Chapter 11
Design, prototyping and construction
Overview

- Prototyping and construction
- Conceptual design
- Physical design
- Generating prototypes
- Support for design
Prototyping and construction

• What is a prototype?
• Why prototype?
• Different kinds of prototyping
 low fidelity
 high fidelity
• Compromises in prototyping
 vertical
 horizontal
• Construction
What is a prototype?

In other design fields a prototype is a small-scale model:

• a miniature car
• a miniature building or town
• the example here comes from a 3D printer
What is a prototype?

In interaction design it can be (among other things):

• a series of screen sketches
• a storyboard, i.e. a cartoon-like series of scenes
• a Powerpoint slide show
• a video simulating the use of a system
• a lump of wood (e.g. PalmPilot)
• a cardboard mock-up
• a piece of software with limited functionality written in the target language or in another language
Why prototype?

- Evaluation and feedback are central to interaction design
- Stakeholders can see, hold, interact with a prototype more easily than a document or a drawing
- Team members can communicate effectively
- You can test out ideas for yourself
- It encourages reflection: very important aspect of design
- Prototypes answer questions, and support designers in choosing between alternatives
Filtering dimensions of prototyping

<table>
<thead>
<tr>
<th>Filtering dimension</th>
<th>Example variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>size; color; shape; margin; form; weight; texture; proportion; hardness; transparency; gradation; haptic; sound</td>
</tr>
<tr>
<td>Data</td>
<td>data size; data type (e.g., number; string; media); data use; privacy type; hierarchy; organization</td>
</tr>
<tr>
<td>Functionality</td>
<td>system function; users’ functionality need</td>
</tr>
<tr>
<td>Interactivity</td>
<td>input behavior; output behavior; feedback behavior; information behavior</td>
</tr>
<tr>
<td>Spatial structure</td>
<td>arrangement of interface or information elements; relationship among interface or information elements – which can be either two-or three-dimensional, intangible or tangible, or mixed</td>
</tr>
</tbody>
</table>
Manifestation dimensions of prototyping

<table>
<thead>
<tr>
<th>Manifestation dimension</th>
<th>Definition</th>
<th>Example variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Medium (either visible or invisible) used to form a prototype</td>
<td>Physical media, e.g., paper, wood, and plastic; tools for manipulating physical matters, e.g., knife, scissors, pen, and sandpaper; computational prototyping tools, e.g., Macromedia Flash and Visual Basic; physical computing tools, e.g., Phidgets and Basic Stamps; available existing artifacts, e.g., a beeper to simulate a heart attack</td>
</tr>
<tr>
<td>Resolution</td>
<td>Level of detail or sophistication of what is manifested (corresponding to fidelity)</td>
<td>Accuracy of performance, e.g., feedback time responding to an input by a user (giving user feedback in a paper prototype is slower than in a computer-based one); appearance details; interactivity details; realistic versus faked data</td>
</tr>
<tr>
<td>Scope</td>
<td>Range of what is covered to be manifested</td>
<td>Level of contextualization, e.g., website color scheme testing with only color scheme charts or color schemes placed in a website layout structure; book search navigation usability testing with only the book search related interface or the whole navigation interface</td>
</tr>
</tbody>
</table>
What to prototype?

- Technical issues
- Work flow, task design
- Screen layouts and information display
- Difficult, controversial, critical areas
Low-fidelity Prototyping

• Uses a medium which is unlike the final medium, e.g. paper, cardboard

• Is quick, cheap and easily changed

• Examples:
 sketches of screens, task sequences, etc
 ‘Post-it’ notes
 storyboards
 ‘Wizard-of-Oz’
Storyboards

- Often used with scenarios, bringing more detail, and a chance to role play

- It is a series of sketches showing how a user might progress through a task using the device

- Used early in design
Sketching

• Sketching is important to low-fidelity prototyping
• Don’t be inhibited about drawing ability. Practice simple symbols
Card-based prototypes

- Index cards (3 X 5 inches)
- Each card represents one screen or part of screen
- Often used in website development
‘Wizard-of-Oz’ prototyping

- The user thinks they are interacting with a computer, but a developer is responding to output rather than the system.
- Usually done early in design to understand users’ expectations.
- What is ‘wrong’ with this approach?

User

{}
High-fidelity prototyping

• Uses materials that you would expect to be in the final product.

• Prototype looks more like the final system than a low-fidelity version.

• For a high-fidelity software prototype common environments include Macromedia Director, Visual Basic, and Smalltalk.

• Danger that users think they have a full system......see compromises
Compromises in prototyping

• All prototypes involve compromises
• For software-based prototyping maybe there is a slow response? sketchy icons? limited functionality?
• Two common types of compromise
 • ‘horizontal’: provide a wide range of functions, but with little detail
 • ‘vertical’: provide a lot of detail for only a few functions
• Compromises in prototypes mustn’t be ignored. Product needs engineering
Construction

• Taking the prototypes (or learning from them) and creating a whole
• Quality must be attended to: usability (of course), reliability, robustness, maintainability, integrity, portability, efficiency, etc
• Product must be engineered
 Evolutionary prototyping
 ‘Throw-away’ prototyping
Conceptual design: from requirements to design

• Transform user requirements/needs into a conceptual model

• “a description of the proposed system in terms of a set of integrated ideas and concepts about what it should do, behave and look like, that will be understandable by the users in the manner intended”

• Don’t move to a solution too quickly. Iterate, iterate, iterate

• Consider alternatives: prototyping helps
Is there a suitable metaphor?

• Interface metaphors combine familiar knowledge with new knowledge in a way that will help the user understand the product.

• Three steps: understand functionality, identify potential problem areas, generate metaphors

• Evaluate metaphors:
 How much structure does it provide?
 How much is relevant to the problem?
 Is it easy to represent?
 Will the audience understand it?
 How extensible is it?
Considering interaction types

• Which interaction type?
 How the user invokes actions
 Instructing, conversing, manipulating or exploring

• Do different interface types provide insight?
 WIMP, shareable, augmented reality, etc
Expanding the conceptual model

• What functions will the product perform? What will the product do and what will the human do (task allocation)?

• How are the functions related to each other? Sequential or parallel? Categorisations, e.g. all actions related to telephone memory storage

• What information needs to be available? What data is required to perform the task? How is this data to be transformed by the system?
Using scenarios in conceptual design

- Express proposed or imagined situations
- Used throughout design in various ways
 - scripts for user evaluation of prototypes
 - concrete examples of tasks
 - as a means of co-operation across professional boundaries
- Plus and minus scenarios to explore extreme cases
Generate storyboard from scenario

1. Thomson family gather around
2. System suggests flotilla
3. System shows descriptions
4. Further details?
5. Summary printed

System asks for details

WELCOME
Generate card-based prototype from use case

TRAVEL INFORMATION

- Visa requirements
- Vaccination Recommendations
- What to pack before you go

VISA REQUIREMENTS

- Destination Country
- Traveller's Nationality

VISA REQUIREMENTS FOR (COUNTRY)

Print
Support for design

- Patterns for interaction design
 - individual patterns
 - pattern languages
 - pattern libraries

- Open source systems and components

- Tools and environments
Summary

• Different kinds of prototyping are used for different purposes and at different stages

• Prototypes answer questions, so prototype appropriately

• Construction: the final product must be engineered appropriately

• Conceptual design (the first step of design)
 • Consider interaction types and interface types to prompt creativity

• Storyboards can be generated from scenarios

• Card-based prototypes can be generated from use cases