
Chapter 10
Code generation

Course “Compiler Construction”
Martin Steffen
Spring 2018

Section
Targets

Chapter 10 “Code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2018

Chapter 10
Learning Targets of Chapter “Code generation”.

1. 2AC
2. cost model
3. register allocation
4. control-flow graph
5. local liveness analysis (data flow analysis)
6. “global” liveness analysis

Chapter 10
Outline of Chapter “Code generation”.
Targets

Intro

2AC and costs of instructions

Basic blocks and control-flow graphs

Code generation algo

Global analysis

Section
Intro

Chapter 10 “Code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2018

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-6

Code generation

• note: code generation so far: AST+ to intermediate
code

• three address code (3AC)
• P-code

• ⇒ intermediate code generation
• i.e., we are still not there . . .
• material here: based on the (old) dragon book [?] (but

principles still ok)
• there is also a new edition [?]

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-7

Intro: code generation

• goal: translate intermediate code (= 3AI-code) to
machine language

• machine language/assembler:
• even more restricted
• here: 2 address code

• limited number of registers
• different address modes with different costs (registers

vs. main memory)

Goals

• efficient code
• small code size also desirable
• but first of all: correct code

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-8

Code “optimization”
• often conflicting goals
• code generation: prime arena for achieving efficiency
• optimal code: undecidable anyhow (and: don’t forget

there’s trade-offs).
• even for many more clearly defined subproblems:

untractable
“optimization”
interpreted as: heuristics to achieve “good code” (without
hope for optimal code)

• due to importance of optimization at code generation
• time to bring out the “heavy artillery”
• so far: all techniques (parsing, lexing, even type

checking) are computationally “easy”
• at code generation/optmization: perhaps invest in

agressive, computationally complex and rather advanced
techniques

• many different techniques used

Section
2AC and costs of instructions

Chapter 10 “Code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2018

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-10

2-address machine code used here

• “typical” op-codes, but not a instruction set of a
concrete machine

• two address instructions
• Note: cf. 3-address-code interpmediate representation

vs. 2-address machine code
• machine code is not lower-level/closer to HW because it

has one argument less than 3AC
• it’s just one illustrative choice
• the new dragon book: uses 3-address-machine code

(being more modern)
• 2 address machine code: closer to CISC architectures,
• RISC architectures rather use 3AC.
• translation task from IR to 3AC or 2AC: comparable

challenge

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-11

2-address instructions format

Format

OP source dest

• note: order of arguments here
• restriction on source and target

• register or memory cell
• source: can additionally be a constant

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-12

Side remark: 3A machine code
Possible format

OP s o u r c e 1 s o u r c e 2 d e s t

• but then: what’s the difference to 3A intermediate
code?

• apart from a more restricted instruction set:
• restriction on the operands, for example:

• only one of the arguments allowed to be a memory
access

• no fancy addressing modes (indirect, indexed . . . see
later) for memory cells, only for registers

• not “too much” memory-register traffic back and forth
per machine instruction

• example:

&x = &y + *z

may be 3A-intermediate code, but not 3A-machine code

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-13

Cost model
• “optimization”: need some well-defined “measure” of

the “quality” of the produced code
• interested here in execution time
• not all instructions take the same time
• estimation of execution
• factor outside our control/not part of the cost model:

effect of caching

cost factors:

• size of instruction
• it’s here not about code size, but
• instructions need to be loaded
• longer instructions ⇒ perhaps longer load

• address modes (as additional costs: see later)
• registers vs. main memory vs. constants
• direct vs. indirect, or indexed access

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-14

Instruction modes and additional costs

Mode Form Address Added cost
absolute M M 1
register R R 0
indexed c(R) c + cont(R) 1

indirect register *R cont(R) 0
indirect indexed *c(R) cont(c + cont(R)) 1

literal #M the value M 1 only for source

• indirect: useful for elements in “records” with known
off-set

• indexed: useful for slots in arrays

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-15

Examples a := b + c

Using registers

MOV b , R0 // R0 = b
ADD c , R0 // R0 = c + R0
MOV R0 , a // a = R0

c o s t = 6

Memory-memory ops

MOV b , a // a = b
ADD c , a // a = c + a

c o s t = 6

Data already in registers

MOV ∗R1 , ∗R0 // ∗R0 = ∗R1
ADD ∗R2 , ∗R1
// ∗R1 = ∗R2 + ∗R1

c o s t = 2

Assume R0, R1, and R2
contain addresses for a, b,
and c

Storing back to memory

ADD R2 , R1 // R1 = R2 + R1
MOV R1 , a // a = R1

c o s t = 3

Assume R1 and R2 contain
values for b, and c

Section
Basic blocks and control-flow graphs

Chapter 10 “Code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2018

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-17

Basic blocks

• machine code level equivalent of straight-line code
• (a largest possible) sequence of instructions without

• jump out, or
• jump in

• elementary unit of code analysis/optimization1

• amenable to analysis techniques like
• static simulation/symbolic evaluation
• abstract interpretation

• basic unit of code generation

1Those techniques can also be used across basic blocks, but then
they become considerably more costly/challenging.

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-18

Control-flow graphs

CFG
basically: graph with

• nodes = basic blocks
• edges = (potential) jumps (and “fall-throughs”)

• here (as often): CFG on 3AIC (linear intermediate code)
• also possible CFG on low-level code,
• or also:

• CFG extracted from AST2

• here: the opposite: synthesizing a CFG from the linear
code

• explicit data structure (as another intermediate
representation) or implicit only.

2See also the exam 2016.

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-19

From 3AC to CFG: “partitioning algo”
• remember: 3AIC contains labels and (conditional)

jumps
⇒ algo rather straightforward
• the only complication: some labels can be ignored
• we ignore procedure/method calls here
• concept: “leader” representing the nodes/basic blocks

Leader

• first line is a leader
• GOTO i: line labelled i is a leader
• instruction after a GOTO is a leader

Basic block
instruction sequence from (and including) one leader to (but
excluding) the next leader or to the end of code

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-20

Partitioning algo

• note: no line jumps to L2

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-21

3AIC for faculty (from before)

read x
t1 = x > 0
i f _ f a l s e t1 goto L1
f a c t = 1
l a b e l L2
t2 = f a c t ∗ x
f a c t = t2
t3 = x − 1
x = t3
t4 = x == 0
i f _ f a l s e t4 goto L2
wr i t e f a c t
l a b e l L1
ha l t

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-22

Faculty: CFG

• goto/conditional
goto: never inside
block

• not every block
• ends in a goto
• starts with a

label
• ignored here:

function/method
calls, i.e., focus on

• intra-procedural cfg

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-23

Levels of analysis

• here: three levels where to apply code analysis /
optimizations
1. local: per basic block (block-level)
2. global: per function body/intra-procedural CFG
3. inter-procedural: really global, whole-program analysis

• the “more global”, the more costly the analysis and,
especially the optimization (if done at all)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-24

Loops in CFGs
• loop optimization: “loops” are thankful places for

optimizations
• important for analysis to detect loops (in the cfg)
• importance of loop discovery: not too important any

longer in modern languages.

