
ICT

INF5120 – Modellbasert

Systemutvikling

 F07-2: Architectural Patterns, Design Patterns

and Refactoring

Lecture 27.02.2017

Arne-Jørgen Berre

ICT

Analysis
(Domain)
Patterns

Architecture Patterns
(Macro Architecture)

Design Patterns
(Micro Architecture)

Domain Framework

(OO) Reusable
Components

Analysis Design Implementation

Idioms
(Language
dependent
patterns)

Patterns: From Analysis to

Implementation

ICT

Patterns on various design levels

Object level patterns: GRASP

Collaboration level patterns: Design Patterns

Module level patterns: Architecture Patterns

R
e
fa

c
to

rin
g

ICT

General Responsibility Assignment

Software Patterns.

Responsibility assignment.

1. knowing (answering)

2. or, doing

Guidance and evaluation in

mechanistic design.

1. Expert
2. Creator
3. Controller
4. Low Coupling
5. High Cohesion
6. Polymorphism
7. Pure Fabrication
8. Indirection
9. Don’t Talk to

Strangers

ICT

Patterns – Abstract Factory

ICT

Design patterns

(with UML & Java examples)

Based on:
Gamma/Helm/Johnson/Vlissides (GoF):
Design Patterns, 1995

R. Ryan:, D. Rosenstrauch:
Design Patterns in Java, 1997

ICT 7

What are patterns?

 "A solution to a problem in a context"?

 Insufficient, says the “Gang of Four” (GOF)

 What’s missing? 3 things:

 Recurrence

 Teaching (e.g., implementation consequences, trade-offs, and variations)

 A name

 GOF:

 Patterns contain 4 essential elements

 pattern name

 problem

 solution

 consequences

 Christopher Alexander (as quoted in the GOF book):

 "Each pattern describes a problem which occurs over and over again ... and then

describes the core of [a] solution to that problem, in such a way that you can use

this solution a million times over, without ever doing it the same way twice."

ICT

Design Pattern

A design pattern describes a basic scheme for structuring
subsystems and components of a software architecture as
well as their relationships. It identifies, names, and abstracts
a common structural or functional principle by describing
its different parts, their collaboration and responsibilities.

ICT

GOF (Gang of Four) 23

Patterns

 Creational Patterns (5)

 Abstract Factory, Builder, Factory Method, Prototype,

Singleton

 Structural Patterns (7)

 Adapter, Bridge, Composite, Decorator, Façade,

Flyweight, Proxy

 Behavioural Patterns (11)

 Chain of responsibility, Command, Interpreter,

Iterator, Mediator, Memento, Observer, State,

Strategy, Template method, Visitor

ICT 10

Skylight Spelunker

 “Skylight Spelunker” is a Java framework for a file browser

similar in appearance to the “Windows Explorer” included

with Windows 98.

 Spelunker has two views:

 Disks and folders in tree structure (FolderView - Left pane)

 All contents of selected folder (ContentsView - Right pane)

 Spelunker provides support for :

 Multiple ways of arranging ContentsView icons

 Accessing network drives as well as local

 Deleting, renaming and viewing disk contents

ICT 11

Windows Explorer Screen Shot

FolderView ContentsView

ICT 12

Patterns in Spelunker example

 Composite

 used to model the file tree data structure

 Strategy

 used to layout the file and folder icons in ContentsView

 Observer

 used to re-display FolderViews and ContentsViews after user

requests

 Proxy and State

 used to model password-protected network disk drives

 Command

 used to carry out user requests

ICT 13

The “Composite” pattern

 Problem

 What is the best way to model the Spelunker file tree?

 The Spelunker file tree is a classic tree structure.

Thus we need a leaf class (File) and a tree class (Folder)

which contains pointers to the Files and Folders in it.

 However, there are many operations that are relevant

to both a File and a Folder (e.g., getSize()).

 The user doesn’t treat Files and Folders differently,

so why should calling modules have to?

 The design would be less complex and more flexible

if the calling module could initiate operations on a target object,

without knowing whether the target was a File or a Folder.

 File and Folder should share a common interface.

