
1

INF5120
”Modellbasert Systemutvikling”

”Modelbased System development”

Lecture 9: 13.03.2017
Arne-Jørgen Berre

arneb@ifi.uio.no or Arne.J.Berre@sintef.no

mailto:arneb@ifi.uio.no
mailto:Arne.J.Berre@sintef.no

Course parts (16 lectures) - 2017

2

 January (1-3) (Introduction to Modeling, Business Architecture and the Smart Building project):
 1-16/1: Introduction to INF5120
 2-23/1: Modeling structure and behaviour (UML and UML 2.0 and metamodeling) - (establish Oblig groups)
 3-30/1: WebRatio for Web Apps/Portals and Mobile Apps – and Entity/Class modeling – (Getting started with WebRatio)

 February (4-7) (Modeling of User Interfaces, Flows and Data model diagrams, Apps/Web Portals - IFML/Client-Side):
 4-6/2: Business Model Canvas, Value Proposition, Lean Canvas and Essence
 5-13/2: IFML – Interaction Flow Modeling Language, WebRatio advanced – for Web and Apps
 6-20/2: BPMN process, UML Activ.Diagrams, Workflow and Orchestration modelling value networks
 7-27/2: Modeling principles – Quality in Models
 27/2: Oblig 1: Smart Building – Business Architecture and App/Portal with IFML WebRatio UI for Smart Building

 March (8-11) (Modeling of IoT/CPS/Cloud, Services and Big Data – UML SM/SD/Collab, ThingML Server-Side):
 8-6/3: Basis for DSL and ThingML -> UML State Machines and Sequence Diagrams
 9-13/3: ThingML DSL - UML Composite structures, State Machines and Sequence Diagrams II
 10-20/3: Guest lecture, "Experience with Modelling", Anton Landmark, SINTEF
 11-27/3: ThingML part 2 and UML Service Modeling, Architectural models, SoaML. Role modeling and UML Collaboration diagrams

 April/May (12-14) (MDE – Creating Your own Domain Specific Language):
 12-3/4: Model driven engineering – Metamodels, DSL, UML Profiles, EMF, Sirius Editors – intro to Oblig 3
 3/4: Oblig 2: Smart Building – Internet of Things control with ThingML – Raspberry Pi, Wireless sensors (temperature, humidity),

actuators (power control) – individual part

 EASTER – 10/4 og 17/4
 3/4: Oblig 2: Smart Building – Group par delivery
 13-24/4: MDE transformations, Non Functional requirements
 1. Mai – Official holiday
 14-8/5: SmartBuilding – Integrating App with Server side
 8/5: Oblig 3 - Your own Domain Specific Language

 May (15-17): (Bringing it together)
 15-15/5: Summary of the course – Final demonstrations
 16-22/5: Previous exams – group collaborations (No lecture)
 17-29/5: Conclusions, Preparations for the Exam by old exams
 June (Exam)
 13/6: Exam (4 hours), June 13th, 0900-1300

Course components

3

Model Driven
Engineering –
New DSL -3

Business Architecture
Engineering and
IFML (WebRatio) client -1

Software/System Architecture
Engineering and ThingML
Server -2

"Smart Building"
2+1 OBLIGS

TheRoomX1

pim:PIMpsm:PSM

T1:ThermometerSet

onoff1:OnOffSet

get_sensor

request_actuator

human_output

human_input

usr_o

usr_i

console

tlstick:TellstickManager

timr_th:JavaTimer

timer

timer

request_sensor

Smart Building – server side

4

Using
ThingML Domain
Specific Modeling
Language

- Related to UML
Sequence Diagrams
nd State Machines

Why ThingML?
Installation/Execution

CPS-L0

5

CPS-L0: Why ThingML? Installation and
Execution
• Why ThingML?

• CPS with constrained resources

• Abstraction

• Separation of Concerns

• What is ThingML?
• a domain-specific language

• textual with visualization to UML

• focused on asynchronous messaging between state machines

6

Why ThingML?

• The idea of ThingML is to develop
• a practical model-driven software engineering tool-chain

• which targets resource constrained embedded systems
• such as low-power sensor and microcontroller based devices

• ThingML – thing modeling language
• refers to Internet of Things – another way to say cyber-physical

• ThingML provides several compilers
• for C, C++, Java, UML, etc

• which makes its products usable and portable

7

ThingML and abstraction

• We want functionality, but we also want to get our (mental) arms
around the problem
• because we are going to improve our solution

• because we are going to correct our solution

• because we are going to evolve our solution

• because we are going to enhance our solution

• We want constructs that help comprehend our system

• We want constructs that help distribute the development of the
system

8

ThingML main constructs

• a thing is something that behaves as a state machine,
• has local attributes

• communicates asynchronously through ports

• messages are sent asynchronously between things

• instances are established and connected

• ThingML contains a native action language

9

ThingML and separation of concerns

• Separation of concerns
• often overlap with abstractions

• are ways that allow us to focus on a manageable part of reality

• are ways that makes it possible to distribute work

• are ways that divides the work and makes it possible to plan

• We will go through many ways to separate concerns
• PSM and PIM

• Composite states

• Concurrent things

10

The most updated installation instructions

• Follow the Readme.rd at:
• https://github.com/SINTEF-9012/ThingML/blob/master/README.md

• Go to the tutorial of ThingML and walk through it:
https://github.com/HEADS-project/training/tree/master/1.ThingML_Basics
• Copy the “Hello World” model and execute it!

