefore: work on the CFG: if there is two options/outgoing edges: consider both
• Data-flow answers therefore approximatively

– if it’s possible that the data flows from (a) to (b)
4That’s one of the motivations for unique entry.

12 10 Code generation
10.3 Basic blocks and control-flow graphs

– it’s neccessary or unavoidable that data flows from (a) to (b)
• for basic blocks: exact answers possible

Treatment of basic blocs

Basic blocks are “maximal” sequences of straight-line code. We encountered a treatment of
straight-line code also in the chapter about intermediate code generatation. The technique
there was called static similation (or symbolic execution). Static simulation was done for
basic blocks only and for the purpose of translation. The translation of course needs to
be exact, non-approximative. Symbolic evaluation also exist (also for other purposes) in
more general forms, especially also working approximatively on abstractions.

In summary, the general message is: for SLC and basic blocks, exact analyses are possi-
ble, it’s for the global analysis, when one (necessarily) resorts to overapproximation and
abstraction.

Data flow analysis: Liveness

• prototypical / important data flow analysis
• especially important for register allocation

Basic question

When (at which control-flow point) can I be sure that I don’t need a specific variable
(temporary, register) any more?

• optimization: if sure that not needed in the future: register can be used otherwise

Live

A “variable” is live at a given control-flow point if there exists an execution starting from
there (given the level of abstraction), where the variable is used in the future.

Static liveness

The notion of liveness given in the slides correspond to static liveness (the notion that
static liveness analysis deals with). A variable in a given concrete execution of a program
is dynamically live if in the future, it is still needed (or, for non-deterministic programs: if
there exists a future, where it’s still used. Dynamic liveness is undecidable, obviously.

10 Code generation
10.3 Basic blocks and control-flow graphs 13

Definitions and uses of variables

• talking about “variables”: also temporary variables are meant.
• basic notions underlying most data-flow analyses (including liveness analysis)
• here: def’s and uses of variables (or temporaries etc.)
• all data, including intermediate results) has to be stored somewhere, in variables,

temporaries, etc.

Def’s and uses

• a “definition” of x = assignment to x (store to x)
• a “use” of x: read content of x (load x)

• variables can occur more than once, so

• a definition/use refers to instances or occurrences of variables (“use of x in line l ”
or “use of x in block b ”)

• same for liveness: “x is live here, but not there”

Defs, uses, and liveness

CFG

0: x = v + w

. . .

2: a = x + c

3: x =u + v4: x = w

5: d = x + y

• x is “defined” (= assigned to) in 0, 3, and 4
• x is live “in” (= at the end of) block 2, as it may be used in 5
• a non-live variable at some point: “dead”, which means: the corresponding memory

can be reclaimed
• note: here, liveness across block-boundaries = “global” (but blocks contain only one

instruction here)

14 10 Code generation
10.3 Basic blocks and control-flow graphs

Def-use or use-def analysis

• use-def: given a “use”: determine all possible “definitions”
• def-use: given a “def”: determine all possible “uses”
• for straight-line-code/inside one basic block

– deterministic: each line has has exactly one place where a given variable has
been assigned to last (or else not assigned to in the block). Equivalently for
uses.

• for whole CFG:
– approximative (“may be used in the future”)
– more advanced techiques (caused by presence of loops/cycles)

• def-use analysis:
– closely connected to liveness analysis (basically the same)
– prototypical data-flow question (same for use-def analysis), related to many data-

flow analyses (but not all)

Side-remark: SSA

Side remark: Static single-assignment (SSA) format:

• at most one assignment per variable.

• “definition” (place of assignment) for each variable thus clear from its name

Calculation of def/uses (or liveness . . .)