ICT 14

The “Composite” pattern

 How the pattern solves the problem

 Intent

 “Compose objects into tree structures to represent part-whole

hierarchies. Composite lets clients treat individual objects and

compositions of objects uniformly.” [GHJV94]

 Explanation

 The Composite pattern works by having leaf and tree objects share a

common interface.

 Create an abstract base class (or interface) that represents both File

and Folder.

 Files and Folders need to provide implementations for the same

operations, but they can implement them differently.

 E.g., leaves usually handle an operation directly, while trees usually

forward the operation to its children (and/or perform additional work

before or after forwarding)

ICT 15

The “Composite” pattern

 How the pattern solves the problem, cont.

 Gang of Four UML [GHJV94]

children

Leaf

Operation()

Client

Composite

Operation()

Add(Component)

Remove(Component)

GetChild(int)

Component

Operation()

Add(Component)

Remove(Component)

GetChild(int)

for all g in children

g.Operation();

ICT 16

The “Composite” pattern

 Use of the pattern in Spelunker

 Both File and Folder share a common interface: Node.

 Spelunker UML

children

File

getSize()

Resource Tree

Folder

getSize()

getContents()

Node

getSize()

size =

total of size

of each child

ICT 17

The “Composite” pattern

 Use of the pattern in Spelunker, cont.

 Code examples
public class File extends Node
{

private long size = 0;

public long getSize()
{

return size;
}

}

public class Folder extends Node
{

private Vector contents;

public long getSize()
{

long size = 0;

if (contents != null) {
Enumeration e = contents.elements();
while (e.hasMoreElements()) {

size += ((Node)e.nextElement()).getSize();
}

}
return size;

}
}

ICT 18

The “Strategy” pattern

 Problem

 The way in which the icons are arranged varies according to user

preference - the user may choose an iconic view only, or a

short/long detail view.

 Including the algorithms to arrange the icons as methods in

ContentsView would make it cumbersome to add new icon

arrangement algorithms to ContentsView; ContentsView would

have to be subclassed and some implementation details might

have to be unnecessarily exposed.

 A switch statement would most likely be used to choose the

correct arrangement algorithm.

ICT 19

The “Strategy” pattern

 How the pattern solves the problem

 Intent

 “Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from

clients that use it.” [GHJV94]

 Explanation

 The algorithms for arranging the icons are encapsulated into a

separate interface.

 The correct arrangement algorithm is chosen polymorphically.

 ContentsView neither knows nor cares which arrangement is

presently in use.

ICT 20

The “Strategy” pattern

 How the pattern solves the problem, cont.

 Gang of Four UML [GHJV94]

Strategy

AlgorithmInterface()

ConcreteStrategyC

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

Context

ContextInterface()

strategy

ConcreteStrategyA

AlgorithmInterface()

ICT 21

The “Strategy” pattern

 Use of the pattern in Spelunker
 ContentsView delegates the task of arranging the icons to ViewManager.

 Spelunker UML

ViewManager

updateVisibleNodes()

ListViewManager

updateVisibleNodes()

IconViewManager

updateVisibleNodes()

ContentsView

updateVisibleNodes()

strategy

ICT 22

The “Strategy” pattern

 Use of the pattern in Spelunker, cont.

 Code examples

public class ContentsView extends ResourceTreeView

{

private ViewManager viewManager;

public void showIconView()

{

viewManager = new IconViewManager(this);

}

public void showListView(boolean showDetail)

{

viewManager = new ListViewManager(this, showDetail);

}

public void updateVisibleNodes(Folder activeFolder)

{

viewManager.updateVisibleNodes(activeFolder);

}

}

public interface ViewManager

{

public void updateVisibleNodes(Folder activeFolder);

}

ICT 23

The “Observer” pattern

 Problem

 What is the best way to keep all views of the file tree in sync?

 We need to be able to re-draw the display window after the user

modifies a file/folder (e.g., when user clicks on a folder to select it)

 However, there may be several windows and panes that display the

same file/folder. We need to re-draw all of them.

 To do this, the tree needs to keep a list of all of its views, and notify

each one after a modification is done.

 However, the tree and view objects might:

 have little other relationship besides this notification

 need to have their code modified independently

 need to be reused separately

 So it would be preferable not to make them too tightly coupled to each

other.

