
1

INF5120
”Modellbasert Systemutvikling”

”Modelbased System development”

Lecture 8: 06.03.2017
Arne-Jørgen Berre

arneb@ifi.uio.no or Arne.J.Berre@sintef.no

mailto:arneb@ifi.uio.no
mailto:Arne.J.Berre@sintef.no

Course parts (16 lectures) - 2017

2

 January (1-3) (Introduction to Modeling, Business Architecture and the Smart Building project):
 1-16/1: Introduction to INF5120
 2-23/1: Modeling structure and behaviour (UML and UML 2.0 and metamodeling) - (establish Oblig groups)
 3-30/1: WebRatio for Web Apps/Portals and Mobile Apps – and Entity/Class modeling – (Getting started with WebRatio)

 February (4-7) (Modeling of User Interfaces, Flows and Data model diagrams, Apps/Web Portals - IFML/Client-Side):
 4-6/2: Business Model Canvas, Value Proposition, Lean Canvas and Essence
 5-13/2: IFML – Interaction Flow Modeling Language, WebRatio advanced – for Web and Apps
 6-20/2: BPMN process, UML Activ.Diagrams, Workflow and Orchestration modelling value networks
 7-27/2: Modeling principles – Quality in Models
 27/2: Oblig 1: Smart Building – Business Architecture and App/Portal with IFML WebRatio UI for Smart Building

 March (8-11) (Modeling of IoT/CPS/Cloud, Services and Big Data – UML SM/SD/Collab, ThingML Server-Side):
 8-6/3: Basis for DSL and ThingML -> UML State Machines and Sequence Diagrams
 9-13/3: ThingML DSL - UML Composite structures, State Machines and Sequence Diagrams II
 10-20/3: Guest lecture, "Experience with Modelling", Anton Landmark, SINTEF
 11-27/3: ThingML and UML Service Modeling, Architectural models, SoaML. Role modeling and UML Collaboration diagrams

 April/May (12-14) (MDE – Creating Your own Domain Specific Language):
 12-3/4: Model driven engineering – Metamodels, DSL, UML Profiles, EMF, Sirius Editors
 3/4: Oblig 2: Smart Building – Internet of Things control with ThingML – Raspberry Pi, Wireless sensors (temperature, humidity),

actuators (power control)

 EASTER – 10/4 og 17/4
 13-24/4: MDE transformations, Non Functional requirements
 1. Mai – Official holiday
 14-8/5: SmartBuilding – Integrating App with Server side
 8/5: Oblig 3 - Your own Domain Specific Language

 May (15-17): (Bringing it together)
 15-15/5: Summary of the course – Final demonstrations
 16-22/5: Previous exams – group collaborations (No lecture)
 17-29/5: Conclusions, Preparations for the Exam by old exams
 June (Exam)
 13/6: Exam (4 hours), June 13th, 0900-1300

Course components

3

Model Driven
Engineering –
New DSL -3

Business Architecture
Engineering and
IFML (WebRatio) client -1

Software/System Architecture
Engineering and ThingML
Server -2

"Smart Building"
2+1 OBLIGS

TheRoomX1

pim:PIMpsm:PSM

T1:ThermometerSet

onoff1:OnOffSet

get_sensor

request_actuator

human_output

human_input

usr_o

usr_i

console

tlstick:TellstickManager

timr_th:JavaTimer

timer

timer

request_sensor

Smart Building – server side

4

Using
ThingML Domain
Specific Modeling
Language

- Related to UML
Sequence Diagrams
nd State Machines

Overview of lecture – Sequence Diagram

• Sequence Diagrams
• What are they intended for?
• Where in the software engineering process are they used?

• The History Lesson
• a very short history this time

• Basic sequence diagrams
• Interaction Fragments – structuring mechanisms
• Tooling

• Sequence Diagrams in Papyrus
• Interactions or Sequence Diagrams?
• Experiences and challenges

• Interaction Metamodel

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 5

This is a Sequence Diagram

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 6

Frame

Lifeline

Message

Combined
Fragment

Sequence Diagrams in a nutshell

• Sequence Diagrams are
• simple
• powerful
• readable

• Emphasizes the interaction between objects when interplay is the most
important aspect
• Often only a small portion of the total variety of behavior is described improve the individual

understanding of an interaction problem

• Sequence Diagrams are used to ...
• document protocol situations,
• illustrate behavior situations,
• verify interaction properties relative to a specification,
• describe test cases,
• document simulation traces.

