
Telecom and Informatics 1

INF5120

”Modellbasert Systemutvikling”

”Modelbased System development”

Lecture 12: 03.04.2017
Arne-Jørgen Berre

arneb@ifi.uio.no or Arne.J.Berre@sintef.no

mailto:arneb@ifi.uio.no
mailto:Arne.J.Berre@sintef.no

Telecom and Informatics

Content

 Introduction to Metamodels and UML Profiles

 Introduction to Eclipse, EMF and Sirius

 Introduction to Oblig 3 – for May 4th

2

Course parts (16 lectures) - 2017

3

 January (1-3) (Introduction to Modeling, Business Architecture and the Smart Building project):
 1-16/1: Introduction to INF5120
 2-23/1: Modeling structure and behaviour (UML and UML 2.0 and metamodeling) - (establish Oblig groups)
 3-30/1: WebRatio for Web Apps/Portals and Mobile Apps – and Entity/Class modeling – (Getting started with WebRatio)

 February (4-7) (Modeling of User Interfaces, Flows and Data model diagrams, Apps/Web Portals - IFML/Client-Side):
 4-6/2: Business Model Canvas, Value Proposition, Lean Canvas and Essence
 5-13/2: IFML – Interaction Flow Modeling Language, WebRatio advanced – for Web and Apps
 6-20/2: BPMN process, UML Activ.Diagrams, Workflow and Orchestration modelling value networks
 7-27/2: Modeling principles – Quality in Models
 27/2: Oblig 1: Smart Building – Business Architecture and App/Portal with IFML WebRatio UI for Smart Building

 March (8-11) (Modeling of IoT/CPS/Cloud, Services and Big Data – UML SM/SD/Collab, ThingML Server-Side):
 8-6/3: Basis for DSL and ThingML -> UML State Machines and Sequence Diagrams
 9-13/3: ThingML DSL - UML Composite structures, State Machines and Sequence Diagrams II
 10-20/3: Guest lecture, "Experience with Modelling", Anton Landmark, SINTEF
 11-27/3: ThingML part 2 and UML Service Modeling, Architectural models, SoaML. Role modeling and UML Collaboration diagrams

 April/May (12-14) (MDE – Creating Your own Domain Specific Language):
 12-3/4: Model driven engineering – Metamodels, DSL, UML Profiles, EMF, Sirius Editors – intro to Oblig 3

 EASTER – 10/4 og 17/4
 20/4: Oblig 2: Smart Building – Individual and group delivery - Internet of Things control with ThingML – Raspberry Pi, Wireless

sensors (temperature, humidity), actuators (power control)

 13-24/4: MDE transformations, Non Functional requirements – Discussion of Oblig2 and 3
 1. Mai – Official holiday
 4/5: Oblig 3 - Your own Domain Specific Language – (ArchiMate) (Delivery – Thursday May 4th)
 14-8/5: SmartBuilding – Integrating App with Server side and Architmate editor (Discussion of Oblig 3)

 May (15-17): (Bringing it together)
 15-15/5: Summary of the course – Final demonstrations
 16-22/5: Previous exams – group collaborations (No lecture)
 17-29/5: Conclusions, Preparations for the Exam by old exams
 June (Exam)
 13/6: Exam (4 hours), June 13th, 0900-1300

Telecom and Informatics 4

OMG Model-Driven Architecture (MDA)

www.omg.org/mda

Telecom and Informatics 5

Model-driven – a definition

 A system development process is model-driven if

 the development is mainly carried out using conceptual models at

different levels of abstraction and using various viewpoints

 it distinguishes clearly between platform independent and platform

specific models

 models play a fundamental role, not only in the initial development

phase, but also in maintenance, reuse and further development

 models document the relations between various models, thereby

providing a precise foundation for refinement as well as

transformation

Telecom and Informatics 6

MDA From 30.000 Feet

J2EE

.Net

 A PIM can be retargeted to different platforms

 Not the only reason why MDA might be of interest to you…

Telecom and Informatics 7

Automation in Software Development
Requirement

s

Requirement

s

Requirement

s

Implementation

Source in a

general-purpose

language, e.g.,

Java or C++

Implementation

(may generate

code in

Java or C++)

Source in

domain-specific

language (DSL)

Implementation

(may generate

code in

Java or C++)

Source in

domain-specific

language (DSL)

High-level spec

(functional and

nonfunctional)

Manually

implement

Manually

implement

Manually

implement

Compile Compile Compile

Compile Compile

Implement

with

Interactive,

automated

support

Telecom and Informatics 8

Basic MDA Pattern

 Generic transformations

 Implement best practices,
architectural and design patterns,
technology patterns (e.g., J3EE
patterns), optimizations, etc.