Ref. related to MVC,

Model-View-Controller

Pattern

https://en.wikipedia.org/wiki/Modelviewcontroller

Trygve Reenskaug, UiO/SINTEF, Norway

https://en.wikipedia.org/wiki/Modelviewcontroller

ICT 24

The “Observer” pattern

 How the pattern solves the problem

 Intent

 “Define a one-to-many dependency between objects so that when one

object changes state, all its dependents are notified and updated

automatically.” [GHJV94]

 Explanation

 The Observer pattern works by defining an abstract class (or

interface) with a single method signature. The method will be used as

a mechanism for “observer” objects to be notified of changes in their

“subject”.

 Concrete observer sub-classes will each provide their own

implementation of what to do when the notification occurs.

 The subject can notify each observer the same way, without caring

which specific sub-class of observer the object actually is.

ICT 25

The “Observer” pattern

 How the pattern solves the problem, cont.

 Gang of Four UML [GHJV94]

subject

observers

Observer

Update()

Subject

Attach(Observer)
Detach(Observer)

Notify()

ConcreteSubject

SubjectState

GetState()

ConcreteObserver

ObserverState

Update()

return SubjectState
ObserverState = subject.GetState()

for all o in observers

o.update();

ICT 26

The “Observer” pattern

 Use of the pattern in Spelunker

 ResourceTree notifies all ResourceTreeViews whenever its

state is modified.

 Spelunker UML
ResourceTreeObserver

subject

observers

resourceTreeChanged(Folder)

ResourceTree

activeFolder

AttachObserver(ResourceTreeObserver)

DetachObserver(ResourceTreeObserver)

NotifyObservers()

ResourceTreeView

updateVisibleNodes(activeFolder);

repaint();Enumeration e = observers.elements();

while (e.hasMoreElements()) {

ResourceTreeObserver o = (ResourceTreeObserver)e.nextElement();

o.resourceTreeChanged(activeFolder);

}

resourceTreeChanged(

Folder activeFolder)

ICT 27

The “Observer” pattern

 Use of the pattern in Spelunker, cont.
 Code examples

public class ResourceTree {
private Vector observers;

public void setActiveFolder(Folder folder)
{

if (activeFolder != folder) {
activeFolder = folder;
notifyObservers();

}
}

public void notifyObservers()
{

Enumeration e = observers.elements();
while (e.hasMoreElements()) {

((ResourceTreeObserver)e.nextElement()).resourceTreeChanged(activeFolder);
}

}
}

public abstract class ResourceTreeView extends Panel implements ResourceTreeObserver {

public void resourceTreeChanged(Folder activeFolder)
{

updateVisibleNodes(activeFolder);
repaint();

}
}

ICT 28

The “Proxy” pattern

 Problem

 Network drives might require the user to login before the drive can

be accessed - however, the protocol for accessing a network drive

when logged in might not differ from accessing a local drive.

 LocalDrive should not contain network code - this code should be

moved to a separate class, i.e. NetworkDrive.

 Creating NetworkDrive as a subclass of LocalDrive would be

complicated and unwieldy - we would have to check access

everytime a drive operation was requested.

 Creating NetworkDrive as a subclass of Folder would force us to

duplicate all drive access operations already in LocalDrive.

ICT 29

The “Proxy” pattern

 How the pattern solves the problem

 Intent

 “Provide a surrogate or placeholder for another object to control

access to it.” [GHJV94]

 “A Protection Proxy controls access to the original object.

Protection Proxies are useful when objects should have different

access rights.” [GHJV94]

 Explanation

 The network protocols necessary for logging in and out are

moved into a subclass of Folder called NetworkDrive.

 NetworkDrive contains the code necessary for logging in and

out of a network drive.

 After logging in, NetworkDrive delegates drive access requests

to LocalDrive (indirectly through ConnectionState).

ICT 30

The “Proxy” pattern

 How the pattern solves the problem, cont.

 Gang of Four UML [GHJV94]

Subject

Request()

Proxy

Request()

RealSubject

Request()

realSubject

...

RealSubject->Request();

...

ICT 31

The “Proxy” pattern

 Use of the pattern in Spelunker

 NetworkDrive acts as a Proxy for a remote LocalDrive.