Loops in a CFG vs. graph cycles

• concept of loops in CFGs not identical with cycles in a
graph

• all loops are graph cycles but not vice versa

• intuitively: loops are cycles originating from source-level
looping constructs (“while”)

• goto’s may lead to non-loop cycles in the CFG
• importants of loops: loops are “well-behaved” when

considering certain optimizations/code transformations
(goto’s can destroy that. . .)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-25

Loops in CFGs: definition

• remember: strongly connected components

Definition (Loop)

A loop L in a CFG is a collection of nodes s.t.:
• strongly connected component (with edges completely

in L

• 1 (unique) entry node of L, i.e. no node in L has an
incoming edge3 from outside the loop except the entry

• often additional assumption/condition: “root” node of
a CFG (there’s only one) is not itself an entry of a loop

3alternatively: general reachability

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-26

Loop

B0

B1

B2 B3

B4

B5

• Loops:
• {B3, B4}
• {B4, B3, B1, B5, B2}

• Non-loop:
• {B1, B2, B5}

• unique entry marked red

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-27

Loops as fertile ground for optimizations

wh i l e (i < n) { i ++; A[i] = 3∗k }

• possible optimizations
• move 3*k “out” of the loop
• put frequently used variables into registers while in the

loop (like i)
• when moving out computation from the loop:
• put it “right in front of the loop”
⇒ add extra node/basic block in front of the entry of the

loop4

4That’s one of the motivations for unique entry.

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-28

Loop non-examples

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-29

Data flow analysis in general
• general analysis technique working on CFGs
• many concrete forms of analyses
• such analyses: basis for (many) optimizations
• data: info stored in memory/temporaries/registers etc.
• control:

• movement of the instruction pointer
• abstractly represented by the CFG

• inside elementary blocks: increment of the IS
• edges of the CFG: (conditional) jumps
• jumps together with RTE and calling convention

Data flowing from (a) to (b)

Given the control flow (normally as CFG): is it possible or is
it guaranteed (“may” vs. “must” analysis) that some “data”
originating at one control-flow point (a) reaches control flow
point (b).

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-30

Data flow as abstraction

• data flow analysis DFA: fundamental and important
static analysis technique

• it’s impossible to decide statically if data from (a)
actually “flows to” (b)

⇒ approximative (= abstraction)
• therefore: work on the CFG: if there is two

options/outgoing edges: consider both
• Data-flow answers therefore approximatively

• if it’s possible that the data flows from (a) to (b)
• it’s neccessary or unavoidable that data flows from (a)

to (b)
• for basic blocks: exact answers possible

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-31

Data flow analysis: Liveness

• prototypical / important data flow analysis
• especially important for register allocation

Basic question
When (at which control-flow point) can I be sure that I don’t
need a specific variable (temporary, register) any more?

• optimization: if sure that not needed in the future:
register can be used otherwise

Definition (Live)

A “variable” is live at a given control-flow point if there
exists an execution starting from there (given the level of
abstraction), where the variable is used in the future.

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-32

Definitions and uses of variables
• talking about “variables”: also temporary variables are

meant.
• basic notions underlying most data-flow analyses

(including liveness analysis)
• here: def’s and uses of variables (or temporaries etc.)
• all data, including intermediate results) has to be stored

somewhere, in variables, temporaries, etc.

Def’s and uses

• a “definition” of x = assignment to x (store to x)
• a “use” of x: read content of x (load x)

• variables can occur more than once, so

• a definition/use refers to instances or occurrences of
variables (“use of x in line l ” or “use of x in block b ”)

• same for liveness: “x is live here, but not there”

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-33

Defs, uses, and liveness

0: x = v + w

. . .

2: a = x + c

3: x =u + v4: x = w

5: d = x + y

• x is “defined” (=
assigned to) in 0, 3, and
4

• x is live “in” (= at the
end of) block 2, as it
may be used in 5

• a non-live variable at
some point: “dead”,
which means: the
corresponding memory
can be reclaimed

• note: here, liveness
across block-boundaries
= “global” (but blocks
contain only one
instruction here)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-34

Def-use or use-def analysis
• use-def: given a “use”: determine all possible

“definitions”
• def-use: given a “def”: determine all possible “uses”
• for straight-line-code/inside one basic block

• deterministic: each line has has exactly one place where
a given variable has been assigned to last (or else not
assigned to in the block). Equivalently for uses.

• for whole CFG:
• approximative (“may be used in the future”)
• more advanced techiques (caused by presence of

loops/cycles)
• def-use analysis:

• closely connected to liveness analysis (basically the
same)

• prototypical data-flow question (same for use-def
analysis), related to many data-flow analyses (but not
all)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-35

Calculation of def/uses (or liveness . . .)
• three levels of complication

1. inside basic block
2. branching (but no loops)
3. Loops
4. [even more complex: inter-procedural analysis]

For SLC/inside basic block

• deterministic result
• simple “one-pass”

treatment enough
• similar to “static

simulation”
• [Remember also AG’s]

For whole CFG

• iterative algo needed
• dealing with

non-determinism:
over-approximation

• “closure” algorithms,
similar to the way e.g.,
dealing with first and
follow sets

• = fix-point algorithms

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-36

Inside one block: optimizing use of
temporaries

• simple setting: intra-block analysis & optimization, only
• temporaries:

• symbolic representations to hold intermediate results
• generated on request, assuming unbounded numbers
• intentions: use registers

• limited about of register available (platform dependent)

Assumption about temps

• temp’s don’t transfer data across blocks (/= program
var’s)

⇒ temp’s dead at the beginning and at the end of a block

• but: variables have to be assumed live at the end of a
block (block-local analysis, only)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-37

Intra-block liveness

t1 := a − b
t2 := t1 ∗ a
a := t1 ∗ t2
t1 := t1 − c
a := t1 ∗ a

• neither temp’s nor vars in the
example are “single assignment”,

• but first occurrence of a temp in a
block: a definition (but for temps it
would often be the case, anyhow)

• let’s call operand: variables or
temp’s

• next use of an operand:
• uses of operands: on the rhs’s,

definitions on the lhs’s
• not good enough to say “t1 is live

in line 4” (why?)
Note: the 3AIC may allow also literal constants as operator
arguments, they don’t play a role right now.