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 7

Sequence Diagrams History

• Used informally for a number of years prior to 1990

• Standardized in 1992 in Z.120
• Message Sequence Charts – MSC
• Initiated by Ekkart Rudolph (Siemens) and Jens Grabowski (now Professor in Göttingen)

• Last major revision of MSC is from 1999
• called MSC-2000 with Ø. Haugen as Rapporteur, representing Ericsson

• Formal semantics of MSC-96 is given in Z.120 Annex B
• Sjouke Mauw (now Prof at Univ. of Luxembourg) and Michel Reniers (now Assoc. Prof. at

Univ. of Eindhoven)

• Included in UML 1 from 1999
• but in another variant also pioneered by Siemens

• Most of MSC was included in UML 2.0 (2003)
• Responsible Ø. Haugen (representing Ericsson)

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 8

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science

The example context: Dolly Goes To Town

• Dolly is going to town and
• wants to subscribe for bus schedules back home

• given her current position

• and the time of day.

• The service should not come in effect until a given time in the evening

9

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science

The informal architecture

mobile

terminal

web

terminal

local

cache

information

provider

user
information pusher

(SMS sender, WAP portal)

local

ads

positioning

request

position

info

subscription

info

subscription

info info

ads

info info

Service

User

Service

Terminal

Service

Base

10

Lifeline – the “doers”

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 11

Lifeline head with name

the lifeline itself is

anonymous, but its type is

ServiceBase

Lifeline

ordered

from top to

bottom

:ServiceBase

sd Authorization

:ServiceUser :ServiceBase :ServiceTerminal

Code

OK

OnWeb

OK

(Simple) Sequence Diagram
• Messages have one send event, and one receive event.

• The send event must occur before the receive event.

• Events are strictly ordered along a lifeline from top to bottom

The frame

(UML 2)

The name of the

interaction

Send

Event

Receive

Event

Message

name

How many global traces are there in this
diagram?
• The only invariants:

• Messages have one send event, and one receive event. The send event must
occur before the receive event.

• Events are strictly ordered along lifeline

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 13

sd Authorization

:ServiceUser :ServiceBase :ServiceTerminal

Code

OK

OnWeb

OK

How many?

• 1, 2, 3, 4, 5,
6,..?

How many global traces are there in this
diagram?
• The only invariants:

• Messages have one send event, and one receive event. The send event must
occur before the receive event.

• Events are strictly ordered along lifeline

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science

sd Authorization

:ServiceUser :ServiceBase :ServiceTerminal

Code

OK

OnWeb

OK

How many?

• 1, 2, 3, 4, 5,
6,..?

independent!

14

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science

Really counting the traces ...
sd Authorization

:ServiceUser :ServiceBase :ServiceTerminal

Code

OK

OnWeb

OK

1 2

34

5 6
7 8

1

2

3

4 5

5 7

76

7

8

6

8

5

6

8

4 6

76

7

8

6

8

4

7

8

15

Asynchronous messages: Message Overtaking
• asynchronous communication = when the sender does not wait for the reply of the

message sent

• Reception is normally interpreted as consumption of the message.

• When messages are asynchronous, it is important to be able to describe message
overtaking.

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science

sd Authorization

:ServiceBase :ServiceTerminal

OK

Code

OK

info
OnWeb

sending OnWeb
before sending Info

receiving OnWeb after
receiving Info

notice
message
to/from

environment

16

The context of a Sequence Diagram

• The context is a Classifier with Composite Structure (of properties)
• Properties (parts) are represented by Lifelines

• The concept of a context with internal structure leads to an aggregate
hierarchy of entities (parts)
• We exploit this through the concept of Decomposition

GoHomeServiceContext

sd GoHome sd Authorization

:ServiceUser

:ServiceBase

:ServiceTerminal

ServiceUser

ServiceBase

ServiceTerminal

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 17

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science

sd Authorization

:ServiceUser
:ServiceBase

ref SB_Authorization
:ServiceTerminal

Code

OK

OnWeb

OK

Decomposing a Lifeline relative to an
Interaction

we want to look
into this lifeline

this is the name of
the diagram where

we find the
decomposition

18

The Decomposition

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science

sd Authorization

:ServiceUser
:ServiceBase

ref SB_Authorization
:ServiceTerminal

Code

OK

OnWeb

OK

notice the event
correspondence!

notice the gate
correspondence!

sd SB_Authorization

:Central

:Authorizer

Code

OK
OnWeb

create

OK

19

Lifeline creation and destruction

• We would like to describe Lifeline creation and destruction

• The idea here (though rather far fetched) is that the ServiceBase needs to
create a new process in the big mainframe computer to perform the task of
authorizing the received Code. We see a situation where several Authorizers
work in parallel

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science

sd SB_Authorization

:Central

:Authorizer

Code

OK
OnWeb

create

OK

creation Message

destruction

20

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science

sd Authorization

:ServiceUser :ServiceBase :ServiceTerminal

Code

OK

OnWeb

OK

Synchronizing interaction
method call

message

execution specification

reply

21

Basic Sequence Diagrams Summary

• We consider mostly messages that are asynchronous, the sending of
one message must come before the corresponding reception

• UML has traditionally described synchronizing method calls rather
than asynchronous communication

• The events on a lifeline are strictly ordered

• The distance between events is not significant.