 Spelunker UML

Note:

NetworkDrive delegates to

LocalDrive indirectly through

ConnectionOpenedState.

Folder

getContents()

NetworkDrive

getContents()

LocalDrive

getContents()

realSubject

...

localDrive.getContents();

...

ICT 32

The “Proxy” pattern

 Use of the pattern in Spelunker, cont.

 Code examples

public class NetworkDrive extends Folder
{

private ConnectionState connectionState;

public Vector getContents(Folder folder)
{

return connectionState.getContents(folder);
}

}

public class ConnectionOpenedState extends Object implements ConnectionState
{

private LocalDrive localDrive;

public Vector getContents(Folder folder)
{

return localDrive.getContents(folder);
}

}

ICT 33

The “State” pattern

 Problem

 What is the best way to perform password-protection processing

on network drives?

 Network drives need to act differently depending on whether the user

has logged in or not; e.g., the user cannot examine or modify a

network drive until they log in.

 This can be accomplished by checking a condition before executing

each operation; e.g., “if (loggedIn())”. But this is ugly code, as well as

being inefficient and repetitive.

 This is also difficult to extend: what if we need to implement another

set of checks for another condition; e.g., “if (!disconnected())”?

 The design would be less complex and more flexible if we could

isolate in one location all behavior related to a particular state of the

object.

ICT 34

The “State” pattern

 How the pattern solves the problem

 Intent

 “Allow an object to alter its behavior when its internal state changes.

The object will appear to change its class.” [GHJV94]

 Explanation

 The State pattern works by creating an abstract class (or interface) with

method signatures for every state-dependent operation in the main object, and

concrete sub-classes that provide implementations for these methods. The

main object then delegates each of these operations to the state object it is

currently using.

 Each state class can implement each operation in its own way (e.g., perform

unique processing, disallow the operation, throw an exception, etc.).

 The main object can change its behavior by changing the state object it is

using.

 This is a very clean design - and also extendible: we can simply add new state

classes to add additional behavior, without modifying the original object.

ICT 35

The “State” pattern

 How the pattern solves the problem, cont.

 Gang of Four UML [GHJV94]

state

Context

Request()

ConcreteStateB

HandleRequest()

State

HandleRequest()

ConcreteStateA

HandleRequest()

state.HandleRequest()

ICT 36

The “State” pattern

 Use of the pattern in Spelunker

 The NetworkDrive delegates operations to its

ConnectionState.

 Spelunker UML

state

NetworkDrive

getContents()

ConnectionClosedState

getContents()

ConnectionState

getContents()

ConnectionOpenedState

getContents()

return

connectionState.getContents()

changeState(ConnectionState)

ICT 37

The “State” pattern

 Use of the pattern in Spelunker, cont.

 Code examples
public class ConnectionClosedState implements ConnectionState {

public void login() {
LocalDrive localDrive = null;

// login and initiate localDrive

networkDrive.changeState(new ConnectionOpenedState(networkDrive, localDrive));
}

public Vector getContents(Folder folder) {
login();
return networkDrive.getContents(folder);

}
}

public class ConnectionOpenedState implements ConnectionState {
public void login() {

// display error
}

public Vector getContents(Folder folder) {
return localDrive.getContents(folder);

}
}

ICT 38

The “Command” pattern

 Problem

 A request might need access to any number of classes.

 The initiator of the request should not be tightly coupled to

these classes.

 Requests should be storable to support undoable

operations; therefore, requests must be accessible through

some common interface.

 How do we implement requests without coupling them to the

initiator or target, or requiring the initiator to know the

implementation details of the request ?

 Implementing the code for all requests in one class would

centralize the application and make it difficult to create new

requests.

ICT 39

The “Command” pattern

 How the pattern solves the problem

 Intent

 “Encapsulate a request as an object, thereby letting you parameterize

clients with different requests, queue or log requests, and support

undoable operations.” [GHJV94]

 Explanation

 Places the implementation of a request into a separate class.

 Initiators of the request do not know any implementation details of the

request - they simply fire it off by calling the execute() method.

 The targets of the request do not need to know anything about the

request.

 All requests are accessible through a common interface.

 The correct implementation is chosen polymorphically.