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-38

DAG of the block

∗

∗ −

∗

−

a0 b0 c0

a

a t1

t2

t1

• no linear order (as in
code), only partial order

• the next use: meaningless
• but: all “next” uses

visible (if any) as “edges
upwards”

• node = occurrences of a
variable

• e.g.: the “lower node” for
“defining”assigning to t1
has three uses

• different “versions”
(instances) of t1

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-39

DAG / SA
SA = “single assignment”

• indexing different “versions” of right-hand sides
• often: temporaries generated as single-assignment

already
• cf. also constraints + remember AGs

∗

∗ −

∗

−

a0 b0 c0

a2

a1 t1
1

t0
2

t0
1

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-40

Intra-block liveness: idea of algo
• liveness-status of an operand:

different from lhs vs. rhs in a given
instruction

• informal definition: an operand is
live at some occurrence, if it’s used
some place in the future

Definition (consider statement x1 ∶= x2 op x3)

• A variable x is live at the beginning of x1 ∶= x2 op x3, if
1. if x is x2 or x3, or
2. if x live at its end, if x and x1 are different variables

• A variable x is live at the end of an instruction,
• if it’s live at beginning of the next instruction
• if no next instruction

• temp’s are dead
• user-level variables are (assumed) live

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-41

Liveness
Previous “inductive” definition
expresses liveness status of variables before a statement
dependent on the liveness status of variables after a
statement (and the variables used in the statement)

• core of a straightforward iterative algo
• simple backward scan5

• the algo we sketch:
• not just boolean info (live = yes/no), instead:
• operand live?

• yes, and with next use inside is block (and indicate
instruction where)

• yes, but with no use inside this block
• not live

• even more info: not just that but indicate, where’s the
next use

5Remember: intra-block/SLC. In the presence of loops/analysing a
complete CFG, a simple 1-pass does not suffice. More advanced
techniques (“multiple-scans” = fixpoint calculations) are needed then.

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-42

Algo: dead or alive (binary info only)
// −−−−− i n i t i a l i s e T −−−−−−−−−−−−−−−−−−−−−−−−−−−−

f o r a l l e n t r i e s : T[i , x] := D
e x c e p t : f o r a l l v a r i a b l e s a // but not temps

T[n , a] := L ,
//−−−−−−− backward pas s −−−−−−−−−−−−−−−−−−−−−−−−−−−−

f o r i n s t r u c t i o n i = n−1 down to 0
l e t c u r r e n t i n s t r u c t i o n at i +1: x ∶= y op z ;

T[i . x] := D // note o r d e r ; x can `` equa l ' ' y or z
T[i . y] := L
T[i . z] := L

end

• Data structure T : table, mapping for each
line/instruction i and variable: boolean status of
“live”/“dead”

• represents liveness status per variable at the end (i.e.
rhs) of that line

• basic block: n instructions, from 1 until n, where “line
0” represents the sentry imaginary line “before” the first
line (no instruction in line 0)

• backward scan through instructions/lines from n to 0

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-43

Algo′: dead or else: alive with next use
• More refined information
• not just binary “dead-or-alive” but next-use info
⇒ three kinds of information

1. Dead: D
2. Live:

• with local line number of next use: L(n)
• potential use of outside local basic block L(�)

• otherwise: basically the same algo

// −−−−− i n i t i a l i s e T −−−−−−−−−−−−−−−−−−−−−−−−−−−−

f o r a l l e n t r i e s : T[i , x] := D
e x c e p t : f o r a l l v a r i a b l e s a // but not temps

T[n , a] := L(�) ,
//−−−−−−− backward pas s −−−−−−−−−−−−−−−−−−−−−−−−−−−−

f o r i n s t r u c t i o n i = n−1 down to 0
l e t c u r r e n t i n s t r u c t i o n at i +1: x ∶= y op z ;

T[i , x] := D // note o r d e r ; x can `` equa l ' ' y or z
T[i , y] := L(i + 1)
T[i , z] := L(i + 1)

end

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-44

Run of the algo′

line a b c t1 t2
[0] L(1) L(1) L(4) L(2) D
1 L(2) L(�) L(4) L(2) D
2 D L(�) L(4) L(3) L(3)
3 L(5) L(�) L(4) L(4) D
4 L(5) L(�) L(�) L(5) D
5 L(�) L(�) L(�) D D

t1 := a − b
t2 := t1 ∗ a
a := t1 ∗ t2
t1 := t1 − c
a := t1 ∗ a

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-45

Liveness algo remarks

• here: T data structure traces (L/D) status per variable
× “line”

• in the remarks in the notat:
• alternatively: store liveness-status per variable only
• works as well for one-pass analyses (but only without

loops)
• this version here: corresponds better to global analysis:

1 line can be seen as one small basic block

Section
Code generation algo

Chapter 10 “Code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2018

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-47

Simple code generation algo

• simple algo: intra-block code generation
• core problem: register use
• register allocation & assignment 6

• hold calculated values in registers longest possible
• intra-block only ⇒ at exit:

• all variables stored back to main memory
• all temps assumed “lost”

• remember: assumptions in the intra-block liveness
analysis

6Some distinguish register allocation: “should the data be held in
register (and how long)” vs. register assignment: “which of available
register to use for that”

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-48

Limitations of the code generation
• local intra block:

• no analysis across blocks
• no procedure calls, etc.