19.03.2017Øystein Haugen | Faculty of Computer Science 11

https://github.com/SINTEF-9012/ThingML/blob/master/README.md
https://github.com/HEADS-project/training/tree/master/1.ThingML_Basics

ThingML installation for Java starting from
HEADS IDE
• ThingML is the modeling language for code generation

• Look at http://thingml.org and http://heads-project.eu/

• Download HEADS-IDE from http://headside.gforge.inria.fr/
• It includes Eclipse and most of the necessary plugins

• Install Plantuml from http://plantuml.sourceforge.net/updatesitejuno

• and Graphviz from www.graphviz.org

• Install a proper Oracle Java JDK (we do not use a JRE).
• Configure the Eclipse to point to that Java JDK

• Windows / Preferences / Java / Installed JREs

• Go to the tutorial of ThingML and walk through it:
https://github.com/HEADS-project/training/tree/master/1.ThingML_Basics

19.03.2017Øystein Haugen | Faculty of Computer Science 14

http://thingml.org/
http://heads-project.eu/
http://headside.gforge.inria.fr/
http://plantuml.sourceforge.net/updatesitejuno
http://www.graphviz.org/
https://github.com/HEADS-project/training/tree/master/1.ThingML_Basics

Java and Maven

• We are going (in the first place) to use Java as our target language. In
the sequel we may rather use C

• When using Java with ThingML, we also use Maven
• What you have downloaded with the HEADS IDE also includes a Maven plugin

• See also https://maven.apache.org/what-is-maven.html

• Note: you have to set a real JDK as the JRE
• Window/Preferences/ click Java/InstalledJREs and then Add... and put in the

jdk top folder.

19.03.2017Øystein Haugen | Faculty of Computer Science 15

https://maven.apache.org/what-is-maven.html

How to compile and run

• Right-click on the configuration file
• HEADS/ThingML

• java/swing

• There will be warning and notices, but beware of errors

• Open folder thingml-gen\java\CPS
• Right-click on pom.xml

• Run As
• Maven Build

• First time for a project a dialog comes up

• Give it an appropriate specific name

• Fill in Goal: clean install exec:java

19.03.2017Øystein Haugen | Faculty of Computer Science 16

The Room X1
CPS-L1

17

CPS-L1: The Room X1 – simple home
automation
• Separation of concerns

• PIM and PSM

• Kick-down

• Simulation
• Why?

• How?

• How to map to real CPS?

18

The Room X1: Smart Home Basics

• Our CPS will be a very basic Smart Home
• The brain is a processor that runs java

• This can be a PC or even a Raspberry Pi

• A Telldus Tellstick Duo is connected via USB to the processor

• The Tellstick controls a few gadgets
• One (or more) on-off switch(es) wrapped up in an electric plug

• One (or more) thermometer(s)

19

Specification of The Room X1 functionality

• Observe individually the temperature sensors

• Turn the on-off switches ON or OFF

• That’s it!

20

The gadgets

21

Sensor(s)

Actuator

Tellstick

Processor

TheRoomX1

pim:PIMpsm:PSM

T1:ThermometerSet

onoff1:OnOffSet

get_sensor

request_actuator

human_output

human_input

usr_o

usr_i

console

tlstick:TellstickManager

timr_th:JavaTimer

timer

timer

request_sensor

The software elements

22

Platform Specific Model
Platform Independent Model

Gadget
drivers

Logic
behavior

TheRoomX1

pim:PIMpsm:PSM

T1:ThermometerSet

onoff1:OnOffSet

get_sensor

request_actuator

human_output

human_input

usr_o

usr_i

console

tlstick:TellstickManager

timr_th:JavaTimer

timer

timer

request_sensor

In one picture

23

sd TheRoomX1behavior

T1:ThermometerSet onoff1:OnOfftlstick:TellstickManager pim:PIM

Fetch_all_temps

temperature(id1,txt1,temp1)

temperature(id2,txt2,temp2)

Fetch_temp(id1)Fetch_temp(id1)

temperature(id1,txt1,temp1)

SwitchOn(did1)SwitchOn(did1)

SwitchOff(did2)SwitchOff(did2)

initialize(tlstck)

initialize(tlstck)

sensorinfo() sensorinfo()

deviceinfo deviceinfo

add_thermometer(id1,txt1)add_thermometer(id1,txt1)

add_thermometer(id2, txt2)add_thermometer(id2, txt2)

Fetch_all_temps

temperature(id1,txt1,temp1)

temperature(id2,txt2,temp2)

temperature(id1,txt1,temp1)

add_device(did1,didtxt1)

add_device(did2,didtxt2)add_device(did2,didtxt2)

add_device(did1,didtxt1)

The Room X1 Behavior

24

Lifeline Message
(asynch)

Gate

Sequence Diagram

Simulation

• to execute a system in a fictitious setting

• Why?
• You do not have the proper hardware available

• because it does not exist, yet

• because you have not bought it

• During development you need more resources / power
• to secure functionality before optimization

• to provide better testing facilities

• to provide better measurement opportunities

25

The Room X1 Simulation

• We use simulation for The Room X1
• such that everybody can run it without buying or getting the real gadgets

• to use the ThingML Eclipse on PCs for quicker turnaround and better
debugging facilities than the Raspberry Pi or other low performance (but
much cheaper) microcontrollers

• And we can manipulate the temperature much faster

• Simulation environment using mock dialogues
• Gadget startup; Thermometer set; Switch set;

• Human interface;

26

The Room X1 – Simulation architecture

27

TheRoomX1sim

pim:PIM
psm:PSM

T1:ThermometerSet

onoff1:OnOffSet

get_sensor

request_actuator

human_output

human_input

usr_o

usr_i

get_values

provide_val

require_val

require_val

Turning switch on
and off from Mock
user interface

Reading the value
from thermometers
T1 in and out

tlstick:TellstickManager

to_onoff1

to_gdg

to_T1

tg:TempSim

give_values

timr_th:JavaTimer

timer

timer

request_sensor

onoffobs:OnOffSim

show_onoff

show_val

show_values

show_values

gdg:GadgetSim

show_gadgets

initial

initial

The Room X1 in ThingML – the configuration

28

import "psm_sim.thingml"

import "pim.thingml"

import "io.thingml"

import "javatimer.thingml"

configuration CPS {

instance tlstick:TellstickManager

instance T1:ThermometerSet

instance onoff1:OnOffSet

instance pim:PIM

instance myself:Human

instance timer : TimerJava

// SIMULATION

instance tg:TempSim

instance onoffobs:OnOffSim

instance gdg:GadgetSim

// PSM

connector tlstick.to_T1 => T1.initial

connector tlstick.to_gdg => gdg.show_gadgets

connector tlstick.to_onoff1 => onoff1.initial

connector T1.provide_val => pim.get_sensor

connector T1.timer => timer.timer

connector T1.show_values => tg.show_values

connector onoff1.show_val => onoffobs.show_onoff

// HMI

connector myself.send_cmd => pim.human_input

// PIM outwards

connector pim.request_sensor => T1.require_val

connector pim.request_actuator => onoff1.require_val

connector pim.human_output => myself.get_values

// SIMULATION

connector tg.give_values => T1.get_values

}

The Room X1 – ThingML config visualized via
PlantUML

29

PSM and PIM (terms taken from OMG’s MDA)