• The context of Interactions are classifiers

• A lifeline (within an interaction) may be detailed in a decomposition

• Dynamic creation and destruction of lifelines

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 22

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science

More structure (UML 2.0 from MSC-96)

• interaction uses – such that Interactions may be referenced within other
Interactions

• combined fragments – combining Interaction fragments to express
alternatives, parallel merge and loops

• better overview of combinations – High level Interactions where Lifelines
and individual Messages are hidden
• Not so useful since no tools support this

• gates – flexible connection points between references/expressions and
their surroundings
• we have looked at this in the context of decomposition, but gates are also on

InteractionUse and CombinedFragments

23

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science

sd GoHome

:ServiceUser :ServiceBase :ServiceTerminal

ref
GoHomeSetup

loop

ref
GoHomeInvocation

ref
GoHomeDismantle

References
interaction use

24

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science

sd Authorization

:ServiceBase :ServiceTerminal

OK

Code

OK

info
OnWeb

sd GoHomeSetup

:ServiceUser :ServiceBase :ServiceTerminal

ref

Authorization

opt

ref FindLocation

SetHome

SetInvocationTime

SetTransportPreferences

Code

OK

OK

Gates

formal gateactual gate

25

interaction use

Combined fragment example

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science

:ServiceUser :ServiceBase :ServiceTerminal

sd GoHomeInvocation

:Clock

InvocationTime

TransportSchedule

loop

alt ScheduleIntervalElapsed

TransportSchedule

GetTransportSchedule

TransportSchedule

FetchSchedule

ref FindLocation

ref FindLocation

frame

operato

r

operand

separator

26

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science

:ServiceUser :ServiceBase :ServiceTerminal

sd GoHomeInvocation(Time invoc)

:Clock

InvocationTime FindLocation

TransportSchedule

loop

alt

ScheduleIntervalElapsed
FindLocation

TransportSchedule

GetTransportSchedule

TransportSchedule

FetchSchedule

[Now>interv+last]

[pos-lastpos>dist]

[Now>invoc]

Data in Guards
static

parameter
time intv;
time last;

coord lastpos;
coord dist;
coord pos;

guard on global or
static values

guard on dynamic
and local values,

local to the object of
the first event of

operand

note that there is no
single object deciding
the choice, but each

guard is limited

27

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science

:ServiceUser :ServiceBase :ServiceTerminal

sd GoHomeInvocation

:Clock

InvocationTime

TransportSchedule

loop

alt ScheduleIntervalElapsed

TransportSchedule

GetTransportSchedule

TransportSchedule

FetchSchedule

ref FindLocation

ref FindLocation

And now chiefly yourselves !!!

a)

c) d)

b)

e)

a) Interaction [Frame, Sequence Diagram]

b) Lifeline

c) Combined fragment [loop-fragment]

d) Message

e) InteractionUse

28

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science

The informal architecture

mobile

terminal

web

terminal

local

cache

information

provider

user
information pusher

(SMS sender, WAP portal)

local

ads

positioning

request

position

info

subscription

info

subscription

info info

ads

info info

Service

User

Service

Terminal

Service

Base

29

The UML architecture of the
DollyGoesToTown

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 30

Creating a Composite Structure

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 31

Dragging Properties into it

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 32

Sometimes there is just too much text

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 33

Other means to change appearance

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 34

Rightclick on
connector

Filter out labels

Adding Sequence Diagrams

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 35

Rightclick on
Context (owner)

Create seq diagram

Drag the Properties to make Lifelines

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 36

This is a sequence diagram

This is an Interaction model element

Creating messages

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 37

Creating messages

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 38

Interaction Metamodel

Parts of ThingML metamodel

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 40

Interaction is a
behavior

InteractionFragment is
the recursive concept

OccurrenceSpecification is
typically message end

More on ThingML metamodel

13.03.2017 Professor Øystein Haugen | Faculty of Computer Science 41

CombinedFragments can
be nested

State Machines and Model Consistency

Overview of lecture – State Machines and
Model Consistency
• State Machines for what kind of systems?