• no complex data structures
• arrays
• pointers
• . . .

some limitations on how the algo itself works for one
block

• for read-only variables: never put in registers, even if
variable is repeatedly read

• algo works only with the temps/variables given and
does not come up with new ones

• for instance: DAGs could help
• no semantics considered

• like commutativity: a + b equals b + a

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-49

Purpose and “signature” of the getreg
function

• one core of the code generation algo
• simple code-generation here ⇒ simple getreg

getreg function
available: liveness/next-use info

Input: TAIC-instruction x ∶= y op z

Output: return location where x is to be stored

• location: register (if possible) or memory location

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-50

Coge generation invariant

it should go without saying . . . :

Basic safety invariant
At each point, “live” variables (with or without next use in
the current block) must exist in at least one location

• another invariant: the location returned by getreg: the
one where the rhs of a 3AIC assignment ends up

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-51

Register and address descriptors

• code generation/getreg: keep track of
1. register contents
2. addresses for names

Register descriptor

• tracking current
“content” of reg’s (if
any)

• consulted when new
reg needed

• as said: at block
entry, assume all regs
unused

Address descriptor

• tracking location(s) where
current value of name can be
found

• possible locations: register,
stack location, main memory

• > 1 location possible (but not
due to overapproximation,
exact tracking)

Code generation algo for x ∶= y op z
1. determine location (preferably register) for result

l = g e t r e g (``x := y op z ' ')

2. make sure, that the value of y is in l :
• consult address descriptor for y ⇒ current locations ly

for y
• choose the best location ly from those (preferably

register)
• if value of y not in l, generate

MOV ly , l

3. generate
OP lz , l // lz : a c u r r e n t l o c a t i o n o f z (p r e f e r reg ' s)

• update address descriptor [x↦∪ l]
• if l is a reg: update reg descriptor l ↦ x

4. exploit liveness/next use info: update register
descriptors

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-53

Skeleton code generation algo for
x ∶= y op z

l = get reg (` ` x := y op z ' ') // t a r g e t l o c a t i o n f o r x
i f l ∉ Ta(y) then l e t ly ∈ Ta(y)) i n emit ("MOV ly , l ") ;
l e t lz ∈ Ta(z) i n emit ("OP lz , l ") ;

• “skeleton”
• non-deterministic: we ignored how to choose lz and ly
• we ignore book-keeping in the name and address

descriptor tables (⇒ step 4 also missing)
• details of getreg hidden.

Non-deterministic code generation algo for
x ∶= y op z

l = get reg (` ` x := y op z ' ') // g e n e r a t e t a r g e t l o c a t i o n f o r x
i f l ∉ Ta(y)
then l e t ly ∈ Ta(y)) // p i c k a l o c a t i o n f o r y

i n emit (MOV ly , l)
e l s e s k i p ;
l e t lz ∈ Ta(z)) i n emit (` `OP lz , l ' ') ;
Ta ∶= Ta[x↦∪ l] ;
i f l i s a r e g i s t e r
then Tr ∶= Tr [l ↦ x]

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-55

Exploit liveness/next use info: recycling
registers

• register descriptors: don’t update themselves during
code generation

• once set (e.g. as R0 ↦ t), the info stays, unless reset
• thus in step 4 for z ∶= x op y:

Code generation algo for x ∶= y op z
l = get reg (" i : x := y op z ") // i f o r i n s t r u c t i o n s l i n e number/ l a b e l
i f l ∉ Ta(y)
then l e t ly = best (Ta(y))

i n emit ("MOV ly , l ")
e l s e s k i p ;
l e t lz = best (Ta(z))
i n emit ("OP lz , l ") ;
Ta ∶= Ta/(_↦ l) ;
Ta ∶= Ta[x↦ l] ;
Tr ∶= Tr [l ↦ x] ;

i f ¬Tlive[i, y] and Ta(y) = r then Tr ∶= Tr/(r ↦ y)
i f ¬Tlive[i, z] and Ta(z) = r then Tr ∶= Tr/(r ↦ z)

To exploit liveness info by recycling reg’s
if y and/or z are currently

• not live and are
• in registers,
⇒ “wipe” the info from the corresponding register
descriptors

• side remark: for address descriptor
• no such “wipe” needed, because it won’t make a

difference (y and/or z are not-live anyhow)
• their address descriptor wont’ be consulted further in

the block

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-57

getreg algo: x ∶= y op z

• goal: return a location for x

• basically: check possibilities of register uses,
• starting with the “cheapest” option

Do the following steps, in that order

1. in place: if x is in a register already (and if that’s fine
otherwise), then return the register

2. new register: if there’s an unsused register: return that
3. purge filled register: choose more or less cleverly a

filled register and save its content, if needed,
and return that register

4. use main memory: if all else fails

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-58

getreg algo: x ∶= y op z in more details
1. if

• y in register R
• R holds no alternative names
• y is not live and has no next use after the 3AIC

instruction
• ⇒ return R

2. else: if there is an empty register R′: return R′

3. else: if
• x has a next use [or operator requires a register] ⇒

• find an occupied register R
• store R into M if needed (MOV R, M))
• don’t forget to update M ’s address descriptor, if

needed
• return R

4. else: x not used in the block or no suituable occupied
register can be found

• return x as location L

• choice of purged register: heuristics
• remember (for step 3): registers may contain value for

> 1 variable ⇒ multiple MOV’s

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-59

Sample TAIC

d := (a-b) + (a-c) + (a-c)

t := a − b
u := a − c
v := t + u
d := v + u

line a b c d t u v

[0] L(1) L(1) L(2) D D D D
1 L(2) L(�) L(2) D L(3) D D
2 L(�) L(�) L(�) D L(3) L(3) D
3 L(�) L(�) L(�) D D L(4) L(4)
4 L(�) L(�) L(�) L(�) D D D

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-60

Code sequence

• address descr’s: “home position” not explictely needed.
• e.g. variable a always to be found “at a ”, as indicated

in line “0”.
• in the table: only changes (from top to bottom)

indicated
• after line 3:

• t dead
• t resides in R0 (and nothing else in R0)
→ reuse R0

• Remark: info in [brackets]: “ephemeral”

Section
Global analysis

Chapter 10 “Code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2018

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-62

From “local” to “global” data flow analysis

• data stored in variables, and “flows from definitions to
uses”

• liveness analysis
• one prototypical (and important) data flow analysis
• so far: intra-block = straight-line code

• related to
• def-use analysis: given a “definition” of a variable at

some place, where it is (potentially) used
• use-def: (the inverse question, “reaching definitions”

• other similar questions:
• has a value of an expression been calculated before

(“available expressions”)
• will an expression be used in all possible branches (“very

busy expressions”)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-63

Global data flow analysis
• block-local

• block-local analysis (here liveness): exact information
possible

• block-local liveness: 1 backward scan
• important use of liveness: register allocation,

temporaries typically don’t survive blocks anyway
• global: working on complete CFG

2 complications

• branching: non-determinism, unclear which branch is
taken

• loops in the program (loops/cycles in the graph): simple
one pass through the graph does not cut it any longer

• exact answers no longer possible (undecidable)
⇒ work with safe approximations
• this is: general characteristic of DFA

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-64

Generalizing block-local liveness analysis

• assumptions for block-local analysis
• all program variables (assumed) live at the end of each

basic block
• all temps are assumed dead there.