• three levels of complication
1. inside basic block
2. branching (but no loops)
3. Loops
4. [even more complex: inter-procedural analysis]

For SLC/inside basic block

• deterministic result
• simple “one-pass” treatment enough
• similar to “static simulation”
• [Remember also AG’s]

10 Code generation
10.3 Basic blocks and control-flow graphs 15

For whole CFG

• iterative algo needed
• dealing with non-determinism: over-approximation
• “closure” algorithms, similar to the way e.g., dealing with first and follow sets
• = fix-point algorithms

Inside one block: optimizing use of temporaries

• simple setting: intra-block analysis & optimization, only
• temporaries:

– symbolic representations to hold intermediate results
– generated on request, assuming unbounded numbers
– intentions: use registers

• limited about of register available (platform dependent)

Assumption about temps

• temp’s don’t transfer data across blocks (/= program var’s)
⇒ temp’s dead at the beginning and at the end of a block

• but: variables have to be assumed live at the end of a block (block-local analysis,
only)

Intra-block liveness

Code

t1 := a − b
t2 := t1 ∗ a
a := t1 ∗ t2
t1 := t1 − c
a := t1 ∗ a

• neither temp’s nor vars in the example are “single assignment”,
• but first occurrence of a temp in a block: a definition (but for temps it would often

be the case, anyhow)
• let’s call operand: variables or temp’s
• next use of an operand:
• uses of operands: on the rhs’s, definitions on the lhs’s
• not good enough to say “t1 is live in line 4” (why?)

Note: the 3AIC may allow also literal constants as operator arguments, they don’t play a
role right now.

16 10 Code generation
10.3 Basic blocks and control-flow graphs

DAG of the block

DAG

∗

∗ −

∗

−

a0 b0 c0

a

a t1

t2

t1

Text

• no linear order (as in code), only partial order
• the next use: meaningless
• but: all “next” uses visible (if any) as “edges upwards”
• node = occurrences of a variable
• e.g.: the “lower node” for “defining”assigning to t1 has three uses
• different “versions” (instances) of t1

DAG / SA

SA = “single assignment”

• indexing different “versions” of right-hand sides
• often: temporaries generated as single-assignment already
• cf. also constraints + remember AGs

10 Code generation
10.3 Basic blocks and control-flow graphs 17

∗

∗ −

∗

−

a0 b0 c0

a2

a1 t1
1

t0
2

t0
1

Intra-block liveness: idea of algo

Picture

• liveness-status of an operand: different from lhs vs. rhs in a given instruction
• informal definition: an operand is live at some occurrence, if it’s used some place in

the future

consider statement x1 ∶= x2 op x3

• A variable x is live at the beginning of x1 ∶= x2 op x3, if
1. if x is x2 or x3, or
2. if x live at its end, if x and x1 are different variables

• A variable x is live at the end of an instruction,
– if it’s live at beginning of the next instruction
– if no next instruction

∗ temp’s are dead
∗ user-level variables are (assumed) live

18 10 Code generation
10.3 Basic blocks and control-flow graphs

Liveness

Previous “inductive” definition

expresses liveness status of variables before a statement dependent on the liveness status
of variables after a statement (and the variables used in the statement)

• core of a straightforward iterative algo
• simple backward scan5

• the algo we sketch:
– not just boolean info (live = yes/no), instead:
– operand live?

∗ yes, and with next use inside is block (and indicate instruction where)
∗ yes, but with no use inside this block
∗ not live

– even more info: not just that but indicate, where’s the next use

Algo: dead or alive (binary info only)

// −−−−− i n i t i a l i s e T −−−−−−−−−−−−−−−−−−−−−−−−−−−−

for a l l e n t r i e s : T[i , x] := D
except : for a l l v a r i a b l e s a // but not temps

T[n , a] := L ,
//−−−−−−− backward pass −−−−−−−−−−−−−−−−−−−−−−−−−−−−

for i n s t r u c t i o n i = n−1 down to 0
let cur rent i n s t r u c t i o n at i +1: x ∶= y op z ;

T[i . x] := D // note order ; x can `` equal ' ' y or z
T[i . y] := L
T[i . z] := L

end

• Data structure T : table, mapping for each line/instruction i and variable: boolean
status of “live”/“dead”

• represents liveness status per variable at the end (i.e. rhs) of that line
• basic block: n instructions, from 1 until n, where “line 0” represents the sentry

imaginary line “before” the first line (no instruction in line 0)
• backward scan through instructions/lines from n to 0

Algo′: dead or else: alive with next use

• More refined information
• not just binary “dead-or-alive” but next-use info
⇒ three kinds of information

1. Dead: D
2. Live:

– with local line number of next use: L(n)
– potential use of outside local basic block L(�)

5Remember: intra-block/SLC. In the presence of loops/analysing a complete CFG, a simple 1-pass does
not suffice. More advanced techniques (“multiple-scans” = fixpoint calculations) are needed then.