ICT 40

The “Command” pattern

 How the pattern solves the problem, cont.

 Gang of Four UML [GHJV94]

Command

Execute()

ConcreteCommand

Execute()

Receiver

Action()
receiver

Client Invoker

receiver->Action();

state

ICT 41

The “Command” pattern

 Use of the pattern in Spelunker

 Used to implement user operations on files and folders.

 Spelunker UML

Command

execute()

DeleteCommand

execute()

ContentsView

getSelectedNodes()
receiver

Skylight

Spelunker

CommandButton

...

Vector selectedNodes = contentsView.getSelectedNodes();

...

if (!node.deleteNode(node)) {

...

ICT 42

The “Command” pattern

 Use of the pattern in Spelunker, cont.
 Code examples

public class CommandButton extends Button {
private Command command;

public CommandButton(String label, Command command) {
super(label);
this.command = command;

}

public boolean action(Event e,
Object what) {

command.execute();
return super.action(e, what);

}
}

public class DeleteCommand extends Command {
private ContentsView contentsView;
private ResourceTree resourceTree;

public void execute() {
(code for retrieving all selected Nodes

from ContentsView and deleting them)
}

}

public abstract class Command extends Object {
public abstract void execute();

}

ICT

Basis Litteratur (Pattern kataloger)

Design Patterns, Elements of Reusable Object-Oriented Software
Gamma et. al. Addison-Wesley, ISBN 0-201-63361-2

Analysis Patterns, Reusable Object Models
Martin Fowler, Addison-Weslwy, ISBN 0-201-89542-0

Pattern-Oriented Software Architecture
F. Buschmann et. al, J. Wiley, ISBN 0-471-95869-7

http://st-www.cs.uiuc.edu/users/patterns/patterns.html

http://c2.com/ppr/index.html

AntiPatterns - Refactoring Software, Architectures, and Projects in Crisis
W. Brown et. al, J. Wiley, ISBN 0-471-19713-0

ICT

Tilleggs litteratur

Design Patterns for Object-Oriented Software Development,
Pree, Addison-Wesley, ISBN 0-201-42294-8, 1995

CORBA Design Patterns, T. Mowbray, R. Malveau, j. Wiley, 1997,
ISBN 0-471-15882-8

Communications of ACM, “Software Patterns” - special issue
October 1996, Vol. 39, Number 10

Pattern Languages of Program Design 1
J. Coplien, Douglas Schmidt
Addison-Wesley, ISBN 0-201-60734-4, 1995

Pattern Languages of Program Design 2
J. Vlissides, J. Coplien, N. Kerth
Addison-Wesley, ISBN 0-201-89527-7, 1996

ICT

Refactoring - Improving the design of

existing code
 1. Refactoring - a first example

 2. Principles in refactoring

 3. Bad Smells in Code

 4. Building Tests

 5. Toward a catolog of refactorings

 6. Composing Methods

 7. Moving Features between objects

 8. Organizing data

 9. Simplifying Conditional Expressions

 10. Making Method calls simpler

 11. Dealing with Generalization

 12. Big Refactorings

 13. Refactoring, Reuse and Reality

 14. Refactoring tools

M. Fowler, with K. Beck, J.
Brant, W. Opdyke, D. Roberts,
Addison-Wesley, August 1999

Refactoring: Improving the
design of existing code

ICT

Refactoring - What and

Why ?

 Refactoring is the process of changing a software

system in such a way that it does not alter the external

behaviour of the code yet improves its internal

structure.

 Improving to make it easier to understand and cheaper

to modify

ICT

When should you

refactor

 The rule of three - Three strikes and you refactor

 Refactor when you add function

 Refactor when you need to fix a bug

 Refactor as you do a code review

ICT

Why refactoring

works

 Programs that are hard to read are hard to modify

 Programs that have duplicated logic are hard to modify

 Program that require additional behaviour that requries

you to change running code are hard to modify

 Programs with complex conditional logic are hard to

modify

 We want programs that are easy to read, that have all

logic specified in one and only one place, do not allow

changes to endanger existing behaviour, and allow

conditional logic to be expressed as simply as possible

ICT

Refactoring

strategies

 Composing Methods

 Moving features between objects

 Organizing data

 Simplifying conditional expressions

 Making method calls simpler

 Dealing with generalization

 Big refactorings

ICT

Composing

Methods

 Extract method

 Inline method

 Inline temp

 Replace temp with query

 Introduce explaining variable

 Split temporary variable

 Remove assignments to parameters

 Replace method with method object

 Substitute algorithm

ICT

Moving Features between

objects

 Move method

 Move field

 Extract Class

 Inline Class

 Hide Delegate

 Remove middle man

 Introduce foreign method

 Introduce local extension

ICT

Bad Smells in

Code (1/4)