• PSM = Platform Specific Model
• what will be replaced when the platform (low level) is changed

• in our case it also means changing from simulation platform to real platform

• The drivers

• PIM = Platform Independent Model
• what will be stable regardless of platform changes

• The application logic

30

The Room X1 – Application Logic

• The Room X1 PIM is only one state machine

• It is in X1 not much in addition to the PSM

• But it is the PIM that will grow and become more complex and more
robust in versions to come
• while the PSM will stay mostly unchanged

31

The Room X1 – PIM state machine visualized

32

State Machine

Initial
pseudo state StateTransition

Trigger

Effect

The Room X1 – PIM in text (1)

33

statechart PIM_behavior init Init {

state Init {

transition -> Init

event snsr:get_sensor?sensorinfo

action do

human_output!sensorinfo(snsr.model,snsr.proto,snsr.sid,snsr.dataTypes,snsr.temperature,snsr.humidity,snsr.timeStamp

)

end

transition -> Init

event dvcs:get_sensor?deviceinfo

action do

human_output!deviceinfo(dvcs.did,dvcs.name,dvcs.model,dvcs.proto, dvcs.ttype,dvcs.meth,dvcs.lastCmd,dvcs.lastValue)

end

transition -> Running // adding the first thermometer will start the normal operation

event addt:human_input?add_thermometer

action do

request_sensor!add_thermometer(addt.id,addt.txt)

// we do some bookkeeping on thermometers both at the PSM and at the PIM

thermometers[last_thermo]=addt.id

thermotext[last_thermo]=addt.txt

thermoval[last_thermo]=66.66 //to indicate no temperature has been received

last_thermo=last_thermo+1 //increasing the number of thermometers in our set

end

}

State
Machine

Initial
pseudo state

State

Transition

Trigger

Effect

Port

Message

The Room X1 – PIM in text (2)

34

state Running {

transition -> Running

event temp:get_sensor?temperature

action do

id_s=temp.id

i=0

found = false

while (i<last_thermo and (not found)) do

if (id_s==thermometers[i]) do

found=true // trick to terminate while loop

end

i=i+1

end

if (found) do

thermoval[i-1]=temp.t

end

end

transition -> Running

event addt:human_input?add_thermometer

action

transition -> Running

event fetch_t:human_input?fetch_temp

action do

.......... // many transitions that go from Running to Running

}

The Room X1 – PIM in text (3) imports

35

// Base datatypes

import "datatypes.thingml"

/* PSM must be included */

import "psm_sim.thingml"

import "psm_datatypes_sim.thingml"

import "pim_messages.thingml"

The Room X1 – PIM in text (4) The thing port
interface

36

thing PIM includes GeneralMsg, TemperatureMsg, OnOffMsg {

provided port get_sensor {

receives temperature, sensorinfo, deviceinfo

}

required port request_sensor {

sends add_thermometer

}

required port request_actuator{

sends add_device, SwitchOn, SwitchOff

}

provided port human_input {

receives add_thermometer, add_device, fetch_temp, fetch_all_temps, SwitchOn, SwitchOff

}

required port human_output {

sends temperature, sensorinfo, deviceinfo

}

The Room X1 – PIM in text (5) the thing
properties

37

property thermometers:Integer[25] // Identifiers of the thermometers in the set

property thermotext:String[25] // corresponding explanatory text

property thermoval:Double[25] // storing the values received from the thermometers (through the PSM)

property last_thermo:Integer = 0 // number of thermometers in the set

// temporary variables

property id_s:Long // temporary id value (to be used with kick-down)

property temp_s:Double // temporary temperature value

property found:Boolean // temporary - true when item found in loop

property i:Integer // runner index in list

ThingML simple user interface

• By using Java and the compiler directive

• @mock “true”

• and compile with Swing, the compiler will provide a simple Swing
window user interface

38

The @mock interface

39

//SIMULATION

thing TempSim includes TemperatureMsg

@mock "true"

{ required port give_values {

sends temperature

}

provided port show_values {

receives temperature

}

}

thing GadgetSim includes GeneralMsg

@mock "true"

{provided port show_gadgets {

receives sensorinfo, deviceinfo

}

}

thing OnOffSim includes OnOffMsg

@mock "true"

{provided port show_onoff {

receives SwitchOn, SwitchOff

}

}

The Room X1 – A simulated execution

40

User input
commands

Shows temperatures
every 10 seconds

when PSM is sending
PIM

System response
to user

Simulates switch
– on or off

Fake gadget hardware
observation

The Room X1 – PIM – a summary

• X1’PIM is a thing where the state machine is rather simple

• X1’PIM functions according to the behavior specified

• X1’PIM does more than that – it functions for more traces than those
specified by the sequence diagram
• Many people would after trying it think it worked well

• X1’PIM is not perfect, it is not particularly robust
• Try adding the same thermometer several times

41

From Simulation to the Real
System

42

From Simulation to the Real System

• In Simulation
• we have had an artificial environment

• we may have applied abundant resources

• In the Real System
• we need to hook up to the underlying physical devices

• this requires driver software that may apply low level constructs in other languages than
ThingML

• we may have a scarcity of resources and may consider what functionality or
operations to omit

43

The Room X1

44

Thermometer(s)

Switch(es)