• State Machine – a concept not found in Java

• The History Lesson

• Consistency
• Design time consistency

• Runtime consistency

• Tooling
• Papyrus

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 43

Systems suitable for communicating set of state
machines

• reactive

• concurrent

• real-time

• distributed

• heterogeneous

• complex

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 44

Finite State Machines

• Finite
• a finite number of states

• [here] a small number of named states

• State
• a stable situation where the process awaits stimuli

• a state in a state machine represents the history of the execution

• Machine
• that only a stimulus (signal, message) triggers behavior

• the behavior consists of executing transitions

• may also have local data

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 45

A very brief history of State Machines

• Finite State Machines, or automata, originated in computational theory
and mathematical models in support of various fields of bioscience.

• Pioneering efforts of George H. Mealy and Edward F. Moore performed at
Bell Labs and IBM (circa 1960s).
• Mealy and Moore's Finite State Machine concepts proved valuable in language

parsing (compilers) and sequential circuit design.

• SDL (ITU recommendation Z.100) from 1980ies
• Telecom systems were the biggest software of that time

• David Harel published Statecharts: A Visual Formalism for Complex
Systems. Harel embellished the Mealy and Moore paradigm with the
concept of hierarchical finite state machines (1987).

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 46

http://www.wisdom.weizmann.ac.il/~dharel/SCANNED.PAPERS/Statecharts.pdf

An example

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 47

An Access Control System

• A set of Access Points are established to control the access to an area

• The Access Points controls the locking of a door
• in a more abstract sense, access control systems may control bank accounts

or any other asset that one wants to protect

• The Access Point access is granted when two pieces of correct
identification is presented
• A card

• A PIN (Personal Identification Number)

• The access rights are awarded by a central Authentication service

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 48

The architecture in a composite structure

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 49

Property
(part)

Port

Multiplicity

Connector

The concepts in a class diagram

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 50

Property
(part)

Multiplicity

Composition

Happy Day Scenario

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 51

Sequence
Diagram

Lifeline

Message

Gate
(Papyrus style)

Combined
Fragment

The behavior of the AccessPoint

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 52

State
Machine

State

Transition

Trigger Effect

Initial (pseudo)state

Design time consistency

• Can be checked at design time

• Represents structural constraints

• Typically type consistency
• integer variables can be added,

but Boolean variables cannot

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 53

Part

Lifeline

represents

owns

Runtime consistency – behaviors corresponding

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 54

Let's execute the state machine according to
the sequence diagram

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 55

RedLight

Blinking

Play it again, Sam

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 56

Blinking

Authentication

Access granted (one out of two alternatives)

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 57

Authentication

GreenLight

User opens the door

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 58

GreenLight

DoorOpen

User closes the door again

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 59

DoorOpen

RedLight

Access not granted (second of two
alternatives)

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 60

Authentication

RedLight

Concluding the runtime consistency check

• The APbehavior state machine satisfies all traces of the sequence
diagram access

• Thus these behaviors are consistent

• Are we then perfectly happy?

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 61

Another attempt to define the state machine

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 62

Are these behaviors consistent?

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 63

Yes, they are!

Which state machine is the better
description?

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 64

and why?

What if the user started keying the PIN at
once?

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 65

APbehavior may spot the problem
APbehaviorOneState will go on in error

cardid not
recorded!

Keys not recognized,
and therefore

discarded

Why using different states?

• Several different states distinguishes between different situations

• The same trigger should have different effects in different situations

• A specific state represents in a compact way the whole history of
behavior that led to reaching that state

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 66

Slightly more robust and functional
AccessPoint

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 67

Keys first

Card second

Guidelines and Reminders

• Even though the state machine was consistent with the sequence
diagram, the state machine was flawed
• The reason was that sequence diagrams are only partial descriptions of the

whole, while state machines are complete descriptions of a part of the whole

• Use several states if you can
• Each state representing a stable, recognizable situation

• We should supplement our state machine with all the possible
different transitions
• This would help us consider and handle most error situations

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 68

What if we need to modify a state machine?

• Our access control system should possibly be acting differently during
working hours than at other times

• How well do state machines cope with modifications?

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 69

Enhancing the state machine

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 70

Choice

Guard

ELSE Guard

Summarizing

• State machines describe behavior of independently acting
components

• Reactive systems are suitable for state machines

• Consistency checks between sequence diagrams and state machines
are very useful
• but not sufficient

• State machines are robust in as much as additional functionality can
often be included without ripple effects on other parts of the
behavior

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 71

The behavior of the AccessPoint

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 72

B

C

D

E F

A

The behavior of the AccessPoint

13-Mar-17 Professor Øystein Haugen | Faculty of Computer Science 73

State
Machine

State

Transition

Trigger Effect

Initial (pseudo)state