 Duplicated Code (extract method, extract class, pull

up method, form template method)

 Long Method (extract method, replace temp with

query, replace method with method object,

decompose conditional)

 Large Class (extract class, extract subclass, extract

interface, replace data value with object)

 Long ParameterList (replace parameter with method,

introduce parameter object, preserve whole object)

 Divergent Change (extract class)

ICT

Bad Smells in

Code (2/4)

 Shotgun Surgery (move method, move field, inline class)

 Feature Envy (move method, move field, extract field)

 Data Clumps (extract class, introduce parameter object,

preserve whole object)

 Primitive Obsession (replace data value with object, extract

class, introduce parameter object, replace array with object,

replace type code with class/subclasses, replace type code

with state/strategy)

 Switch Statements (replace conditional with polymorphism,

replace type code with subclasses/state/strategy, replace

parameter with explicit methods, introduce null object)

ICT

Bad Smells in

Code (3/4)

 Parallell Inheritance Hierarchies (move method,

move field)

 Lazy Class (inline class, collapse hierarchy)

 Speculative Generality (collapse hierarchy, inline

class, remove parameter, rename method)

 Temporary Field (extend class, introduce null

object)

 Message Chains (hide delegate)

 Middle Man (remove middle man, inline method,

replace delegation with inheritance)

 Inappropriate Intimacy (move method, move field,

change bidirection to unidirectional)

ICT

Bad Smells in

Code (4/4)

 Alternative classes with different interfaces (rename

method, move method)

 Incomplete Library Class (introduce foreign

method, introduce local extension)

 Data Class (move method, encapsulate field,

encapsulate collection)

 Refused Bequest (replace inheritance with

delegation)

 Comments (extract method, introduce assertion)

ICT

Organizing data
 Self encapsulate field

 Replace data value with object

 Change value to reference

 Change reference to value

 Replace array with object

 Duplicate observed data

 Change unidirectional association to bidirectional

 Change bidirectional association to unidirectional

 Replace magic number with symbolic constant

 Encapsulate field

 Encapsulate collection

 Replace record with data class

 Replace type code with class/sublasses

 Replace type code with state/strategy

 Replace subclass with fields

ICT

Simplifying Conditional

Expressions

 Decompose conditional

 Consolidate conditional expression

 Consolidate duplicate conditional fragments

 Remove control flag

 Replace nested conditional with guard clauses

 Replace conditional with polymorphism

 Introduce null object

 Introduce assertion

ICT

Making Method calls simpler

 Rename method

 Add parameter

 Remove parameter

 Separate query from modifier

 Parameterize method

 Replace parameter with explicit methods

 Preserve whole object

 Replace parameter with method

 Introduce parameter object

 Remove setting method

 Hide method

 Replace constructor with factory method

 Encapsulate downcast

 Replace error code with exception

 Replace exception with test

ICT

Dealing with Generalization

 Pull up field

 Pull up method

 Pull up constructor body

 Push down method

 Push down field

 Extract subclass

 Extract superclass

 Extract interface

 Collapse hierarchy

 Form template method

 Replace inheritance with delegation

 Replace delegation with inheritance

ICT

Big refactorings

 Tease apart inheritance

 Convert procedural design to objects

 Separate domain from presentation

 Extract hierarchy

ICT

The rhythm of

refactoring ...

 test, small change, test, small change, test, ….

 … allows refactoring to move quickly and safely

ICT

AntiPatterns

 Refactoring Software, Architectures , and Projects in

Crisis: W. Brown, R. Malveau. H. McCormick, T. Mowbray, Wiley, 1998

 AntiPattern: A commonly occuring patterns or solution that generates decidely

negative consequences. An AntiPatterns may be a pattern in the wrong context.