• now: we do better, info across blocks

at the end of each block:
which variables may be used in subsequent block(s).

• now: re-use of temporaries (and thus corresponding
registers) across blocks possible

• remember local liveness algo: determined liveness status
per var/temp at the end of each “line/instruction”

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-65

Connecting blocks in the CFG: inLive and
outLive

• CFG:
• pretty conventional graph (nodes and edges, often

designated start and end node)
• nodes = basic blocks = contain straight-line code (here

3AIC)
• being conventional graphs:

• conventional representations possible
• E.g. nodes with lists/sets/collections of immediate

successor nodes plus immediate predecessor nodes
• remember: local liveness status

• can be different before and after one single instruction
• liveness status before expressed as dependent on status

after
⇒ backward scan

• Now per block: inLive and outLive

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-66

inLive and outLive
• tracing / approximating set of live variables7 at the

beginning and end per basic block
• inLive of a block: depends on

• outLive of that block and
• the SLC inside that block

• outLive of a block: depends on inLive of the successor
blocks

Approximation: To err on the safe side
Judging a variable (statically) live: always safe. Judging
wrongly a variable dead (which actually will be used): unsafe

• goal: smallest (but safe) possible sets for outLive (and
inLive)

7To stress “approximation”: inLive and outLive contain sets of
statically live variables. If those are dynamically live or not is
undecidable.

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-67

Example: Faculty CFG

• inLive and outLive
• picture shows arrows as

successor nodes
• needed predecessor nodes

(reverse arrows)

node/block predecessors
B1 ∅

B2 {B1}
B3 {B2, B3}
B4 {B3}
B5 {B1, B4}

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-68

Block local info for global liveness/data
flow analysis

• 1 CFG per procedure/function/method
• as for SLC: algo works backwards
• for each block: underlying block-local liveness analysis

3-valued block local status per variable
result of block-local live variable analysis
1. locally live on entry: variable used (before overwritten

or not)
2. locally dead on entry: variable overwritten (before used

or not)
3. status not locally determined: variable neither assigned

to nor read locally

• for efficiency: precompute this info, before starting the
global iteration ⇒ avoid recomputation for blocks in
loops

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-69

Global DFA as iterative “completion
algorithm”

• different names for the general approach
• closure algorithm, saturation algo
• fixpoint iteration

• basically: a big loop with
• iterating a step approaching an intended solution by

making current approximation of the solution larger
• until the solution stabilizes

• similar (for example): calculation of first- and
follow-sets

• often: realized as worklist algo
• named after central data-structure containing the

“work-still-to-be-done”
• here possible: worklist containing nodes untreated wrt.

liveness analysis (or DFA in general)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-70

Example

a := 5
L1 : x := 8

y := a + x
i f _ t r u e x=0 goto L4
z := a + x // B3
a := y + z
i f _ f a l s e a=0 goto L1
a := a + 1 // B2
y := 3 + x

L5 a := x + y
r e s u l t := a + z
r e t u r n r e s u l t // B6

L4 : a := y + 8
y := 3
goto L5

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-71

CFG: initialization

a:=5

x:=8
y:=a+x

z:=a+x
a:=y+z

x:=y+8
y:=3

a:=a+1
y:=3+z

a:=x+y
result:=a+z

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ ∅

∅

∅

∅

∅

∅

∅ ∅

∅

∅

• inLive and
outLive: initialized
to ∅ everywere

• note: start with
(most) unsafe
estimation

• extra (return) node
• but: analysis here

local per
procedure, only

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-72

Iterative algo

General schema

Initialization start with the “minimal” estimation (∅
everywhere)

Loop pick one node & update (= enlarge) liveness
estimation in connection with that node

Until finish upon stabilization. no further
enlargement

• order of treatment of nodes: in princple arbitrary8

• in tendency: following edges backwards
• comparison: for linear graphs (like inside a block):

• no repeat-until-stabilize loop needed
• 1 simple backward scan enough

8There may be more efficient and less efficient orders of treatment.