10 Code generation
10.3 Basic blocks and control-flow graphs 19

• otherwise: basically the same algo
// −−−−− i n i t i a l i s e T −−−−−−−−−−−−−−−−−−−−−−−−−−−−

for a l l e n t r i e s : T[i , x] := D
except : for a l l v a r i a b l e s a // but not temps

T[n , a] := L(�) ,
//−−−−−−− backward pass −−−−−−−−−−−−−−−−−−−−−−−−−−−−

for i n s t r u c t i o n i = n−1 down to 0
let cur rent i n s t r u c t i o n at i +1: x ∶= y op z ;

T[i , x] := D // note order ; x can `` equal ' ' y or z
T[i , y] := L(i + 1)
T[i , z] := L(i + 1)

end

Run of the algo′

Run/result of the algo

line a b c t1 t2
[0] L(1) L(1) L(4) L(2) D
1 L(2) L(�) L(4) L(2) D
2 D L(�) L(4) L(3) L(3)
3 L(5) L(�) L(4) L(4) D
4 L(5) L(�) L(�) L(5) D
5 L(�) L(�) L(�) D D

Picture

t1 := a − b
t2 := t1 ∗ a
a := t1 ∗ t2
t1 := t1 − c
a := t1 ∗ a

20 10 Code generation
10.4 Code generation algo

Liveness algo remarks

• here: T data structure traces (L/D) status per variable × “line”
• in the remarks in the notat:

– alternatively: store liveness-status per variable only
– works as well for one-pass analyses (but only without loops)

• this version here: corresponds better to global analysis: 1 line can be seen as one
small basic block

10.4 Code generation algo

Simple code generation algo

• simple algo: intra-block code generation
• core problem: register use
• register allocation & assignment 6

• hold calculated values in registers longest possible
• intra-block only ⇒ at exit:

– all variables stored back to main memory
– all temps assumed “lost”

• remember: assumptions in the intra-block liveness analysis

Limitations of the code generation

• local intra block:
– no analysis across blocks
– no procedure calls, etc.

• no complex data structures
6Some distinguish register allocation: “should the data be held in register (and how long)” vs. register

assignment: “which of available register to use for that”

10 Code generation
10.4 Code generation algo 21

– arrays
– pointers
– . . .

some limitations on how the algo itself works for one block

• for read-only variables: never put in registers, even if variable is repeatedly read
– algo works only with the temps/variables given and does not come up with new

ones
– for instance: DAGs could help

• no semantics considered
– like commutativity: a + b equals b + a

The limitation that read-only variables are not put into registers is not a “design-goal”, it’s
a not so smart side-effect on the way the algo works. The algo is a quite straightforward
way of making use of registers which works block-local. Due to its simplicity, the treatment
of read-only variables leaves room for improvement. The code generation makes use of
liveness information, if available. In case one has invested in some global liveness analysis
(as opposed to a local one), the code generation could profit from that by getting more
efficient. But its correctness does not rely on that. Even without liveness information,
it is correct, by assuming conservatively or defensively, that all variables are always live
(which is the worst-case assumption).

