
Telecom and Informatics 1

INF5120

”Modellbasert Systemutvikling”

”Modelbased System development”

Lecture 13: 24.04.2017
Arne-Jørgen Berre

arneb@ifi.uio.no or Arne.J.Berre@sintef.no

mailto:arneb@ifi.uio.no
mailto:Arne.J.Berre@sintef.no

Telecom and Informatics

Content

 Model Transformation

 Model to Model

 Model to Text

 NFR – Non Functional Requirements ?

2

Course parts (16 lectures) - 2017

3

 January (1-3) (Introduction to Modeling, Business Architecture and the Smart Building project):
 1-16/1: Introduction to INF5120
 2-23/1: Modeling structure and behaviour (UML and UML 2.0 and metamodeling) - (establish Oblig groups)
 3-30/1: WebRatio for Web Apps/Portals and Mobile Apps – and Entity/Class modeling – (Getting started with WebRatio)

 February (4-7) (Modeling of User Interfaces, Flows and Data model diagrams, Apps/Web Portals - IFML/Client-Side):
 4-6/2: Business Model Canvas, Value Proposition, Lean Canvas and Essence
 5-13/2: IFML – Interaction Flow Modeling Language, WebRatio advanced – for Web and Apps
 6-20/2: BPMN process, UML Activ.Diagrams, Workflow and Orchestration modelling value networks
 7-27/2: Modeling principles – Quality in Models
 27/2: Oblig 1: Smart Building – Business Architecture and App/Portal with IFML WebRatio UI for Smart Building

 March (8-11) (Modeling of IoT/CPS/Cloud, Services and Big Data – UML SM/SD/Collab, ThingML Server-Side):
 8-6/3: Basis for DSL and ThingML -> UML State Machines and Sequence Diagrams
 9-13/3: ThingML DSL - UML Composite structures, State Machines and Sequence Diagrams II
 10-20/3: Guest lecture, "Experience with Modelling", Anton Landmark, SINTEF
 11-27/3: ThingML part 2 and UML Service Modeling, Architectural models, SoaML. Role modeling and UML Collaboration diagrams

 April/May (12-14) (MDE – Creating Your own Domain Specific Language):
 12-3/4: Model driven engineering – Metamodels, DSL, UML Profiles, EMF, Sirius Editors – intro to Oblig 3

 EASTER – 10/4 og 17/4
 20/4: Oblig 2: Smart Building – Individual and group delivery - Internet of Things control with ThingML – Raspberry Pi, Wireless

sensors (temperature, humidity), actuators (power control)

 13-24/4: MDE transformations, Non Functional requirements – Discussion of Oblig2 and 3
 1. Mai – Official holiday
 4/5: Oblig 3 - Your own Domain Specific Language – (ArchiMate) (Delivery – Thursday May 4th)
 14-8/5: SmartBuilding – Integrating App with Server side and Architmate editor (Discussion of Oblig 3)

 May (15-17): (Bringing it together)
 15-15/5: Summary of the course – Final demonstrations
 16-22/5: Previous exams – group collaborations (No lecture)
 17-29/5: Conclusions, Preparations for the Exam by old exams
 June (Exam)
 13/6: Exam (4 hours), June 13th, 0900-1300

Telecom and Informatics

Content

 MOF and EMF

 Model transformations

 MOFScript

 ATL

 Acceleo

 OCL – UML Object Constraint Language

4

Telecom and Informatics 5

MDA-compliant Eclipse technologies

 Eclipse Modeling Tools: http://www.eclipse.org/downloads/

 Eclipse Modeling Framework (EMF)
 http://www.eclipse.org/emf/

 EMF is a modeling framework and code generation facility for building tools and other
applications based on a structured data model.

 Eclipse Graphical Editing Framework (GEF)
 http://www.eclipse.org/gef/

 The Graphical Editing Framework (GEF) allows developers to take an existing application
model and quickly create a rich graphical editor.

 Eclipse Graphical Modeling Framework (GMF)
 http://www.eclipse.org/gmf/

 The Eclipse Graphical Modeling Framework (GMF) provides a generative component and
runtime infrastructure for developing graphical editors based on EMF and GEF.