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-73

Liveness: run

a:=5

x:=8
y:=a+x

z:=a+x
a:=y+z

x:=y+8
y:=3

a:=a+1
y:=3+z

a:=x+y
result:=a+z

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ ∅

∅

∅

∅

∅

∅

∅ ∅

∅

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-73

Liveness: run

a:=5

x:=8
y:=a+x

z:=a+x
a:=y+z

x:=y+8
y:=3

a:=a+1
y:=3+z

a:=x+y
result:=a+z

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ ∅

∅

{r}

∅

∅

∅

∅ ∅

∅

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-73

Liveness: run

a:=5

x:=8
y:=a+x

z:=a+x
a:=y+z

x:=y+8
y:=3

a:=a+1
y:=3+z

a:=x+y
result:=a+z

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ ∅

∅

{r}

∅

∅

∅

∅ ∅

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-73

Liveness: run

a:=5

x:=8
y:=a+x

z:=a+x
a:=y+z

x:=y+8
y:=3

a:=a+1
y:=3+z

a:=x+y
result:=a+z

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ ∅

{x, y.z}

{r}

∅

∅

∅

∅ ∅

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-73

Liveness: run

a:=5

x:=8
y:=a+x

z:=a+x
a:=y+z

x:=y+8
y:=3

a:=a+1
y:=3+z

a:=x+y
result:=a+z

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ ∅

{x, y.z}

{r}

∅

∅

{x, y, z}

∅ {x, y, z}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-73

Liveness: run

a:=5

x:=8
y:=a+x

z:=a+x
a:=y+z

x:=y+8
y:=3

a:=a+1
y:=3+z

a:=x+y
result:=a+z

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ {x, y, z}

{x, y.z}

{r}

∅

∅

{x, y, z}

∅ {x, y, z}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-73

Liveness: run

a:=5

x:=8
y:=a+x

z:=a+x
a:=y+z

x:=y+8
y:=3

a:=a+1
y:=3+z

a:=x+y
result:=a+z

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ {x, y, z}

{x, y.z}

{r}

∅

{x, y, z}

{x, y, z}

∅ {x, y, z}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-73

Liveness: run

a:=5

x:=8
y:=a+x

z:=a+x
a:=y+z

x:=y+8
y:=3

a:=a+1
y:=3+z

a:=x+y
result:=a+z

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

{a, x, z}

∅ {x, y, z}

{x, y.z}

{r}

∅

{x, y, z}

{x, y, z}

∅ {x, y, z}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-73

Liveness: run

a:=5

x:=8
y:=a+x

z:=a+x
a:=y+z

x:=y+8
y:=3

a:=a+1
y:=3+z

a:=x+y
result:=a+z

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

{a, x, z}

∅ {x, y, z}

{x, y.z}

{r}

∅

{x, y, z}

{x, y, z}

{a, z, x} {x, y, z}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-73

Liveness: run

a:=5

x:=8
y:=a+x

z:=a+x
a:=y+z

x:=y+8
y:=3

a:=a+1
y:=3+z

a:=x+y
result:=a+z

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

{a, x, z}

{a, x, y} {x, y, z}

{x, y.z}

{r}

∅

{x, y, z}

{x, y, z}

{a, z, x} {x, y, z}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-73

Liveness: run

a:=5

x:=8
y:=a+x

z:=a+x
a:=y+z

x:=y+8
y:=3

a:=a+1
y:=3+z

a:=x+y
result:=a+z

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

{a, x, z}

{a, x, y} {x, y, z}

{x, y.z}

{r}

∅

{a, x, y, z}

{x, y, z}

{a, z, x} {x, y, z}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-73

Liveness: run

a:=5

x:=8
y:=a+x

z:=a+x
a:=y+z

x:=y+8
y:=3

a:=a+1
y:=3+z

a:=x+y
result:=a+z

return result

B0

B1

B2

B3 B4

B5

B6

∅

{a, z}

{a, x, z}

{a, x, y} {x, y, z}

{x, y.z}

{r}

∅

{a, x, y, z}

{x, y, z}

{a, z, x} {x, y, z}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-73

Liveness: run

a:=5

x:=8
y:=a+x

z:=a+x
a:=y+z

x:=y+8
y:=3

a:=a+1
y:=3+z

a:=x+y
result:=a+z

return result

B0

B1

B2

B3 B4

B5

B6

∅

{a, z}

{a, x, z}

{a, x, y} {x, y, z}

{x, y.z}

{r}

{a, z}

{a, x, y, z}

{x, y, z}

{a, z, x} {x, y, z}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-73

Liveness: run

a:=5

x:=8
y:=a+x

z:=a+x
a:=y+z

x:=y+8
y:=3

a:=a+1
y:=3+z

a:=x+y
result:=a+z

return result

B0

B1

B2

B3 B4

B5

B6

{z}

{a, z}

{a, x, z}

{a, x, y} {x, y, z}

{x, y.z}

{r}

{a, z}

{a, x, y, z}

{x, y, z}

{a, z, x} {x, y, z}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-74

Liveness example: remarks
• the shown traversal strategy is (cleverly) backwards
• example resp. example run simplistic:
• the loop (and the choice of “evaluation” order):

“harmless loop”
after having updated the outLive info for B1 following the
edge from B3 to B1 backwards (propagating flow from B1
back to B3) does not increase the current solution for B3

• no need (in this particular order) for continuing the
iterative search for stabilization

• in other examples: loop iteration cannot be avoided
• note also: end result (after stabilization) independent

from evaluation order! (only some strategies may
stabilize faster. . .)