Tellstick Duo

Simulated

Simulated

Real

Real

The Room X1: Architecture of the real system

45

TheRoomX1

pim:PIMpsm:PSM

T1:ThermometerSet

onoff1:OnOffSet

get_sensor

request_actuator

human_output

human_input

usr_o

usr_i

console

tlstick:TellstickManager

timr_th:JavaTimer

timer

timer

request_sensor

The Elements of CPS Modeling in our course

ThingML
textual modeling
(configurations,
state machines)

UML
Sequence
Diagrams

(Papyrus or
Visio)

Java Swing
UML State
Machines

UML
Composite
structures

(Papyrus or
Visio)

jstick

telldus.dll

Tellstick
hw

Sensors/
Actuators

46

sd TheRoomX1behavior

T1:ThermometerSet onoff1:OnOfftlstick:TellstickManager pim:PIM

Fetch_all_temps

temperature(id1,txt1,temp1)

temperature(id2,txt2,temp2)

Fetch_temp(id1)Fetch_temp(id1)

temperature(id1,txt1,temp1)

SwitchOn(did1)SwitchOn(did1)

SwitchOff(did2)SwitchOff(did2)

initialize(tlstck)

initialize(tlstck)

sensorinfo() sensorinfo()

deviceinfo deviceinfo

add_thermometer(id1,txt1)add_thermometer(id1,txt1)

add_thermometer(id2, txt2)add_thermometer(id2, txt2)

Fetch_all_temps

temperature(id1,txt1,temp1)

temperature(id2,txt2,temp2)

temperature(id1,txt1,temp1)

add_device(did1,didtxt1)

add_device(did2,didtxt2)add_device(did2,didtxt2)

add_device(did1,didtxt1)

TheRoomX1

pim:PIMpsm:PSM

T1:ThermometerSet

onoff1:OnOffSet

get_sensor

request_actuator

human_output

human_input

usr_o

usr_i

console

tlstick:TellstickManager

timr_th:JavaTimer

timer

timer

request_sensor

Java Swing

jstick

telldus.dll

Same picture with our first CPS model

47

thing PIM includes GeneralMsg, TemperatureMsg, HumidityMsg, OnOffMsg {

provided port get_sensor {

receives running,temperature, humidity,sensorinfo, deviceinfo

}

required port request_sensor {

sends fetch_all_temps, fetch_temp, add_thermometer, fetch_all_hum, fetch_humidity, add_hygrometer

}

required port request_actuator{

sends add_device, SwitchOn, SwitchOff

}

provided port human_input {

receives fetch_temp, fetch_all_temps, add_thermometer, fetch_humidity, fetch_all_hum, add_hygrometer, add_device, SwitchOn,

SwitchOff

}

required port human_output {

sends temperature, humidity, sensorinfo, deviceinfo

}

statechart PIM_behavior init Init {

state Init {

transition -> Running

event run: get_sensor?running

action do

// nothing

end

}

state Running {

transition -> Running

event snsr:get_sensor?sensorinfo

action do

human_output!sensorinfo(snsr.model,snsr.protocol,snsr.sid,snsr.dataTypes,snsr.temperature,snsr.humidity,snsr.timeStamp)

end

Tellstick from Telldus

• Tellstick Duo will be our thing controller
• it is using RF on 433 MHz

• http://www.telldus.se/

• Go to the TellStick Duo page
• http://telldus.se/produkt/tellstick-duo/

• Install the software and try it

• Get hold of:
• One on-off switch

• One thermometer (possibly two in one and a hygrometer)

48

http://www.telldus.se/
http://telldus.se/produkt/tellstick-duo/

The TellStick Duo software

49

Check that Telldus Service is running in Task Manager (on Windows)

Another piece of reality ...

• In our field development happens continuously and rapidly

• Last year Tellstick Duo from Telldus seemed a very reasonable choice

• This year it is obvious that Tellstick Duo is phased out

• Next year or even this year, we should find a replacement

50

Jstick – one Java driver for TellStick Duo

• http://jstick.net/

• And Github: https://github.com/juppinet/jstick
• I needed to correct Tellstick.java by fixing bugs related to value of humidity

sensors (in version 1.6)

• The github gives a Maven project which you should install

• This may or may not be the best library for this, but it will probably do
for now

51

http://jstick.net/
https://github.com/juppinet/jstick

PSM code: Relating to Maven

52

thing TellstickManager includes PSM_Msg, GeneralMsg

@maven_dep "<dependency>

<groupId>net.juppi</groupId>

<artifactId>jstick-api</artifactId>

<version>1.6</version>

</dependency>"

{ /* Ports may be defined here */

required port to_T1 {

sends initialize

}

.....

@maven_dep
defines a

dependency in the
maven file which is

generated by
ThingML compiler

PSM code: specific properties

53

/* properties defined here */

property ts : Tellstick // this is set in initialize() function

property sensor_list:Sensor[25] // removed at SIMULATION

property device_list:Device[25] // removed at SIMULATION

property i:Integer // runner index in list of sensors or devices

property s:Sensor // temporary Sensor removed at SIMULATION

property d:Device // temporary Device removed at SIMULATION

property model:String

property proto:String

Some properties
may be specific to
the real PSM, and

some to the
simulated PSM

PSM code: ThingML kick-down (to Java)

54

function observe_sensors() do

// Now we send to PIM all the Sensor gadgets which are managed by that Tellstick

''&sensor_list& '=' ''&ts&'.getSensors().toArray('''&sensor_list& ');' // kick-down to tellstick

i=0

while (i<25)do

s=sensor_list[i]

if (not (s=='null')) // TODO find a way in ThingML to check existence?

do

model=''&s&'.getModel()'

proto=''&s&'.getProtocol()'

sid=''&s&'.getId()'

dataTypes=''&s&'.getDataTypes()'

temperature=''&s&'.getTemperature()'

humidity=''&s&'.getHumidity()'

timeStamp=''&s&'.getTimeStamp()'

to_gdg!sensorinfo(model,proto,sid,dataTypes,temperature,humidity,timeStamp)

end

i=i+1

end

end

&sensor_list&

‘.getModel()’