 Additional information

 Adjust the transformation globally

 Similar to compiler options

 Model markup

 Direct the transformation of
particular model elements

 Not part of the PIM

 Different platform mappings may
require different markup

 Similar to compiler pragmas

PIM

PSM

• Additional

information

• Model markup

Transformation
Generic

transformation

Telecom and Informatics 9

Goals

 The three primary goals of MDA are portability, interoperability and

reusability.

 The MDA starts with the well-known and long established idea of

separating the specification of the operation of the system from the

details of the way the system uses the capabilities of its software

execution platform (e.g. JEE, CORBA, Microsoft .NET and Web

services).

 MDA provides an approach for:

 specifying a system independently of the software execution platform that

supports it;

 specifying software execution platforms;

 choosing a particular software execution platform for the system;

 transforming the system specification into one for a particular software

execution platform;

Telecom and Informatics 10

Basic concepts

 System
 Existing or planned system.

 System may include anything: a program, a single computer system, some combination of parts of different
systems

 Model
 A model of a system is a description or specification of that system and its environment for some certain

purpose.

 A model is often presented as a combination of drawings and text.

 Architecture
 The architecture of a system is a specification of the parts and connectors of the system and the rules for the

interactions of the parts using the connectors.

 MDA prescribes certain kinds of models to be used, how those models may be prepared and the relationships
of the different kinds of models.

 Viewpoint
 A viewpoint on a system is a technique for abstraction using a selected set of architectural concepts and

structuring rules, in order to focus on particular concerns within that system.

 View
 A viewpoint model or view of a system is a representation of that system from the perspective of a chosen

viewpoint.

 Platform
 A platform is a set of subsystems and technologies that provide a coherent set of functionality through

interfaces and specified usage patterns, which any application supported by that platform can use without
concern for the details of how the functionality provided by the platform is implemented.

Telecom and Informatics 11

MDA – Three main abstraction levels

 Computation independent model (CIM)
 The computational independent viewpoint is focused on the environment of the system and on

the specific requirements of the system.

 A CIM represents the computational independent viewpoint.

 The CIM hides the structural details and, of course, the details related to the targeted platform.

 Platform independent model (PIM)
 A platform independent model is a view of the system from a platform independent viewpoint.

 The platform independent viewpoint is focused on the operation of the system, hiding the
platform specific details.

 A PIM exhibits platform independence and is suitable for use with a number of different
platforms of similar types.

 The PIM gathers all the information needed to describe the behaviour of the system in a
platform independent way.

 Platform specific model (PSM)
 A platform specific model is a view of the system from the platform specific viewpoint.

 A PSM combines the specifications in the PIM with the details that specify how the system uses
a particular type of platform.

 The PSM represents the PIM taking into account the specific platform characteristics.

Telecom and Informatics 12

CIM

Business

Context

Models

PIM

Model

trans-

formation

Software

Specification

Models

PSM

Software

Realisation

Models

Model

trans-

formation

Model-driven approach to system

engineering where models are used in

• understanding

• design

• construction

• deployment

• operation

• maintenance

• modification

Model transformation tools and services

are used to align the different models.

Business-driven approach to system

engineering where models are refined from

business needs to software solutions

• Computation independent model (CIM)

capturing business context and business

requirements

• Platform independent model (PIM)

focusing on software services

independent of IT technology

• Platform specific model (PSM) focusing

on

the IT technology realisation of the

software

services

M
o

d
e

l-
d

ri
v
e

n
 d

e
v
e

lo
p

m
e

n
t

(M
D

D
)

Telecom and Informatics 13

Basic MDA Pattern

 The basic pattern can be

applied multiple times

 PIMs and PSMs are relative

notions

 “Someone’s PIM can be

someone else’s PSM”

 Platform independence is

relative, too

 It’s a scoping issue

 It’s a strategic decision

Telecom and Informatics 14

Role of Models

 Capture design information that is usually absent from
code and lost during development

 Basis for
 System generation

 Analysis

 Simulation

 Test generation

 Documentation generation

 …

 Domain-specificity of a modeling language strengthens its
capabilities for generation, optimization, early error
detection, etc.