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-75

Another, more interesting, example

x:=5
y:=a-1

x:=y+8
y:=a+x

a:=y+z
x:=y+x
y:=3

y:=3+z

a:=x+y
result:=a+1

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ ∅

∅

∅

∅

∅

∅

∅ ∅

∅

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-75

Another, more interesting, example

x:=5
y:=a-1

x:=y+8
y:=a+x

a:=y+z
x:=y+x
y:=3

y:=3+z

a:=x+y
result:=a+1

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ ∅

∅

{r}

∅

∅

∅

∅ ∅

∅

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-75

Another, more interesting, example

x:=5
y:=a-1

x:=y+8
y:=a+x

a:=y+z
x:=y+x
y:=3

y:=3+z

a:=x+y
result:=a+1

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ ∅

∅

{r}

∅

∅

∅

∅ ∅

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-75

Another, more interesting, example

x:=5
y:=a-1

x:=y+8
y:=a+x

a:=y+z
x:=y+x
y:=3

y:=3+z

a:=x+y
result:=a+1

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ ∅

{x, y}

{r}

∅

∅

∅

∅ ∅

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-75

Another, more interesting, example

x:=5
y:=a-1

x:=y+8
y:=a+x

a:=y+z
x:=y+x
y:=3

y:=3+z

a:=x+y
result:=a+1

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ ∅

{x, y}

{r}

∅

∅

{x, y}

∅ {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-75

Another, more interesting, example

x:=5
y:=a-1

x:=y+8
y:=a+x

a:=y+z
x:=y+x
y:=3

y:=3+z

a:=x+y
result:=a+1

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ {x, y}

{x, y}

{r}

∅

∅

{x, y}

∅ {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-75

Another, more interesting, example

x:=5
y:=a-1

x:=y+8
y:=a+x

a:=y+z
x:=y+x
y:=3

y:=3+z

a:=x+y
result:=a+1

return result

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ {x, y}

{x, y}

{r}

∅

{x, y}

{x, y}

∅ {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-75

Another, more interesting, example

x:=5
y:=a-1

x:=y+8
y:=a+x

a:=y+z
x:=y+x
y:=3

y:=3+z

a:=x+y
result:=a+1

return result

B0

B1

B2

B3 B4

B5

B6

∅

{y, a}

∅

∅ {x, y}

{x, y}

{r}

∅

{x, y}

{x, y}

∅ {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-75

Another, more interesting, example

x:=5
y:=a-1

x:=y+8
y:=a+x

a:=y+z
x:=y+x
y:=3

y:=3+z

a:=x+y
result:=a+1

return result

B0

B1

B2

B3 B4

B5

B6

∅

{y, a}

∅

∅ {x, y}

{x, y}

{r}

{y, a}

{x, y}

{x, y, a}

∅ {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-75

Another, more interesting, example

x:=5
y:=a-1

x:=y+8
y:=a+x

a:=y+z
x:=y+x
y:=3

y:=3+z

a:=x+y
result:=a+1

return result

B0

B1

B2

B3 B4

B5

B6

{a}

{y, a}

∅

∅ {x, y}

{x, y}

{r}

{y, a}

{x, y}

{x, y, a}

∅ {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-75

Another, more interesting, example

x:=5
y:=a-1

x:=y+8
y:=a+x

a:=y+z
x:=y+x
y:=3

y:=3+z

a:=x+y
result:=a+1

return result

B0

B1

B2

B3 B4

B5

B6

{a}

{y, a}

{x, z, a}

∅ {x, y}

{x, y}

{r}

{y, a}

{a, x, y}

{x, y, a}

∅ {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-75

Another, more interesting, example

x:=5
y:=a-1

x:=y+8
y:=a+x

a:=y+z
x:=y+x
y:=3

y:=3+z

a:=x+y
result:=a+1

return result

B0

B1

B2

B3 B4

B5

B6

{a}

{y, a}

{x, z, a}

∅ {x, y}

{x, y}

{r}

{y, a}

{a, x, y}

{x, y, a}

{x, z, a} {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-75

Another, more interesting, example

x:=5
y:=a-1

x:=y+8
y:=a+x

a:=y+z
x:=y+x
y:=3

y:=3+z

a:=x+y
result:=a+1

return result

B0

B1

B2

B3 B4

B5

B6

{a}

{y, a}

{x, z, a}

{x, y, z} {x, y}

{x, y}

{r}

{y, a}

{a, x, y}

{x, y, a}

{x, z, a} {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-75

Another, more interesting, example

x:=5
y:=a-1

x:=y+8
y:=a+x

a:=y+z
x:=y+x
y:=3

y:=3+z

a:=x+y
result:=a+1

return result

B0

B1

B2

B3 B4

B5

B6

{a}

{y, a}

{x, z, a}

{x, y, z} {x, y}

{x, y}

{r}

{y, a}

{a, x, y, z}

{x, y, a}

{x, z, a} {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-75

Another, more interesting, example

x:=5
y:=a-1

x:=y+8
y:=a+x

a:=y+z
x:=y+x
y:=3

y:=3+z

a:=x+y
result:=a+1

return result

B0

B1

B2

B3 B4

B5

B6

{a}

{y, z, a}

{x, z, a}

{x, y, z} {x, y}

{x, y}

{r}

{y, a}

{a, x, y, z}

{x, y, a}

{x, z, a} {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-75

Another, more interesting, example

x:=5
y:=a-1

x:=y+8
y:=a+x

a:=y+z
x:=y+x
y:=3

y:=3+z

a:=x+y
result:=a+1

return result

B0

B1

B2

B3 B4

B5

B6

{a}

{y, z, a}

{x, z, a}

{x, y, z} {x, y}

{x, y}

{r}

{y, z, a}

{a, x, y, z}

{x, y, z, a}

{x, z, a} {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-75

Another, more interesting, example

x:=5
y:=a-1

x:=y+8
y:=a+x

a:=y+z
x:=y+x
y:=3

y:=3+z

a:=x+y
result:=a+1

return result

B0

B1

B2

B3 B4

B5

B6

{a, z}

{y, z, a}

{x, z, a}

{x, y, z} {x, y}

{x, y}

{r}

{y, z, a}

{a, x, y, z}

{x, y, z, a}

{x, z, a} {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-76

Example remarks

• loop: this time leads to updating estimation more than
once

• evaluation order not chose ideally

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-77

Precomputing the block-local “liveness
effects”

• precomputation of the relevant info: efficiency
• traditionally: represented as kill and generate

information
• here (for liveness)

1. kill: variable instances, which are overwritten
2. generate: variables used in the block (before

overwritten)
3. rests: all other variables won’t change their status

Constraint per basic block (transfer function)

inLive = outLive/kill(B) ∪ generate(B)

• note:
• order of kill and generate in above’s equation
• a variable killed in a block may be “revived” in a block

• simplest (one line) example: x := x +1

Order of kill and generate
As just remarked, one should keep in mind the oder of kill
and generate in the definition of transfer functions. In
principle, one could also arrange the opposite order
(interpreting kill and generatate slightly differently). One
can also define the so-called transfer function directly,
without splitting into kill and generate (but for many (but
not all) such a separation in kill and generate functionality is
possible and convenient to do). Indeed using transfer
functions (and kill and generate) works for many other data
flow analyses as well, not just liveness analysis. Therefore,
understanding liveness analysis basically amounts to having
understood data flow analysis.