 Eugenia - plus Spray/Graphiti
 EuGENia is a tool that automatically generates the .gmfgraph, .gmftool and .gmfmap models

needed to implement a GMF editor from a single annotated Ecore metamodel

 http://www.eclipse.org/epsilon/doc/eugenia/

 Atlas Transformation Language
 http://www.eclipse.org/gmt/atl/

 The ATL project aims at providing a set of transformation tools for GMT. These include some
sample ATL transformations, an ATL transformation engine, and an IDE for ATL (ADT: ATL
Development Tools).

 Eclipse Process Framework (EPF)
 http://www.eclipse.org/epf/

 To provide an extensible framework and exemplary tools for software process engineering -
method and process authoring, library management, configuring and publishing a process.

http://www.eclipse.org/downloads/
http://www.eclipse.org/emf/
http://www.eclipse.org/gef/
http://www.eclipse.org/gmf/
http://www.eclipse.org/gmt/atl/
http://www.eclipse.org/epf/

Telecom and Informatics

EMFText - MOF to text

 http://www.emftext.org/index.php/EMFText

6

http://www.emftext.org/index.php/EMFText

Telecom and Informatics 7

ATHENA Model-Driven Interoperability (MDI) Framework

MDA & Interoperability

Metamodelling

UML Profiles & DSLs

Model Transformations

Method Engineering

Reusable MDI Assets

• Method chunks

• Tools and services

• Models and metamodels

• Model transformations

• DSLs and UML profiles

• Reference examples

Introduction

Telecom and Informatics 8

Model to Text transformation 1/2

 MDA places modelling at the heart of the software
development process.

 Various models are used to capture various aspects of the
system in a platform independent manner.

 Sets of transformations are then applied to these platform
independent models (PIM) to derive platform specific
models (PSM).

 These PSMs need to be eventually transformed into
software artefacts such as code, deployment
specifications, reports, documents, etc.

 It is also common to generate code directly from PIM-like
models. (DSL approach)

Telecom and Informatics 9

Model to Text transformation 1/2

 QVT, ATL and MOFScript M2M addresses the need of model – to –

model transformation (e.g., PIM – to – PIM, PIM – to – PSM and PSM

– to – PSM)

 The MOF Model to Text (mof2text) standard addresses how to

translate a model to various text artefacts such as code,

deployment specifications, reports, documents, etc.

 Essentially, the mof2text standard needs to address how to transform

a model into a linearized text representation.

 An intuitive way to address this requirement is a template based

approach wherein the text to be generated from models is specified

as a set of text templates that are parameterized with model elements.

Telecom and Informatics 10

Motivation
 Why do we need model-to-text transformation?

 Raise the level of abstraction

 Systems are getting more complex

 Raise of abstraction has proven useful (for instance: Assembly to
COBOL)

 Automation of the software development process

 Decrease development time

 Increase software quality

 Focus on the creative part

 Automatic generation of new artefacts from your models

 Java, EJB, JSP, C#

 SQL Scripts

 HTML

 Test cases

 Model documentation

Telecom and Informatics 11

Alternatives
 What are the alternatives?

 Programming languages (e.g Java),

 Template/scripting languages (e.g XSLT, OaW, Eclipse Java Emitter Templates
– JET, OMG MOF Model 2 Text)

 Model Transformation Languages (e.g. ATLAS Transformation Language (ATL)),
proprietary UML-based script languages, DSL-based approaches, Other MOF-
based text/code generators

 Properties of the alternatives:
 Neither programming languages nor scripting languages tend to take advantage of

source metamodels.

 However, it can be done programmatically in Java (e.g. using Eclipse Modelling
Framework (EMF))

 Model 2 Model Transformation languages such as ATL is metamodel-based, but is
not designed with text generation in mind. However, it can be done also in ATL

 UML tool script languages are tied to both UML and a vendor, and are not based on
standards.