Purpose and “signature” of the getreg function

• one core of the code generation algo
• simple code-generation here ⇒ simple getreg

getreg function

available: liveness/next-use info

Input: TAIC-instruction x ∶= y op z

Output: return location where x is to be stored

• location: register (if possible) or memory location

Coge generation invariant

it should go without saying . . . :

22 10 Code generation
10.4 Code generation algo

Basic safety invariant

At each point, “live” variables (with or without next use in the current block) must exist
in at least one location

• another invariant: the location returned by getreg: the one where the rhs of a 3AIC
assignment ends up

Register and address descriptors

• code generation/getreg: keep track of
1. register contents
2. addresses for names

Register descriptor

• tracking current “content” of reg’s (if any)
• consulted when new reg needed
• as said: at block entry, assume all regs unused

Address descriptor

• tracking location(s) where current value of name can be found
• possible locations: register, stack location, main memory
• > 1 location possible (but not due to overapproximation, exact tracking)

By saying that the register descriptor is needed to track the content of a register, it’s not
meant the actual value (which will only be known at run-time). It’s rather keeping track
of the following information: the content of the register correspond to the (current content
of the following) variable(s). Note: there might be situations where a register corresponds
to more than one variable.

Code generation algo for x ∶= y op z

1. determine location (preferably register) for result
l = g e t r e g (``x := y op z ' ')

2. make sure, that the value of y is in l :
• consult address descriptor for y ⇒ current locations ly for y
• choose the best location ly from those (preferably register)
• if value of y not in l, generate

MOV ly , l

3. generate
OP lz , l // lz : a cur r ent l o c a t i o n o f z (p r e f e r reg ' s)

10 Code generation
10.4 Code generation algo 23

• update address descriptor [x↦∪ l]
• if l is a reg: update reg descriptor l ↦ x

4. exploit liveness/next use info: update register descriptors

Skeleton code generation algo for x ∶= y op z

l = getreg (` `x:= y op z ' ') // t a r g e t l o c a t i o n for x
i f l ∉ Ta(y) then let ly ∈ Ta(y)) in emit ("MOV ly , l ") ;
let lz ∈ Ta(z) in emit ("OP lz , l ") ;

• “skeleton”
– non-deterministic: we ignored how to choose lz and ly
– we ignore book-keeping in the name and address descriptor tables (⇒ step 4 also

missing)
– details of getreg hidden.

Non-deterministic code generation algo for x ∶= y op z

l = getreg (` `x:= y op z ' ') // generate t a r g e t l o c a t i o n for x
i f l ∉ Ta(y)
then let ly ∈ Ta(y)) // pick a l o c a t i o n for y

in emit (MOV ly , l)
else skip ;
let lz ∈ Ta(z)) in emit (` `OP lz , l ' ') ;
Ta ∶= Ta[x↦∪ l] ;
i f l i s a r e g i s t e r
then Tr ∶= Tr [l ↦ x]

Exploit liveness/next use info: recycling registers

• register descriptors: don’t update themselves during code generation
• once set (e.g. as R0 ↦ t), the info stays, unless reset
• thus in step 4 for z ∶= x op y:

Code generation algo for x ∶= y op z

l = getreg (" i : x := y op z ") // i for i n s t r u c t i o n s l i n e number/ label
i f l ∉ Ta(y)
then let ly = best (Ta(y))

in emit (" MOV ly , l ")
else skip ;
let lz = best (Ta(z))
in emit (" OP lz , l ") ;
Ta ∶= Ta/(_↦ l) ;
Ta ∶= Ta[x↦ l] ;
Tr ∶= Tr [l ↦ x] ;

i f ¬Tlive[i, y] and Ta(y) = r then Tr ∶= Tr/(r ↦ y)
i f ¬Tlive[i, z] and Ta(z) = r then Tr ∶= Tr/(r ↦ z)

24 10 Code generation
10.4 Code generation algo

To exploit liveness info by recycling reg’s

if y and/or z are currently

• not live and are
• in registers,

⇒ “wipe” the info from the corresponding register descriptors

• side remark: for address descriptor
– no such “wipe” needed, because it won’t make a difference (y and/or z are

not-live anyhow)
– their address descriptor wont’ be consulted further in the block

Code generation algo for x ∶= y op z (Notat)

l = getreg (" x := y op z ")
i f l ∉ Ta(y)
then let ly = best (Ta(y))

in emit (" MOV ly , l ")
else skip ;
let lz = best (Ta(z))
in emit (" OP lz , l ") ;