Telecom and Informatics 15

Viewpoints and Views

 System models are organized

into multiple views

 Different abstraction levels

 Different aspects (e.g.,

workflow, domain concepts,

deployment)

 Each view conforms to some

viewpoint that prescribes some

appropriate modeling notation

 Each viewpoint is relevant to

some stakeholder

Telecom and Informatics 16

Many different views…

Telecom and Informatics 17

MDA-Related Standards

 OMG Standards

 Modeling – UML

 Metamodeling – MOF

 Action semantics

 Model interchange – XMI

 Diagram interchange

 Human-readable textual notation – HUTN

 Model-based testing and debugging

 (CWM)

 …

 Java Community Process (JCP) Standard

 Java Metadata Interface – JMI

Telecom and Informatics 18

Benefits of MDA

 Preserving the investment in knowledge

 Independent of implementation platform

 Tacit knowledge made explicit

 Speed of development

 Most of the implementation is generated

 Quality of implementation

 Experts provide transformation templates

 Maintenance and documentation

 Design and analysis models are not abandoned after writing

 100% traceability from specification to implementation

Telecom and Informatics

Domain specific modelling languages

 Specific to a domain

 More focussed purpose

 Usable by the domain experts

 More productive than general purpose

 If properly designed and tooled!

 UML profiles vs. DSL

19

Telecom and Informatics

Assigning Meaning to Models
 If a model is no longer just

 fancy pictures to decorate your room

 a graphical syntax for C++/Java/C#/Eiffel...

 Then tools must be able to manipulate models
 Let’s make a model

of what a model is!

 => meta-modeling

 & meta-meta-modeling..

 Use Meta-Object
Facility (MOF) to avoid
infinite Meta-recursion

ConstraintNamespace

Package

GeneralizableElement

0..*

0..*

+supertype

{ordered}0..*

+subtype

0..*

Generalizes

Classifier

Class AssociationDataType

Feature

BehavioralFeature StructuralFeature

Operation

AssociationEnd

Reference

0..*

1

+referent0..*

+referencedEnd
1

RefersTo

MofAttribute

ModelElement

0..*
0..1

+containedElement

{ordered}

0..*

+container

0..1

Contains

0..*

1..*

0..*

+constrainedElement

1..*
Constrains

Telecom and Informatics

UML2

meta-model

(part., ©

OMG)

Telecom and Informatics

Generalizations

© OMG

NB: Tell you nothing

about:

•generalization being

acyclic,

•or semantics of

dynamic binding
*

Telecom and Informatics

The 4 layers in practice

© OMG

Telecom and Informatics

Comparing Abstract Syntax Systems

Pascal Language
Grammar

A specific
Pascal Program

A specific
execution

of a Pascal
program

EBNF MOF

The UML
meta-Model

A Specific
phenomenon

corresponding to
a UML Model

A Specific
UML Model

Technology #2
(MOF + OCL)

M3

M2

M1

Technology #1
(formal grammars

attribute grammars,
etc.)

A XML
document

A XML DTD
Or Schema

A XML
document

A XML DTD
or Schema

Technology #3
(XML Meta-Language)

KIF
Theories

Upper Level
Ontologies

Technology #4
(Ontology engineering)

[XMI=MOF+XML+OCL]

+Description
Logics

+Conceptual
Graphs
+etc.

+ Xlink, Xpath, XSLT
+ RDF, OIL, DAML
+ etc.

Telecom and Informatics 25

Model-Driven Architecture

Metamodel

Metamodel element

Metametamodel

Metametamodel element

conformsTometa

conformsTo

Model

Model element

conformsTometa

repOf
System

meta
MOF

Relational

metamodel

M3

M2

M1

UML

metamodel
…

… …

Telecom and Informatics 26

Model-Driven Architecture: Example

repOf

Relational Model

Book

conformsTo

Relational Metamodel

MOF Metametamodel

ClassAssociation

source

destination

conformsTo

conformsTo

System

…………

…………

AuthorIdPagesNbTitleBookId

Type

name: String

Table

name: String

+ type*+ col

+ owner

+ keyOf + key1..* *

*

Column

name: String
{ordered}

Telecom and Informatics 27

MDA technology standards

 Unified Modeling Language (UML)
 UML is the de-facto standard industry language for specifying and designing software systems.

 UML addresses the modelling of architecture and design aspects of software systems by
providing language constructs for describing, software components, objects, data, interfaces,
interactions, activities etc.

 Meta Object Facility (MOF)
 MOF provides the standard modelling and interchange constructs that are used in MDA.

 These constructs are a subset of the UML modelling constructs.

 This common foundation provides the basis for model/metadata interchange and
interoperability.