PSM code: The two principles of ThingML
kick-down
• ‘.getModel()’

• The single quote bracket indicates that the bracketed construct should be
compiled directly as written in the target language

• &s&
• The ampersand bracket asks the ThingML compiler to use the target language

correspondent to the bracketed ThingML property

• Kick-down in ThingML are either statements or expressions

55

L2: The Room X2 with
Thermostat

56

X1: Recap The Room

57

TheRoomX1

pim:PIMpsm:PSM

T1:ThermometerSet

onoff1:OnOffSet

get_sensor

request_actuator

human_output

human_input

usr_o

usr_i

console

tlstick:TellstickManager

timr_th:JavaTimer

timer

timer

request_sensor

In one picture

58

sd TheRoomX1behavior

T1:ThermometerSet onoff1:OnOfftlstick:TellstickManager pim:PIM

Fetch_all_temps

temperature(id1,txt1,temp1)

temperature(id2,txt2,temp2)

Fetch_temp(id1)Fetch_temp(id1)

temperature(id1,txt1,temp1)

SwitchOn(did1)SwitchOn(did1)

SwitchOff(did2)SwitchOff(did2)

initialize(tlstck)

initialize(tlstck)

sensorinfo() sensorinfo()

deviceinfo deviceinfo

add_thermometer(id1,txt1)add_thermometer(id1,txt1)

add_thermometer(id2, txt2)add_thermometer(id2, txt2)

Fetch_all_temps

temperature(id1,txt1,temp1)

temperature(id2,txt2,temp2)

temperature(id1,txt1,temp1)

add_device(did1,didtxt1)

add_device(did2,didtxt2)add_device(did2,didtxt2)

add_device(did1,didtxt1)

The Room X1 Behavior

59

Lifeline Message
(asynch)

Gate

Sequence Diagram

The Room X1 – PIM state machine visualized

60

State Machine

Initial
pseudo state StateTransition

Trigger

Effect

The Room X1 – PIM in text (1)

61

statechart PIM_behavior init Init {

state Init {

transition -> Init

event snsr:get_sensor?sensorinfo

action do

human_output!sensorinfo(snsr.model,snsr.proto,snsr.sid,snsr.dataTypes,snsr.temperature,snsr.humidity,snsr.timeStamp

)

end

transition -> Init

event dvcs:get_sensor?deviceinfo

action do

human_output!deviceinfo(dvcs.did,dvcs.name,dvcs.model,dvcs.proto, dvcs.ttype,dvcs.meth,dvcs.lastCmd,dvcs.lastValue)

end

transition -> Running // adding the first thermometer will start the normal operation

event addt:human_input?add_thermometer

action do

request_sensor!add_thermometer(addt.id,addt.txt)

// we do some bookkeeping on thermometers both at the PSM and at the PIM

thermometers[last_thermo]=addt.id

thermotext[last_thermo]=addt.txt

thermoval[last_thermo]=66.66 //to indicate no temperature has been received

last_thermo=last_thermo+1 //increasing the number of thermometers in our set

end

}

State
Machine

Initial
pseudo state

State

Transition

Trigger

Effect

Port

Message

Simulating the laboratory

ThingML
textual modeling
(configurations,
state machines)

UML
Sequence
Diagrams

(Papyrus or
Visio)

Java Swing
UML State
Machines

UML
Composite
structures

(Papyrus or
Visio)

62

Human input:
simulated

temperature

The Room X1 – A simulated execution

63

User input
commands

Shows temperatures
every 10 seconds

when PSM is sending
PIM

System response
to user

Simulates switch
– on or off

Fake gadget hardware
observation

X2A: The first thermostat

X2A: The Room with a simple Thermostat

• Our room X2 has
• One thermometer
• One switch (on/off) that turns heat on or off

• The functionality requirements are
• Keep the room temperature within a comfort range of temperatures
• Directly turn switch ON or OFF

• We assume that in Norway the temperature will fall if there is no heating,
and rise when there is heating

• Our first solution attempt for the thermostat:
• When the temperature is below the bottom threshold, switch on
• When the temperature is above the upper threshold, switch off

65

Behavior of the simple Thermostat

66

sd SimpleThermostat

T1:ThermometerSet onoff1:OnOfftlstick:TellstickManager pim:PIM

timer_timeout

temperature(id1,txt1,temp2)

SwitchOn(did1)

SwitchOff(did1)

initialize(tlstck)

initialize(tlstck)

sensorinfo() sensorinfo()

deviceinfo deviceinfo

add_thermometer(id1,txt1)add_thermometer(id1,txt1)

set_temperature(temp1)

add_device(didid1,didtxt1)add_device(didid1,didtxt1)

loop

[temp2 < temp1-1]

[temp2 > temp1+1]

alt

SwitchOn(did1) SwitchOn(did1)

SwitchOff(did1) SwitchOff(did1)

start_timer

start_timer

start_timer

timr:JavaTimer

start_timer

The Room X2 – Simulation architecture as X1

67

TheRoomX1sim

pim:PIM
psm:PSM

T1:ThermometerSet

onoff1:OnOffSet

get_sensor

request_actuator

human_output

human_input

usr_o

usr_i

get_values

provide_val

require_val

require_val

Turning switch on
and off from Mock
user interface

Reading the value
from thermometers
T1 in and out

tlstick:TellstickManager

to_onoff1

to_gdg

to_T1

tg:TempSim

give_values

timr_th:JavaTimer

timer

timer

request_sensor

onoffobs:OnOffSim

show_onoff

show_val

show_values

show_values

gdg:GadgetSim

show_gadgets

initial

initial Changes
expected

Like
before

The PIM behavior now
changes

68

Similar to
X1

Use case:
Thermostat

Use case:
Heater ON

Use case:
Heater OFF

We execute the simulated system

• We follow closely the behavioral description given by the sequence
diagram
• Provide the adequate input

• Check that the generated output is according to the spec

• If we can walk through all the variants of the sequence diagram, and
the generated output is as specified, then the state machine is
consistent with the interaction

69

Execution (4 windows)

70

Fake gadget
info

Temperature
simulation

Switch
operations

User Interface

Are we happy now?