 DSLs provides the flexibility of metamodel-based tools; they typically hard code
code generation for each domain-specific language.

 The difference between a MOF-based approach and a DSL is not significant, as
transformations in MOF-based approaches also will depend on a particular metamodel.

 Other MOF-based text generators have not been available, but will emerge.

Telecom and Informatics 12

OMG Request for Proposal for a model-to-

text transformation language

 OMG RFP Issued in 2004

 Mandatory Requirements:

 Generation from MOF 2.0 models to text

 Reuse (if applicable) existing OMG specifications, in particular QVT

 Transformations should be defined at the metalevel of the source model

 Support for string conversion of model data

 String manipulation

 Combination of model data with hard coded output text

 Support for complex transformations

 Multiple MOF models as input (multiple source models)

 Optional Requirements

 round-trip engineering

 detection/protection of hand-made changes for re-generation

 traceability is a (possible) means of supporting the last two.

Telecom and Informatics 13

MOF to Text Overview

 A template-based approach wherein a Template

specifies a text template with placeholders for data to be

extracted from models.

 These placeholders are essentially expressions specified

over metamodel entities with queries being the primary

mechanisms for selecting and extracting the values from

models.

 These values are then converted into text fragments using

an expression language augmented with a string

manipulation library.

 Template can be composed to address complex

transformation requirements. Large transformations can

be structured into modules having public and private parts.

Telecom and Informatics 14

MOF to Text Example

[template public classToJava(c : Class)]

class [c.name/] {

// Attribute declarations

[attributeToJava(c.attribute)]

// Constructor

[c.name/] () {

}

}

[/template]

[template public attributeToJava(a : Attribute)]

[a.type.name/] [a.name/];

[/template]

class Employee

{

// Attribute declarations

String name;

Department dept;

Double salary;

// Constructor

Employee()

{

}

}

Telecom and Informatics 15

Language details 1/3
 Instead of defining two templates separately, a template can iterate over a

collection by using the for block.

 Using the for block preserves WYSIWYG-ness and improves readability.

 For example the classToJava template can use the for block as shown below:

[template public classToJava(c : Class)]

class [c.name/] {

// Attribute declarations

[for(a : Attribute | c.attribute)]

[a.type.name/] [a.name/];

[/for]

// Constructor

[c.name/] () {

}

}

[/template]

The for block declares a loop variable ‘a’ of type Attribute and produces for each

Attribute in the collection c.attribute the text between the [for] and [/for].

Telecom and Informatics 16

Language details 2/3

 A template can have a guard that decides whether the template can

be invoked. For example, the following classToJava template is

invoked only if the class is concrete.

[template public classToJava(c : Class) ? (c.isAbstract = false)]

 Complex model navigations can be specified using queries. The

following example shows use of a query allOperations to collect

operations of all abstract parent classes of a class in a class

hierarchy.

[query public allOperations(c: Class) : Set (Operation) =c.operation->union

(c.superClass->select(sc|sc.isAbstract=true)->iterate(ac : Class;

os:Set(Operation) = Set{}| os->union(allOperations(ac)))) /]

Telecom and Informatics 17

Language details 3/3

 As we have seen, a template has WYSIWYG nature with the text to be output

being specified in exactly the way it should look in the output.

 There may be cases where the quantity of the text producing logic far

outweighs the text being produced. In this case, it is more intuitive to specify

the text producing logic without use of special delimiters. @code-explicit

@code-explicit

template public classToJava(c : Class)

‘class ‘c.name ‘ {

// Constructor

‘c.name’ () {

}

}’

/template

@text-explicit

[template public classToJava(c : Class)]

class [c.name/] {

// Constructor

[c.name/] () {

}

}

[/template]

Telecom and Informatics 18

 MOF2Text: A merge of the different model to text
proposals, where MOFScript was one of several

 Many similarities with MOFScript:
 imperative language w/ explicit rule calls

 reusing selected parts of QVT/OCL

 Differs from MOFScript:
 Mainly syntactical

 Context type does not have its own slot, inserted in the parameter
list

 More traditional for-statements instead of forEach

 Escaping direction is flexible: The transformation code can be
escaped, or the output text can be escaped (as in MOFScript).