 XML Metadata Interchange (XMI)
 XMI is a format to represent models in a structured text form.

 In this way UML models and MOF metamodels may be interchanged between different
modelling tools.

 Common Warehouse Metamodel (CWM)
 CWM is the OMG data warehouse standard.

 It covers the full life cycle of designing, building and managing data warehouse applications and
supports management of the life cycle.

 MOF Queries/View/Transformations (QVT)
 The goals of the QVT are to provide a standard specification of a language suitable for querying

and transforming models which are represented according to a MOF metamodel.

Telecom and Informatics 28

How does MDD work?
 Developer develops model(s)

based on certain metamodel(s).

 Using code generation templates,

the model is transformed to

executable code.

 Optionally, the generated code is

merged with manually written code.

 One or more model-to-model

transformation steps may precede

code generation.

Model
Model

Model

Transformer
Tranformation

Rules

Model

Transformer

Code

Generation

Templates

Generated

Code

Manually

Written

Code

optional

Metamodel

Metamodel

o
p

ti
o

n
a

l,

c

a
n

 b
e

 r
e

p
e

a
te

d

Telecom and Informatics 29

OMG MOF and metamodelling

Telecom and Informatics 30

Fragments of a UML metamodel

UML

Telecom and Informatics 31

Three stages in the evolution of

modelling techniques at the OMG.

UML MOF

UMLaModel

aModel

MOF

UML

UML_for_CORBA

aModel

SPEM Workflow etc.

Common Warehouse
Metadata

Action language

(a) (b) (c)

Telecom and Informatics 32

Egyptian architecture

metamodel

model

“the real world"

meta-meta
model

The MOF

The UML meta-model and other MM’s

Some UML models and other M’s

Various usages of these models

M0

M1

M2

M3

Telecom and Informatics 33

Illustration

Class Association

Package

Package extends
Class

Association

Participant

Presentation
Participant listens

Interface Class

Java MM UML MM

Presentation

UML model
Java program

MOF M3

M2

M1

Telecom and Informatics 34

The three modelling levels

the MOF
MMM

the UML
MM

a UML
model m

a particular
use of m

the UPM
MM (SPEM)

the CWM
MM

another UML
model m’

another
use of m

M3 level

M2 level

M1 level

M0 level

CCM
EDOC
etc.

Telecom and Informatics 35

Model -> Metamodel

UML MM

Class Attribute*
1

UML model

Client

Name: String

entity meta-entity

relationship

model meta-model

relationship

Telecom and Informatics 36

Metamodel -> Meta-metamodel

UML MM

Class Attribute*
1

MOF

Class Association

source

destination

entity meta-entity

relationship

model meta-model

relationship

Telecom and Informatics 37

MOF Model (M3)
ModelElement

NamespaceImport Tag Constraint TypedElement

GeneralizableElement

Package Classifier

Association Class DataType

Feature Constant StructureField Parameter

BehaviouralFeature StructuralFeatureAssociationEnd

Operation Exception Attribute Reference

PrimitiveType StructureType EnumerationType CollectionType AliasType

/Depends On

0..*

/Exposes
1

ReferesTo
1

0..*
CanRaise
0..* {ordered}

Generalizes

0..*
Aliases

0..*

0..*

Contains

0..* 0..*
{ordered}

AttachesTo1..*

0..*

Constrains
1..*

0..*
+typedElementIsOfType

1+type

Telecom and Informatics 38

Goals & Challenges

 Goals:

 We need an end-to-end tool chain that allows us to build models,

verify them and generate various artefacts from them.

 All of this should happen in a homogeneous environment, namely

Eclipse.

 Challenges:

 Good Editors for your models

 Verifying the models as you build them

 Transforming/Modifying models

 Generating Code

 Integrating generated and non-generated code

Telecom and Informatics 39

Applied metamodelling

Telecom and Informatics 40

Metamodels

 A metamodel is just another model (e.g. written in UML)

 Model of a set of models

 Metamodels are specifications

 Models are valid if no false statements according to metamodel (e.g. well-formed)

 Metamodels typically represents domain-specific models (real-time systems, safety
critical systems, e-business)

 The domain of metamodelling is language definition

 A metamodel is a model of some part of a language

 Which part depends on how the metamodel is to be used

 Parts: syntax, semantics, views/diagrams, ...

 Meta-metamodel

 Model of metamodels

 Reflexive metamodel, i.e., expressed using itself

 Minimal reflexive metamodel

Telecom and Informatics 41

What is a metamodel?