Ta ∶= Ta/(_↦ l) ;
Ta ∶= Ta[x↦ l] ;
Tr ∶= Tr [l ↦ x]

getreg algo: x ∶= y op z

• goal: return a location for x
• basically: check possibilities of register uses,
• starting with the “cheapest” option

Do the following steps, in that order

1. in place: if x is in a register already (and if that’s fine otherwise), then return the
register

2. new register: if there’s an unsused register: return that

3. purge filled register: choose more or less cleverly a filled register and save its content,
if needed, and return that register

4. use main memory: if all else fails

10 Code generation
10.4 Code generation algo 25

getreg algo: x ∶= y op z in more details

1. if
• y in register R
• R holds no alternative names
• y is not live and has no next use after the 3AIC instruction
• ⇒ return R

2. else: if there is an empty register R′: return R′

3. else: if
• x has a next use [or operator requires a register] ⇒

– find an occupied register R
– store R into M if needed (MOV R, M))
– don’t forget to update M ’s address descriptor, if needed
– return R

4. else: x not used in the block or no suituable occupied register can be found
• return x as location L

• choice of purged register: heuristics
• remember (for step 3): registers may contain value for > 1 variable ⇒ multiple MOV’s

Sample TAIC

d := (a-b) + (a-c) + (a-c)

t := a − b
u := a − c
v := t + u
d := v + u

line a b c d t u v

[0] L(1) L(1) L(2) D D D D
1 L(2) L(�) L(2) D L(3) D D
2 L(�) L(�) L(�) D L(3) L(3) D
3 L(�) L(�) L(�) D D L(4) L(4)
4 L(�) L(�) L(�) L(�) D D D

26 10 Code generation
10.5 Ignore for now

Code sequence

Code sequence

• address descr’s: “home position” not explictely needed.
• e.g. variable a always to be found “at a ”, as indicated in line “0”.
• in the table: only changes (from top to bottom) indicated
• after line 3:

– t dead
– t resides in R0 (and nothing else in R0)
→ reuse R0

• Remark: info in [brackets]: “ephemeral”

10.5 Ignore for now

10.6 Global analysis

From “local” to “global” data flow analysis

• data stored in variables, and “flows from definitions to uses”
• liveness analysis

– one prototypical (and important) data flow analysis
– so far: intra-block = straight-line code

• related to
– def-use analysis: given a “definition” of a variable at some place, where it is

(potentially) used
– use-def : (the inverse question, “reaching definitions”

• other similar questions:
– has a value of an expression been calculated before (“available expressions”)
– will an expression be used in all possible branches (“very busy expressions”)

10 Code generation
10.6 Global analysis 27

Global data flow analysis

• block-local
– block-local analysis (here liveness): exact information possible
– block-local liveness: 1 backward scan
– important use of liveness: register allocation, temporaries typically don’t survive

blocks anyway
• global: working on complete CFG

2 complications

• branching: non-determinism, unclear which branch is taken
• loops in the program (loops/cycles in the graph): simple one pass through the graph

does not cut it any longer

• exact answers no longer possible (undecidable)
⇒ work with safe approximations
• this is: general characteristic of DFA

Generalizing block-local liveness analysis

• assumptions for block-local analysis
– all program variables (assumed) live at the end of each basic block
– all temps are assumed dead there.

• now: we do better, info across blocks

at the end of each block:

which variables may be used in subsequent block(s).

• now: re-use of temporaries (and thus corresponding registers) across blocks possible
• remember local liveness algo: determined liveness status per var/temp at the end of

each “line/instruction”

We said that “now” a re-use of temporaries is possible. That is in contrast to the block local
analysis we did earlier, before the code generation. Since we had a local analysis only, we
had to work with assumptions converning the variables and temporaries at the end of each
block, and the assumptions were “worst-case”, to be on the safe side. Assuming variables
live, even if actually they are not, is safe, the opposite may be unsafe. For temporaries,
we assumed “deadness”. So the code generator therefore, under this assumption, must not
reuse temporaries across blocks.