• The state machine PIM is consistent with the Interaction
SimpleThermostat

• but the behavioral specification in a sequence diagram is not
complete – it does not cover all situations

71

Observations when we simulate

• The state machine specifies a very strict order between the states
Thermostat, On and Off
• but there is no logical reason for this order

• The user should freely be able to move between these running states

• The default duration between temperature signals may not be perfect
for all simulations
• We should be able to set the temperature cycle

72

Observation of the state machine
specification
• We have two states that relate to initial setup of the thermostat

• We have three states that relate to running the Room X2

• The specification does not in itself highlight this distinction between
setup and running situations

73

X2B: Composite States

X2B: The Room with composite state

• We introduce composite state
• as a way to group states for better overview

• as a means to achieve less redundancy

• We also show how easy it is to introduce a new service
• SetPollingInterval: how often the temperature is checked

75

The Room X2B

• Let the user move freely between Thermostat, On, Off

• Wrap a Running state around (Thermostat, On, Off)

• Introduce a new service set_polling_interval which will set the
duration between temperature measures

76

The Room X2B PIM behavior

77

Composite
State

Transition to
composite state

Transition on
composite state

Composite State in ThingML

78

statechart PIM_behavior init DisplayGadgets {

state DisplayGadgets {...}

state Setup { ...

transition -> Running ...

}

composite state Running init Thermostat keeps history {

state Thermostat {

transition -> Thermostat ...

transition -> On ...

transition -> Off ...

transition -> Thermostat ...

}

state On {

transition -> Off ...

transition -> On ...

transition -> Thermostat ...

}

state Off {

transition -> Off ...

transition -> On ...

transition -> Thermostat ...

}

transition -> Running ...

}

}

Transition to
composite state

Composite
State

Transition on
composite state

Note: keeps history
(not shown in UML diagram)

The Semantics of a Composite State

• In ThingML transitions can only go between states on the same level

• There may be simple and composite states on same level

• Any trigger will trigger on the innermost level where it matches

• If there is no match on one level, the next level out will be attempted

79

Semantics of Composite States (history)

• When a composite state is entered the first time, the inner state given
by the init-clause will be entered

• When a composite state is re-entered, and it has no “keeps history”
clause, it will also go to the state of the init-clause

• When a composite state with a keeps history clause is entered, it will
return to the last inner state where it was before it left the composite
state

80

The Room X2B PIM behavior

81

No transition
crossing state

border

transitions freely
between states

Practical to put transition
here instead of at every

inner state (keeps history)

Adding set_polling_interval has
no effect on existing transitions

Separation of Concerns – Why?

• Think and reason locally – keep your focus

• Apply structuring means to
• Identify and name areas of concerns that are manageable

• Encapsulate

• Hide / Show

• You may separate behavior as well as structure
• Separated between PSM and PIM (structure)

• Composite states define chunks of behavior

82

Are we happy now with The Room X2B?

• The Room is according to its specification, but there may still be some
problems we would like to mitigate

• Simulation is effective, but simulation is a way of abstraction that may
disguise important details of reality
• Here when running the real system, we realize that the switch is being set

unnecessarily

• Logically there is no problem that a switch is turned on when it is already on,
but in practice this may probably wear the switch out long before it needed to

83

X2C: Smarter switching

X2C: Actuators may be worn out if applied too
frequently
• We observe that switches are applied all the time

• This may wear out the hardware too soon

• Intelligent use of composite states will help

• We look at more than happy day scenarios

85

Goal: Reduce or remove the redundant
switching
• We want to reduce or remove unnecessary application of the

switches due to the risk of wearing the switches out prematurely

• Switching to ON is unnecessary if it is already ON
• and the temperature should be increasing

• Switching to OFF is unnecessary if it is already OFF
• and the temperature should be decreasing

86

Separation of concerns

• The problem we want to mitigate only concerns the thermostat
functionality
• This should mean that our solution should only affect the Thermostat state,

and all other states and transitions should remain untouched

87

Thermostat revisited,
everything else stable

88

Our solution

• We propose to make Thermostat a composite state
• and include two inner states TemprIncrease and TemprDecrease with the

obvious state invariants that the temperature should increase in
TemprIncrease and decrease in TemprDecrease

• This is not entirely sufficient since when we enter the Thermostat we
must always determine the adequate position of the switch
• and for that purpose we introduce a third state TemprDecide

89

The Thermostat with inner states

90

guard

The Thermostat in ThingML

91

composite state Thermostat init TemprDecide {

// notice that we are NOT keeping history

state TemprDecide {

transition -> TemprDecrease

event temp2:get_sensor?temperature

guard temp2.t>=tmrature-1 // OFF as much possible

action do

request_actuator!SwitchOff(switch_id)

end

transition -> TemprIncrease

event temp2:get_sensor?temperature

guard temp2.t<tmrature-1

action do

request_actuator!SwitchOn(switch_id)

end

}

state TemprIncrease{

// Invariant: Switch is ON and temperature should increase

transition -> TemprIncrease

event temp:get_sensor?temperature

guard temp.t<=tmrature+1

// increasing until well above desired temperature

action do // nothing

end

transition -> TemprDecrease

event temp2:get_sensor?temperature

guard temp2.t>tmrature+1

action do

request_actuator!SwitchOff(switch_id)

end

}

state TemprDecrease{

// Invariant: Switch is OFF and temperature should decrease

transition-> TemprDecrease

event temp:get_sensor?temperature

guard temp.t>=tmrature-1 // it should keep decreasing until

well below the desired temperature

action do // nothing

end

transition -> TemprIncrease

event temp2:get_sensor?temperature

guard temp2.t<tmrature-1

action do

request_actuator!SwitchOn(switch_id)

end

}

// Transitions from Thermostat to states on same level

transition -> On

event swon:human_input?SwitchOn

action do

request_actuator!SwitchOn(swon.did)

end

transition -> Off

event swoff:human_input?SwitchOff

action do

request_actuator!SwitchOff(swoff.did)

end

transition -> Thermostat

event set_temp:human_input?set_temperature

action do

tmrature = set_temp.t

end

} //end of Thermostat

guard

The Room X2C: Summary

• We introduced more complexity in state Thermostat to mitigate a
problem of reality, namely that setting switches frequently may wear
the hardware

• We were able to confine our changes to the single state Thermostat
• but it became a composite state with 3 inner states

• Is our system perfect now?
• It is quite good for happy day scenarios, but how does it handle the awkward

events?