 In its broadest sense, a metamodel is a model of a modelling language.

 The term ”meta” means transcending or above, emphasising the fact that a
metamodel describes a modelling language at a higher level of abstraction
than the modelling language itself.

 In order to understand what a metamodel is, it is useful to understand the
difference between a metamodel and a model.

 Whilst a metamodel is also a model, a metamodel has two main distinguishing
characteristics.
 Firstly, it must capture the essential features and properties of the language that is

being modelled.
 Thus, a metamodel should be capable of describing a language’s concrete syntax,

abstract syntax and semantics.

 Secondly, a metamodel must be part of a metamodel architecture.
 Just as we can use metamodels to describe the valid models or programs permitted by a

language, a metamodel architecture enables a metamodel to be viewed as a model, which
itself is described by another metamodel.

 This allows all metamodels to be described by a single metamodel.

 This single metamodel, sometimes known as a meta-metamodel, is the key to
metamodelling as it enables all modelling languages to be described in a unified way.

Telecom and Informatics 42

Why metamodel?

 System development is fundamentally based on the use of languages to
capture and relate different aspects of the problem domain.

 The benefit of metamodelling is its ability to describe these languages in a
unified way.

 This means that the languages can be uniformly managed and manipulated thus
tackling the problem of language diversity.

 For instance, mappings can be constructed between any number of languages
provided that they are described in the same metamodelling language.

 Another benefit is the ability to define semantically rich languages that
abstract from implementation specific technologies and focus on the problem
domain at hand.

 Using metamodels, many different abstractions can be defined and combined to
create new languages that are specifically tailored for a particular application
domain.

 Productivity is greatly improved as a result.

Telecom and Informatics 43

Uses for a metamodel

 Define the syntax and semantics of a language.

 Explain the language.

 Compare languages rigorously.

 Specify requirements for a tool for the language.

 Specify a language to be used in a meta-tool.

 Enable interchange between tools.

 Enable mapping between models.

Telecom and Informatics 44

The metamodelling process

 There is a clearly defined process to constructing metamodels, which

does at least make the task a well-defined, if iterative, process.

 The process has the following basic steps:

 defining abstract syntax

 defining well-formedness rules and meta-operations

 defining concrete syntax

 defining semantics

 constructing mappings to other languages

Telecom and Informatics 45

Abstract syntax

 The metamodel describes the abstract syntax of a

language.

 The abstract syntax of a language describes the

vocabulary of concepts provided by the language and how

they may be combined to create models.

 It consists of a definition of the concepts, the relationships

that exist between concepts and well-formedness rules

that state how the concepts may be legally combined.

Telecom and Informatics 46

Concrete syntax – visual

 A visual syntax presents a model or

program in a diagrammatical form.

 A visual syntax consists of a

number of graphical icons that

represent views on an underlying

model.

 A good example of a visual syntax

is a class diagram, which provides

graphical icons for class models.

 The visual syntax shown in the

figure (left) is particularly good at

presenting an overview of the

relationships and concepts in a

model.

Telecom and Informatics 47

Concrete syntax – textual

 A textual syntax enables models or programs to be described in a structured
textual form.

 A textual syntax can take many forms, but typically consists of a mixture of
declarations, which declare specific objects and variables to be available, and
expressions, which state properties relating to the declared objects and
variables.

 The following Java code illustrates a textual syntax that includes a class with a
local attribute declaration and a method with a return expression:

Telecom and Informatics 48

Challenges facing developers

Complexity

Diversity Change

Telecom and Informatics 49

Language-driven development –

Providing the solution

 Execution
 allows the model or program to be tested, run and deployed

 Analysis
 provides information of the properties of models and programs

 Testing
 support for both generating test cases and validating them must be provided

 Visualisation
 many languages have a graphical syntax, and support must be provided for this via the user

interface to the language

 Parsing
 if a language has a textual syntax, a means must be provided for reading in expressions written

in the language

 Translation
 languages don’t exist in isolation. They are typically connected together whether it is done

informally or automatically through code generation or compilation

 Integration
 it is often useful to be able to integrate features from one model or program into another, e.g.

through the use of configuration management.

Telecom and Informatics 50

Language engineering and metamodelling

 In order to be able to engineer languages, we need a

language for capturing, describing and manipulating all

aspects of languages in a unified and semantically rich

way.

 This language is called a metamodelling language.

 Metamodels (models of languages) are the primary means

by which language engineering artefacts are expressed,

and are therefore the foundation for language-driven

development.