One might also make a parallel to the “local” liveness algorithm from before. The problem
to be solved for liveness is to determined the status for each variable at the end of each
block. In the local case, the question was analogous, but for the “end of each line”. For
sake of making a parallel one could consider each line as individual block. Actually, the
global analysis would give identical results also there. The fact that one “lumps together”

28 10 Code generation
10.6 Global analysis

maximal sequences of straight-line code into the so-called basic blocks and thereby distin-
guishing between local and global levels is a matter of efficiency, not a principle, theoretical
distinction. Remember that basic blocks can be treated in one single path, whereas the
whole control-flow graph cannot: do to the possibility of loops or cycles there, one will
have to treat “members” of such a loop potentially more than one (later we will see the
corresponding algorithm). So, before addressing the global level with its loops, its a good
idea to “pre-calculate” the data-flow situation per block, where such treatment requies one
pass for each individual block to get an exact solution. That avoid potential line-by-line
recomputation in case a basic block neeeds to be treated multiple times.

Connecting blocks in the CFG: inLive and outLive

• CFG:
– pretty conventional graph (nodes and edges, often designated start and end

node)
– nodes = basic blocks = contain straight-line code (here 3AIC)
– being conventional graphs:

∗ conventional representations possible
∗ E.g. nodes with lists/sets/collections of immediate successor nodes plus
immediate predecessor nodes

• remember: local liveness status
– can be different before and after one single instruction
– liveness status before expressed as dependent on status after
⇒ backward scan

• Now per block: inLive and outLive

Loops vs. cycles

As a side remark. Earlier we remarked that loops are closely related to cycles in a graph,
but not 100% the same. Some forms of analyses resp. algos assume that the only cycles
in the graph are loops. However, the techniques presented here work generally, i.e., the
worklist algorithm in the form presented here works just fine also in the presence of general
cycles. If one had no cycles, no loops. special strategies or variations of the worklist algo
could exploit that to achieve better efficiency. We don’t pursue that issue here. In that
connection it might also be mentioned: if one had a program without loops, the best
strategy would be backwards. If one had straight-line code (no loops and no branching),
the algo corresponds directly to “local” liveness, explained earlier.

inLive and outLive

• tracing / approximating set of live variables7 at the beginning and end per basic
block

• inLive of a block: depends on
7To stress “approximation”: inLive and outLive contain sets of statically live variables. If those are
dynamically live or not is undecidable.

10 Code generation
10.6 Global analysis 29

– outLive of that block and
– the SLC inside that block

• outLive of a block: depends on inLive of the successor blocks

Approximation: To err on the safe side

Judging a variable (statically) live: always safe. Judging wrongly a variable dead (which
actually will be used): unsafe

• goal: smallest (but safe) possible sets for outLive (and inLive)

Example: Faculty CFG

CFG picture

Explanation

• inLive and outLive
• picture shows arrows as successor nodes
• needed predecessor nodes (reverse arrows)

30 10 Code generation
10.6 Global analysis

node/block predecessors
B1 ∅

B2 {B1}
B3 {B2, B3}
B4 {B3}
B5 {B1, B4}

Block local info for global liveness/data flow analysis

• 1 CFG per procedure/function/method
• as for SLC: algo works backwards
• for each block: underlying block-local liveness analysis

3-valued block local status per variable

result of block-local live variable analysis

1. locally live on entry: variable used (before overwritten or not)
2. locally dead on entry: variable overwritten (before used or not)
3. status not locally determined: variable neither assigned to nor read locally

• for efficiency: precompute this info, before starting the global iteration ⇒ avoid
recomputation for blocks in loops

Precomputation

We mentioned that, for efficiency, it’s good to precompute the local data flow per local
block. In the smallish examples we look at in the lecture or exercises etc.: we don’t
pre-compute, we often do it simply on-the-fly by “looking at” the blocks’ of SLC.