92

X2D: Robustification 1

X2D: The Room must handle any signal at any
time
• First robustification approach: cover all possible signals

• Show how composite states are useful for concise description of the
robustification with minimal interference

94

Our Room must be more robust

• The Room X2C works when nothing unexpected happens
• Such a room could function for years

• What about the unexpected?
• How can we know anything about the unexpected? Would that not be

counterintuitive since we cannot expect the unexpected?

95

The Beauty of State Machines

• Finite State Machines are finite!
• There is a finite number of states

• and the number is in our cases a small number

• There is a finite number of signals to handle
• and the number is in our cases a reasonably small number

• There is a finite possible number of unique transitions
• and in principle we can define them all

• A State captures the whole history up till now
• Think locally for every state

96

Making the initial building of The Room more
concise
• Walking through the initial building of The Room, we realize that we

should control the order more directly

• More control may not always be a bad thing

• We introduce the composite state Build to distinguish the setup from
the Running
• Clear separation of concerns

97

The Room X2D –
covering all signals

98

Separate the Build

Exceptions when
expecting thermometer

Exceptions not expected
in Build

Exceptions not expected
in Running

Inside Running,
robustification has no impact

The unexpected in ThingML (1)

99

composite state Build init AddThermo keeps history {

state AddThermo {

transition -> AddDevice

event addt:human_input?add_thermometer

action do

thermo_id=addt.id

request_sensor!add_thermometer(thermo_id,addt.txt)

human_output!prompt("Please add one switch device")

// SIMULATION: prompting on console for the user to react properly

end

transition -> AddThermo // Cover other messages

event human_input?add_device

event human_input?SwitchOn

event human_input?SwitchOff

event human_input?set_temperature

event human_input?set_polling_interval

action do

human_output!prompt("Please add thermometer")

end

// temperature is handled on Build level

}

Separate the Build

Exceptions when
expecting thermometer

The unexpected in ThingML (2)

100

// Normal transition to the Running state

transition -> Running

event set_temp:human_input?set_temperature

action do

tmrature = set_temp.t

human_output!prompt("Now entering thermostat. Please give temperature observations")

// SIMULATION: prompting on console for the user to react properly

end

//Escape situations

transition -> Build

event get_sensor?temperature

// just discard, the thermostat is not running, yet

} // end Build

Exceptions not expected
in Build

The unexpected in ThingML (3)

101

// Transitions of the composite state Running

transition -> Running

event pollint:human_input?set_polling_interval

action do

// just forward the polling interval instructions to the PSM

request_sensor!set_polling_interval(pollint.intrvl)

end

transition -> Running

event temp:get_sensor?temperature

// just discard - this should only happen when in On or Off states

// Messages that should not occur, but may occur

transition -> Running

event human_input?add_thermometer

event human_input?add_device

action do

human_output!prompt("Adding gadgets has been done and then blocked")

end

// Messages the cannot occur - since they are always handled

transition -> Running

event human_input?SwitchOn

event human_input?SwitchOff

event human_input?set_temperature

action do

human_output!prompt("INTERNAL ERROR: Impossible messages at PIM.Running")

end

} // end Running

} // end PIM_behavior

} // end PIM thing

Exceptions not expected
in Running

Normal situation, not related to
the thermostat function as such

Human input which is misplaced,
but very possible

Technical software firewall: our
analysis shows this cannot

happen, but we still catch it

The Room X2D: First Robustification, all
signals covered
• Since finite state machines are finite, exploit this!

• Walk through all transitions and have a conscious attitude to what the
effects should be

• Apply composite states for concise description

• Distinguish between
• Normal situations within happy day scenarios

• Possible situations from which we need some recovery

• Impossible situations that we still catch to cover own errors

102

Are we now happy with our Room
Thermostat at X2D?
• We have now a fairly well built software logic (PIM)

• A good product is the best motivator for new requests!
• Maintenance starts when the software is made available

• New and better functionality can be imagined

• Reality is also a reference for what is needed
• What about unreliable gadgets?

• What about intentional attacks?

103

L3: The Room X3 –
unreliable external components

104

Recap of X2 –
the Thermostat

105

Behavior of the simple Thermostat

106

sd SimpleThermostat

T1:ThermometerSet onoff1:OnOfftlstick:TellstickManager pim:PIM

timer_timeout

temperature(id1,txt1,temp2)

SwitchOn(did1)

SwitchOff(did1)

initialize(tlstck)

initialize(tlstck)

sensorinfo() sensorinfo()

deviceinfo deviceinfo

add_thermometer(id1,txt1)add_thermometer(id1,txt1)

set_temperature(temp1)

add_device(didid1,didtxt1)add_device(didid1,didtxt1)

loop

[temp2 < temp1-1]

[temp2 > temp1+1]

alt

SwitchOn(did1) SwitchOn(did1)

SwitchOff(did1) SwitchOff(did1)

start_timer

start_timer

start_timer

timr:JavaTimer

start_timer

The Room X2D –
Software
becoming
internally robust

107

Composite states for
separation of concerns

Concise description of
transitions for the whole

composite structure

All possible signals
covered

Optimizing actuator – apply
switch only when needed

The Room X3 – guarding returns
from external sources

108

What we cover and what we do not cover in
X2
• We cover

• all possible signals in every state

• some hardware constraint/problem: do not wear out the switches

• We do not cover
• that externals e.g. the user by mistake fail to respond

• that some technical gadgets may fail

• that somebody may want to harm our system

109

The Room X3: The system environment

• Any real system relates to its environment
• We cannot control the environment

• What we can do, is to observe the environment and react to it

• One particular challenge is when the environment is expected to
deliver input, and it fails to do so