Telecom and Informatics 51

Semantics

 An abstract syntax conveys little information about what the concepts in a
language actually mean.

 Therefore, additional information is needed in order to capture the semantics
of a language.

 Defining a semantics for a language is important in order to be clear about
what the language represents and means.

 Otherwise, assumptions may be made about the language that lead to its
incorrect use.

 For instance, although we may have an intuitive understanding of what is
meant by a state machine, it is likely that the detailed semantics of the
language will be open to misinterpretation if they are not defined precisely.
 What exactly is a state?

 What does it mean for transition to occur?

 What happens if two transitions leave the same state.

 Which will be chosen?

 All these questions should be captured by the semantics of the language.

Telecom and Informatics 52

Language Engineering with Eclipse

Modeling Framework (EMF)

Telecom and Informatics 53

The Language Engineer responsibilities
uc LanguageEngineer

MODUS Lanugage Engineering Workbench

LanguageEngineer

Check Language

Quality

ModelQualityChecker

Language

Engineering

DomainExpert

Specify conceptual

model (Scoping)

Specify abstract

syntax

Specify concrete

syntax

Deriv e DSL editor

DSL Integration

Clarify purpose of language

and Identify domain concepts

and concept relationships

("Rich Picture")

Specify Semantics

Transformation Engineer

«include»

«include»

«include»

«include»

«include»

«include»

Telecom and Informatics 54

Metamodel development

1. Metamodel

Scope,

concepts, style

3. Test

Evaluate in

user scenarios

2. DSL and/or

UML profile

Create concrete

syntax (graphics)

4. Feedback

Add, remove,

and modify

concepts

Understanding of concepts and requirements

• Initial requirements

• Concepts

• Partitioning of the metamodel into structures

• Architectural style

• Document the metamodel and develop it in EMF (.ecore)

Telecom and Informatics 55

Characteristics for metamodel

 Suited for target roles

 Support domain concepts and scenarios of target roles

 Ease-of-use and understandable for business modeller (use terms)

 Support precise details and correctness for solution architect

 Avoid unnecessary complexity

 Keep it simple stupid (KISS)

 Number of elements and associations

 Type and navigation of associations

 Make it modular

 Provide core with extensions

 Define and illustrate possible subsets (”dialects”) that support scenarios

 Consider integration and extension points

 Suited for implementation

 EMF representation

 Transformation from/to UML profile

 Transformation to PSM

Telecom and Informatics 56

Technology overview

OMG MDA specification Eclipse technology Comments

MOF EMF

UML UML

UML profile/DSL GEF

GMF

QVT ATL, MOFScript

MOF2TExt MOFScript

SPEM EPF

XMI EMF

Telecom and Informatics 57

MDA-compliant Eclipse technologies
 Sirius https://eclipse.org/sirius

 Eclipse Modeling Tools: http://www.eclipse.org/downloads/

 Eclipse Modeling Framework (EMF)
 http://www.eclipse.org/emf/

 EMF is a modeling framework and code generation facility for building tools and other
applications based on a structured data model.

 Eclipse Graphical Editing Framework (GEF)
 http://www.eclipse.org/gef/

 The Graphical Editing Framework (GEF) allows developers to take an existing application
model and quickly create a rich graphical editor.

 Eclipse Graphical Modeling Framework (GMF)
 http://www.eclipse.org/gmf/

 The Eclipse Graphical Modeling Framework (GMF) provides a generative component and
runtime infrastructure for developing graphical editors based on EMF and GEF.

 Xtext
 https://eclipse.org/Xtext/

 Preferred tool for textual domain specific languages (used for ThingML for example)

 Atlas Transformation Language
 http://www.eclipse.org/gmt/atl/

 The ATL project aims at providing a set of transformation tools for GMT. These include some
sample ATL transformations, an ATL transformation engine, and an IDE for ATL (ADT: ATL
Development Tools).