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-78

Example once again: kill and gen

k: {x, y}, g: {a}

k: {x, y}, g: {a, y}

k: {a}, g: {y, z} k: {x, y}, g: {x, y}

k: {y}, g: {z}

k: {r, a}, g: {x, y}

k: {}, g: {r}

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ ∅

∅

∅

∅

∅

∅

∅ ∅

∅

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-78

Example once again: kill and gen

k: {x, y}, g: {a}

k: {x, y}, g: {a, y}

k: {a}, g: {y, z} k: {x, y}, g: {x, y}

k: {y}, g: {z}

k: {r, a}, g: {x, y}

k: {}, g: {r}

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ ∅

∅

{r}

∅

∅

∅

∅ ∅

∅

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-78

Example once again: kill and gen

k: {x, y}, g: {a}

k: {x, y}, g: {a, y}

k: {a}, g: {y, z} k: {x, y}, g: {x, y}

k: {y}, g: {z}

k: {r, a}, g: {x, y}

k: {}, g: {r}

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ ∅

∅

{r}

∅

∅

∅

∅ ∅

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-78

Example once again: kill and gen

k: {x, y}, g: {a}

k: {x, y}, g: {a, y}

k: {a}, g: {y, z} k: {x, y}, g: {x, y}

k: {y}, g: {z}

k: {r, a}, g: {x, y}

k: {}, g: {r}

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ ∅

{x, y}

{r}

∅

∅

∅

∅ ∅

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-78

Example once again: kill and gen

k: {x, y}, g: {a}

k: {x, y}, g: {a, y}

k: {a}, g: {y, z} k: {x, y}, g: {x, y}

k: {y}, g: {z}

k: {r, a}, g: {x, y}

k: {}, g: {r}

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ ∅

{x, y}

{r}

∅

∅

{x, y}

∅ {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-78

Example once again: kill and gen

k: {x, y}, g: {a}

k: {x, y}, g: {a, y}

k: {a}, g: {y, z} k: {x, y}, g: {x, y}

k: {y}, g: {z}

k: {r, a}, g: {x, y}

k: {}, g: {r}

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ {x, y}

{x, y}

{r}

∅

∅

{x, y}

∅ {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-78

Example once again: kill and gen

k: {x, y}, g: {a}

k: {x, y}, g: {a, y}

k: {a}, g: {y, z} k: {x, y}, g: {x, y}

k: {y}, g: {z}

k: {r, a}, g: {x, y}

k: {}, g: {r}

B0

B1

B2

B3 B4

B5

B6

∅

∅

∅

∅ {x, y}

{x, y}

{r}

∅

{x, y}

{x, y}

∅ {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-78

Example once again: kill and gen

k: {x, y}, g: {a}

k: {x, y}, g: {a, y}

k: {a}, g: {y, z} k: {x, y}, g: {x, y}

k: {y}, g: {z}

k: {r, a}, g: {x, y}

k: {}, g: {r}

B0

B1

B2

B3 B4

B5

B6

∅

{y, a}

∅

∅ {x, y}

{x, y}

{r}

∅

{x, y}

{x, y}

∅ {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-78

Example once again: kill and gen

k: {x, y}, g: {a}

k: {x, y}, g: {a, y}

k: {a}, g: {y, z} k: {x, y}, g: {x, y}

k: {y}, g: {z}

k: {r, a}, g: {x, y}

k: {}, g: {r}

B0

B1

B2

B3 B4

B5

B6

∅

{y, a}

∅

∅ {x, y}

{x, y}

{r}

{y, a}

{x, y}

{x, y, a}

∅ {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-78

Example once again: kill and gen

k: {x, y}, g: {a}

k: {x, y}, g: {a, y}

k: {a}, g: {y, z} k: {x, y}, g: {x, y}

k: {y}, g: {z}

k: {r, a}, g: {x, y}

k: {}, g: {r}

B0

B1

B2

B3 B4

B5

B6

{a}

{y, a}

∅

∅ {x, y}

{x, y}

{r}

{y, a}

{x, y}

{x, y, a}

∅ {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-78

Example once again: kill and gen

k: {x, y}, g: {a}

k: {x, y}, g: {a, y}

k: {a}, g: {y, z} k: {x, y}, g: {x, y}

k: {y}, g: {z}

k: {r, a}, g: {x, y}

k: {}, g: {r}

B0

B1

B2

B3 B4

B5

B6

{a}

{y, a}

{x, z, a}

∅ {x, y}

{x, y}

{r}

{y, a}

{a, x, y}

{x, y, a}

∅ {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-78

Example once again: kill and gen

k: {x, y}, g: {a}

k: {x, y}, g: {a, y}

k: {a}, g: {y, z} k: {x, y}, g: {x, y}

k: {y}, g: {z}

k: {r, a}, g: {x, y}

k: {}, g: {r}

B0

B1

B2

B3 B4

B5

B6

{a}

{y, a}

{x, z, a}

∅ {x, y}

{x, y}

{r}

{y, a}

{a, x, y}

{x, y, a}

{x, z, a} {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-78

Example once again: kill and gen

k: {x, y}, g: {a}

k: {x, y}, g: {a, y}

k: {a}, g: {y, z} k: {x, y}, g: {x, y}

k: {y}, g: {z}

k: {r, a}, g: {x, y}

k: {}, g: {r}

B0

B1

B2

B3 B4

B5

B6

{a}

{y, a}

{x, z, a}

{x, y, z} {x, y}

{x, y}

{r}

{y, a}

{a, x, y}

{x, y, a}

{x, z, a} {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-78

Example once again: kill and gen

k: {x, y}, g: {a}

k: {x, y}, g: {a, y}

k: {a}, g: {y, z} k: {x, y}, g: {x, y}

k: {y}, g: {z}

k: {r, a}, g: {x, y}

k: {}, g: {r}

B0

B1

B2

B3 B4

B5

B6

{a}

{y, a}

{x, z, a}

{x, y, z} {x, y}

{x, y}

{r}

{y, a}

{a, x, y, z}

{x, y, a}

{x, z, a} {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-78

Example once again: kill and gen

k: {x, y}, g: {a}

k: {x, y}, g: {a, y}

k: {a}, g: {y, z} k: {x, y}, g: {x, y}

k: {y}, g: {z}

k: {r, a}, g: {x, y}

k: {}, g: {r}

B0

B1

B2

B3 B4

B5

B6

{a}

{y, z, a}

{x, z, a}

{x, y, z} {x, y}

{x, y}

{r}

{y, a}

{a, x, y, z}

{x, y, a}

{x, z, a} {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-78

Example once again: kill and gen

k: {x, y}, g: {a}

k: {x, y}, g: {a, y}

k: {a}, g: {y, z} k: {x, y}, g: {x, y}

k: {y}, g: {z}

k: {r, a}, g: {x, y}

k: {}, g: {r}

B0

B1

B2

B3 B4

B5

B6

{a}

{y, z, a}

{x, z, a}

{x, y, z} {x, y}

{x, y}

{r}

{y, z, a}

{a, x, y, z}

{x, y, z, a}

{x, z, a} {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-78

Example once again: kill and gen

k: {x, y}, g: {a}

k: {x, y}, g: {a, y}

k: {a}, g: {y, z} k: {x, y}, g: {x, y}

k: {y}, g: {z}

k: {r, a}, g: {x, y}

k: {}, g: {r}

B0

B1

B2

B3 B4

B5

B6

{a, z}

{y, z, a}

{x, z, a}

{x, y, z} {x, y}

{x, y}

{r}

{y, z, a}

{a, x, y, z}

{x, y, z, a}

{x, z, a} {x, y}

{r}

∅

INF5110 –
Compiler

Construction

Targets

Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Code generation
algo

Global analysis

10-79

References I

*Bibliography

[1] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

	Code generation
	Targets
	Targets & Outline
	Intro
	2AC and costs of instructions
	Basic blocks and control-flow graphs
	Code generation algo
	Global analysis