Global DFA as iterative “completion algorithm”

• different names for the general approach
– closure algorithm, saturation algo
– fixpoint iteration

• basically: a big loop with
– iterating a step approaching an intended solution by making current approxi-

mation of the solution larger
– until the solution stabilizes

• similar (for example): calculation of first- and follow-sets
• often: realized as worklist algo

– named after central data-structure containing the “work-still-to-be-done”
– here possible: worklist containing nodes untreated wrt. liveness analysis (or

DFA in general)

10 Code generation
10.6 Global analysis 31

Example

a := 5
L1 : x := 8

y := a + x
if_true x=0 goto L4
z := a + x // B3
a := y + z
i f_false a=0 goto L1
a := a + 1 // B2
y := 3 + x

L5 a := x + y
r e s u l t := a + z
return r e s u l t // B6

L4 : a := y + 8
y := 3
goto L5

CFG: initialization

Picture

• inLive and outLive: initialized to ∅ everywere
• note: start with (most) unsafe estimation
• extra (return) node
• but: analysis here local per procedure, only

Iterative algo

General schema

Initialization start with the “minimal” estimation (∅ everywhere)

32 10 Code generation
10.6 Global analysis

Loop pick one node & update (= enlarge) liveness estimation in connection with that
node

Until finish upon stabilization. no further enlargement

• order of treatment of nodes: in princple arbitrary8

• in tendency: following edges backwards
• comparison: for linear graphs (like inside a block):

– no repeat-until-stabilize loop needed
– 1 simple backward scan enough

Liveness: run

Liveness example: remarks

• the shown traversal strategy is (cleverly) backwards
• example resp. example run simplistic:
• the loop (and the choice of “evaluation” order):

“harmless loop”

after having updated the outLive info for B1 following the edge from B3 to B1 backwards
(propagating flow from B1 back to B3) does not increase the current solution for
B3

• no need (in this particular order) for continuing the iterative search for stabilization
• in other examples: loop iteration cannot be avoided
• note also: end result (after stabilization) independent from evaluation order!

(only some strategies may stabilize faster. . .)
8There may be more efficient and less efficient orders of treatment.

10 Code generation
10.6 Global analysis 33

In the script, the figure shows the end-result of the global liveness analysis. In the slides,
there is a “slide-show” which shows step-by-step how the liveness-information propagates
(= “flows”) through the graph. These step-by-step overlays, also for other examples, are
not reproduced in the script.

Another, more interesting, example

Example remarks

• loop: this time leads to updating estimation more than once
• evaluation order not chose ideally

Precomputing the block-local “liveness effects”

• precomputation of the relevant info: efficiency
• traditionally: represented as kill and generate information
• here (for liveness)

1. kill: variable instances, which are overwritten
2. generate: variables used in the block (before overwritten)
3. rests: all other variables won’t change their status

Constraint per basic block (transfer function)

inLive = outLive/kill(B) ∪ generate(B)

• note:
– order of kill and generate in above’s equation
– a variable killed in a block may be “revived” in a block

• simplest (one line) example: x := x +1

34 10 Code generation
10.6 Global analysis

Order of kill and generate

As just remarked, one should keep in mind the oder of kill and generate in the definition
of transfer functions. In principle, one could also arrange the opposite order (interpreting
kill and generatate slightly differently). One can also define the so-called transfer function
directly, without splitting into kill and generate (but for many (but not all) such a sep-
aration in kill and generate functionality is possible and convenient to do). Indeed using
transfer functions (and kill and generate) works for many other data flow analyses as well,
not just liveness analysis. Therefore, understanding liveness analysis basically amounts to
having understood data flow analysis.

Example once again: kill and gen

Bibliography
Bibliography 35

Bibliography

[1] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2007). Compilers: Principles,
Techniques and Tools. Pearson,Addison-Wesley, second edition.

[2] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques,
and Tools. Addison-Wesley.

[3] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

36 Index
Index

Index

basic block, 6

code generation, 1
control-flow graph, 6
cost model, 4

leader, 6

	Contents
	
	Code generation
	Intro
	2AC and costs of instructions
	Basic blocks and control-flow graphs
	Code generation algo
	Ignore for now
	Global analysis