 Eclipse Process Framework (EPF)
 http://www.eclipse.org/epf/

 To provide an extensible framework and exemplary tools for software process engineering -
method and process authoring, library management, configuring and publishing a process.

https://eclipse.org/sirius
http://www.eclipse.org/downloads/
http://www.eclipse.org/emf/
http://www.eclipse.org/gef/
http://www.eclipse.org/gmf/
http://www.eclipse.org/gmt/atl/
http://www.eclipse.org/epf/

Telecom and Informatics 58

EMF – Eclipse Modeling Framework

 Unifying Java, XML and (almost) UML

 EMF models are essentially simplified UML Class

Diagrams

 EMF generates Java code based on these models

 Standard serialization is in the form of XMI

 “EMF is MDA on training wheels”

Telecom and Informatics 59

EMF Models and Ecore

 Ecore is the model used to represent EMF models

 Ecore is also an EMF model and therefore its own metamodel

 And its own meta-meta-….-model, but never mind

 Available elements are:

 EClass

 EAttributes

 EReference

 EDataType

 EEnum, EEnum Literal

 EPackage

 EOperation, EParameter

 Conceptually equal to OMGs Essential MOF (EMOF)

Telecom and Informatics 60

Creating your model

 Can be defined in three ways

 Java

 XML Schema

 Directly manipulate the model (the almost UML way)

 Both Java and XML Schema approach builds an EMF

model

 Editing the model can be done with the EMF tree editor or

the GMF graphical editor

 It is also possible to import Rational Rose (.mdl) files

Telecom and Informatics 61

3 shades of EMF

Book book = LibraryFactory.eINSTANCE.createBook();

book.setTitle(“How to be a meta role model”);

Ecore model Generated Java files

Creation of an instance

Telecom and Informatics 62

GMF

 The Eclipse Graphical Modeling Framework (GMF) project

is an open source project under the Eclipse Technology

Project

 Infrastructure and components for developing visual

design and modeling surfaces in Eclipse

 UML editors

 Business process editors

 Etc..

 GMF forms a generative bridge between EMF and GEF

 A diagram definition (GEF) will be linked to a domain

model (EMF) as input to the generation of a visual editor

Telecom and Informatics 63

GMF – Graphical Modeling Framework

 Utilizes EMF and GEF to support generation of graphical
editors
 GEF – Graphical Editing Framework

 Basic idea:
 Bring your own model

 Define diagram notation

 Define your tools

 Map model elements to diagram elements

 Generate editor

 Metamodel = Abstract Syntax

 Diagram notation = Concrete Syntax

Telecom and Informatics 64

Simplified workflow

Telecom and Informatics 65

UML profiles

Telecom and Informatics 66

UML profiles

 They allow us to adapt the UML language to the needs of

the analysts or the application domain

 Allows designers to model using application domain

concepts.

 There are three extension mechanisms:

 Stereotypes

 Restrictions

 Tagged values

Telecom and Informatics 67

Stereotype

 Extends the vocabulary of UML with new construction elements

derived from existing UML but specific to a problem domain

 Can have associated restrictions and tagged values

 Possibility of assigning an icon for a better graphical representation

DB Partners

Telecom and Informatics 68

Restriction

 Is a semantical condition represented by a textual expression

 Imposes some kind of condition or requisite on the element to which

it is applied

 OCL – Object Constraint Language

{An interface does not have attributes, only operations}

Telecom and Informatics 69

Tagged value

 Is a property associated to a model element

 Used to store information about the element

 Management information, documentation, coding parameters, ...

 Generally, the tools store this information but it is not shown in the

diagrams

Telecom and Informatics 70

Metamodels and profiles

MOF

UML process generic
Meta-model

real-time
model

Workflow
Meta-model

UML
For J2EE

migration
model

Workflow
model

Migration oriented
process Meta-model

UML
Real-time

M3

M2

M1

extension

relationship

model <-> meta-model

relationship

Telecom and Informatics 71

Domain-specific languages (DSLs)

Telecom and Informatics 72

UML – one size fits all?

 While the OMG MDA promotes UML as the visual “universal” glue suitable for
modelling everything, we are also seeing a trend towards development and
co-existence of several domain-specific modelling languages, e.g. supported
by the Microsoft Domain-Specific Language (DSL) tools
(http://lab.msdn.microsoft.com/teamsystem/workshop/dsltools/default.aspx).

 Such approaches are now also being discussed in various OMG forums.

 UML is seen as a “general-purpose” language while DSLs may be more
expressive for most purposes.

 A model-driven framework needs to acknowledge the existence of different
models and views expressed in different modelling languages.