When properly documented, an AntiPattern comprises a paired AntiPattern

solution with a refactored solution.

ICT

Software Development

AntiPatterns
 The Blob (from the film)

 Continuous Obsolescence

 Lava Flow

 Ambiguous Viewpoint

 Functional Decomposition

 Poltergeists

 Boat Anchor

 Golden Hammer

 Dead End

 Spaghetti Code

 Input Kludge

 Walking through a Minefield

 Cut-and-Paste Programming

 Mushrooom management

ICT

Software Architecture

AntiPatterns
 Autogenerated Sovepipe

 Stovepipe Enterprise

 Jumble

 Stovepipe System

 Cover your Assets

 Vendor Lock-In

 Wolf Ticket

 Architecture by Implication

 Warm bodies

 Design by Committee

 Swiss Army Knife

 Reinvent the Wheel

 The Grand Old Duke of York

ICT

Software Project Management

AntiPatterns

 Blowhard Jamboree

 Analysis Paralysis

 Viewgraph Engineering

 Death by Planning

 Fear of Success

 Corncob

 Intellectual Violence

 Irrational Management

 Smoke and Mirrors

 Project Mismanagement

 Throw it over the wall

 Fire Drill

 The Feud

 E-mail is dangerous

ICT

Practical Refactoring

exercise

ICT

Example:Video rental

 Bad smells:

 Long Method

 Feature Envy

 Switch statements

 Temporary Fields

 Support change ?: Add HTML

statement, change classification of

films

Customer1

+ statement()

Rental1

daysRented : int

0..* 10..* 1

Movie1

priceCode : int

1 0..*1 0..*

ICT

extract from

statement()

public String statement() {

/ ….. Determine amounts for each rental
Switch (each.getMovie().getPriceCode()) {

case Movie.REGULAR
thisAmount += 2;

…..

// add frequent renter points
frequentRenterPoints ++;

if (each.getMovie().getPriceCode() -----

// show figures for this rental

// add footer lines

}

ICT

Refactorings:Video

rental

 Create Tests to check refactoring correctness

 Decomposing and redistributing the statement

method (extract method, moving the amount

calculation amountFor() (move the method from

customer to rental), rename variables (I.e each ->

aRental)

 similar: extracting frequent renter points, removing

temps (totals) replaceTempWithQuery

totalAmount/freqRentPoint,

ICT

Extracting and Moving

methods

Customer1

+ statement()

Rental1

daysRented : int

getCharge()

getFreqRentPoints()
0..* 10..* 1

Movie1

priceCode : int

1 0..*1 0..*

Customer1

+ statement()

+ getTotalCharge()

+ getTotFreqRentPoints()

Rental1

daysRented : int

getCharge()

getFreqRentPoints()
0..* 10..* 1

Movie1

priceCode : int

1 0..*1 0..*

ICT

Move calculation of charge

and points

to the “expert”

Customer1

+ statement()

+ getTotalCharge()

+ getTotFreqRentPoints()

Rental1

daysRented : int

getCharge()

getFreqRentPoints()
0..* 10..* 1

Movie1

priceCode : int

getCharge(days : int)

getFreqRentPoints(days : int)

10..*10..*

ICT

Refactorings:Video

rental

 replace conditional logic on price code with

polymorphism, using inheritance - problem: a movie

can change its classification during its lifetime -> use

the state pattern for price code object (or strategy) ->

replace type code with state/strategy, move method

(switch into price class), replace conditional with

polymorphism to eliminate switch

ICT

Customer1

+ statement()

+ getTotalCharge()

+ getTotFreqRentPoints()

+ htmlstatement()

Rental1

daysRented : int

getCharge()

getFreqRentPoints()
0..* 10..* 1

ChildrensPrice

getCharge(days : int)

NewReleasePrice

getCharge(days : int)

getFreqRentPoints(days : int)

RegularPrice

getCharge(days : int)

Movie1

priceCode : int

getCharge(days : int)

getFreqRentPoints(days : int)

1

0..*

1

0..*

Price

getCharge(days : int)

getFreqRentPoints(days : int)
11