• In The Room our environment consists of
• Human user

• Input from thermometer

• Output to switch

110

TheRoomX3sim

pim:PIM
psm:PSM

T1:ThermometerSet

onoff1:OnOffSet

get_sensor

request_actuator

human_output

human_input

usr_o

usr_i

get_values

provide_val

require_val

require_val

Turning switch on
and off from Mock
user interface

Reading the value
from thermometers
T1 in and out

tlstick:TellstickManager

to_onoff1

to_gdg

to_T1

tg:TempSim

give_values

timr_th:JavaTimer

timer

timer

request_sensor

onoffobs:OnOffSim

show_onoff

show_val

show_values

show_values

gdg:GadgetSim

show_gadgets

initial

initial

g_temp:JavaTimer

guard_temprerature

timer

g_humn:JavaTimer

guard_human

timer

The Room X3 – Simulated Environment

111

Human
input

Temperature
input

Actuator
output

The Room X3: Guarding Response

• We cannot force the thermometer to send us temperatures and we
cannot force the user to give the necessary input

• We observe that response is late by applying timers
• We start a timer when we wait for a response

• We stop the timer when we have received the expected response

• In The Room we expect
• temperature from the thermometer (in Running)

• building operations from the user (in Build)

112

Timers in ThingML (1)

• Soft timers in ThingML are instances
of a Timer thing

• With Java object code there is a
TimerJava specialization

• The timer object
• sends timer_timeout

• receives timer_start, timer_cancel

• The timer client (here PIM)
• receives timer_timeout

• sends timer_start, timer_cancel

113

configuration CPS {

...

instance g_temp:TimerJava

instance g_humn:TimerJava

instance timer : TimerJava

// PSM

...

connector T1.timer => timer.timer

// PIM

...

connector pim.guard_temperature =>g_temp.timer

connector pim.guard_human => g_humn.timer

}

Timers in ThingML (2)

114

thing fragment TimerMsgs {

// Start the Timer

message timer_start(delay : Integer);

// Cancel the Timer

message timer_cancel()@debug "false";

// Notification that the timer has expired

message timer_timeout();

}

thing fragment Timer includes TimerMsgs {

provided port timer {

sends timer_timeout

receives timer_start, timer_cancel

}

}

thing fragment TimerClient includes TimerMsgs {

required port timer {

receives timer_timeout

sends timer_start, timer_cancel

}

}

Timers guarding expected escapes from a
state

115

required port guard_temperature {

receives timer_timeout

sends timer_start, timer_cancel

}

required port guard_human {

receives timer_timeout

sends timer_start, timer_cancel

}

statechart PIM_behavior init Build {

composite state Build init AddThermo keeps history {

on entry guard_human!timer_start(30000) // 30s to do the whole build

on exit guard_human!timer_cancel()

...

When entering state Build,
start the timer

When exiting state Build,
cancel the timer

transition -> Build

event tmout:guard_human?timer_timeout

action do

human_output!prompt("Please continue doing the build")

end

} // end Build

On timeout, perform a
recovery action

Guarding missing temperature measurements

116

at entry

at exit

On timeout

Executing The Room X3

117

Too slow giving human input

Temperature cycle slower
than guarding timer

The Room X3B –
actuator failing

118

Failing actuators

• The Room X3 took care of missing expected input

• The Room X3B shall look at problematic output
• The output from The Room is on the switch

• The communication with the switch is only one way

• The Room controlling unit can know what the most recent signal to the switch has been,
but ...

• How can we assert that the switch is on (or off)?

119

Is the switch on or off?

• The Room X3 only knows what is the most recent sent signal to the
switch
• The Room X3 does not know what the state of the switch is

• Solution 1: Enhance protocol with ack-signal
• Problem: This is hardware dependent, and our switch does not have means to

send signals back

• Solution 2: Observe some effects of the switch
• Camera to observe an associated lamp

• Observe whether expected changes in temperature actually occur

120

We decide to observe changes in
temperature
• If we think that the switch is on, we believe that the temperature

should be rising
• We are in TemprIncreasing state

• If we think that the switch is off, we believe that the temperature
should be falling
• We are in TemprDecreasing state

121

Our simple discover and recover strategy

• Observe development of temperature, rising or falling

• If in state TemprIncreasing and temperature is falling, we try and
switch ON again

• If in state TemprDecreasing and temperature is rising, we try and
switch OFF again

• If in state ON and temperature is falling, we try and switch ON again

• If in state OFF and temperature is rising, we try and switch OFF again

122

TemprIncrease

123

state TemprIncrease{ // Invariant: Switch is ON and temperature should increase

on entry guard_temperature!timer_start(15000)

on exit guard_temperature!timer_cancel()

transition -> TemprIncrease

event temp:get_sensor?temperature

guard temp.t<=tmrature+1

action do

if (lasttemp>temp.t) request_actuator!SwitchOn(switch_id)

// the temperature is still falling even though switch should be ON, reactivate

lasttemp = temp.t

end

transition -> TemprDecrease

event temp2:get_sensor?temperature

guard temp2.t>tmrature+1

action do

request_actuator!SwitchOff(switch_id)

lasttemp = temp2.t

end

transition -> TemprIncrease

event timout:guard_temperature?timer_timeout

action do

human_output!prompt("WARNING: @TemprIncrease - temperature measurement is delayed")

end

}

Temperature still falling,
repeat switch ON

and graphically

124

Temperature still falling,
repeat switch ON

Temperature still rising,
repeat switch OFF

Temperature still rising,
repeat switch OFF

The Room X3 – implications of a challenging
environment
• X3 guards the expected inputs with timers

• X3 guards the expected results of output with clever observation and
recovery

• X3 has modifications that are due to the challenging environment
• but to test X3 it is a lot easier to execute the simulated version!

• X3 in reality would have to
• manipulate thermometers e.g. by removing batteries

• manipulate switches e.g. by physically altering them

125