 The MDA technologies can help us to align these models through a common
metamodelling language on which model transformations and model
mappings can be defined.

http://lab.msdn.microsoft.com/teamsystem/workshop/dsltools/default.aspx

Telecom and Informatics 73

Software factory

 The Software Factories Web site (http://www.softwarefactories.com/) defines
the term Software Factory in the following way:

 “A Software Factory is a software product line that configures extensible
development tools like Visual Studio Team System with packaged content like
DSLs, patterns, frameworks and guidance, based on recipes for building
specific kinds of applications. For example, we might set up a Software
Factory for thin client Customer Relationship Management (CRM) applications
using the .NET framework, C#, the Microsoft Business Framework, Microsoft
SQL Server, and the Microsoft Host Integration Server. Equipped with this
factory, we could rapidly punch out an endless variety of CRM applications,
each containing unique features based on the unique requirements of specific
customers. Better yet, we could use this factory to create an ecosystem, by
making it available to third parties, who could extend it to rapidly build CRM
applications incorporating their value added extensions.”

http://www.softwarefactories.com/

Telecom and Informatics 74

UML and DSLs

 The issue of the role of UML is often stated in overly simplistic terms: MDD
advocates the use of UML for all domain modelling while the Software
Factories approach advocates that UML never used.

 This is an incorrect statement of the positions of both camps.

 While the MDD approach treats UML, with customization, as the modelling
language of choice for most application modelling, it also acknowledges the value
of custom languages in certain specialized circumstances.

 This is the purpose of the OMG Meta-Object Facility (MOF) standard that plays an
important role in MDD. UML itself is defined using MOF and there are MOF
definitions of many other languages.

 The MDD approach acknowledges the value of non-UML DSLs as a technique to
be applied judiciously.

 Further, the Software Factories approach does not reject UML entirely. It suggests
that you use UML for developing sketches and documentation, where DSLs should
be used for developing models from which code is generated.

Telecom and Informatics 75

Advantages of using UML profiles

 UML is an open standard modelling language for which
there are many available books and training courses.

 UML profiles provide a lightweight approach that is easily
implemented using readily available UML tooling.

 Models with UML profiles applied can be read by all UML
tools even if they do not have any knowledge of the
profile.

 Basing all DSLs on UML creates a set of related
languages that share common concepts.

 UML can be used for high-level architectural models as
well as detailed models from which code can be
generated.

Telecom and Informatics 76

Disadvantages of using UML profiles

 UML profiles only permit a limited amount of

customization.

 It is not possible to introduce new modelling concepts that cannot

be expressed by extending existing UML elements.

 The use of UML does require familiarity with modelling

concepts.

Telecom and Informatics

Example Metamodels

 UML Use case Metamodel

 BPMN Metamodel

 IFML Metamodel

 Oblig 3 – Visual Service Journey language

77

Telecom and Informatics

UML Use Case Metamodel

78

Telecom and Informatics

BPMN Metamodel

79

Telecom and Informatics

BPMN Definitions

80

Telecom and Informatics

IFML Metamodel

81

Telecom and Informatics

Oblig 3 – Use of Eclipse EMF and

SIRIUS for the creation of an

Archimate graphical editor

82

https://eclipse.org/sirius/

Telecom and Informatics

Scope Manager metamodel

83

Telecom and Informatics

Dictionary metamodel

84

Telecom and Informatics 85

Some historic references

[Atkinson and Kühne 2003] C. Atkinson and T. Kühne, "Model-Driven Development: A Metamodeling

Foundation", IEEE Software, vol. 20, no. 5, pp. 36-41, 2003. http://www.mm.informatik.tu-

darmstadt.de/staff/kuehne/publications/papers/mda-foundation.pdf

[Clark, et al. 2004] T. Clark, A. Evans, P. Sammut, and J. Willans, "Applied Metamodelling - A

Foundation for Language Driven Development, Version 0.1", 2004.

http://albini.xactium.com/web/index.php?option=com_remository&Itemid=54&func=select&id=1

[Seidewitz 2003] E. Seidewitz, "What Models Mean", IEEE Software, vol. 20, no. 5, pp. 26-32, 2003.

[Swithinbank, et al. 2005] P. Swithinbank, M. Chessell, T. Gardner, C. Griffin, J. Man, H. Wylie, and L.

Yusuf, "Patterns: Model-Driven Development Using IBM Rational Software Architect", IBM,

Redbooks, December 2005. http://www.redbooks.ibm.com/redbooks/pdfs/sg247105.pdf

http://www.mm.informatik.tu-darmstadt.de/staff/kuehne/publications/papers/mda-foundation.pdf
http://albini.xactium.com/web/index.php?option=com_remository&Itemid=54&func=select&id=1
http://www.redbooks.ibm.com/redbooks/pdfs/sg247105.pdf

Telecom and Informatics

Next lecture - Monday April 24th, 2017

 Concluding on Model Driven Engineering

 Presentation of Oblig 2

 Further discussions for Oblig 3 – with Eclipse, EMF and

Sirius – for May 4th

86