OMG Standard for model-to-text

Telecom and Informatics 19

Tool Support

 Eclipse M2T Project:

 Acceleo MTL:

 http://www.eclipsecon.org/2009/sessions?id=387

 MOFScript M2T:

 Parser, model and editor that uses the MOFScript runtime

 http://modelbased.net/modelplex/mof2text/index.html

http://www.eclipsecon.org/2009/sessions?id=387
http://modelbased.net/modelplex/mof2text/index.html

Telecom and Informatics 20

MOFScript Model to Text language

and Tool

Telecom and Informatics 21

Introduction

Model Driven Development (MDD) emphasizes

the use of models as first class artifacts

 CIM <--> PIM <--> PSM <--> TEXT / CODE

MOFScript bridges Model  Text

Public class a extends x

………………..

B.wsdl

………………

Z association type Simple

c.Html

z

Telecom and Informatics 22

MOFScript placed in the 4-layer

architecture
MOF

Source
Metamodel

Source
model

MOFScript
language

MOFScript
transformation

Target
text

MOFScript
tool
engine

executed by

input

output

conforms to conforms to

conforms to

based on

M1

M2

M3

conforms to

Telecom and Informatics 23

What is MOFScript?

 The MOFScript tool is an implementation of the MOFScript

model to text transformation language

 Developed at Sintef ICT in the EU-supported

MODELWARE project

 An Eclipse plug-in

 Mapping of model artifacts to a multitude of textual

languages

 Was part of standardization process within OMG

 OMG RFP MOF Model to Text Transformation process

Telecom and Informatics 24

MOFScript a transformation language

 Language for writing model to text transformations

 Rules / Operations are called explicit (Procedural
language)

 Partly based on the current QVT specification (keeps it
within the family)

 Transforms input models to output text files
 Generate text from any MOF-based model, e.g., UML models or

any kind of domain model.

Telecom and Informatics 25

MOF Script - background

 Usability
 Ease of use: Writing and understanding

 Few constructs

 End user recognizability
 Similar to programming and scripting languages

 Imperatively oriented

 Sequential execution semantics
 Rules are called explicitly

 Might also support pattern matching execution

 Contents of rules is executed sequentially

 Compatibility
 Alignment with latest QVT (QVTMerge) specification

Telecom and Informatics 26

MOFScript in action

Documentation

UML

MOFScript

Program code

XMLRDBMS

BPMN

MOF MODELS LEXICAL OUTPUT

Telecom and Informatics 27

MOFScript architecture

Telecom and Informatics 28

MOFScript a model to text tool

 Provides the means of:

 Editing, compiling and

executing

 Syntax high-lightning

 Content assist

 Outline

 MOFScript Console

Telecom and Informatics 29

The main steps of using the

MOFScript tool

 Task: Define a transformation from source model A to

text t. (At)

1. Import or define the source metamodel for A.

2. Write the MOFScript to transform A to t in the MOFScript editor

3. Compile the transformation. Any errors in the transformation will

be presented.

1. Fix errors, if any

4. Load a source model corresponding to A’s metamodel.

1. Using the Eclipse plugin, this is prompted by the tool when trying to

execute.

5. Execute the MOFScript in the MOFScript tool.

1. The transformation is executed. Output text / files are produced.

Telecom and Informatics 30

Built-in operations

 String operations

 Various string manipulation operations, such as:

 size, substring, subStringBefore|After, toLower, toUpper, indexOf, trim,
normalizeSpace, endsWith, startsWith, replace, equals, equalsIgnoreCase, charAt,
isLowerCase, isUpperCase

 Collection library

 Standard collection operations…

 Hashmap: put, get, clear, size, keys, values, isEmpty, forEach,

 List: add, size, clear, isEmpty, first, last, forEach

 Model: size, first, isEmpty, forEach

 System and utility operations

 Various utility functions, such as

 time, date, getenv, setenv, position, count

 UML2 Operations

 Operations available when UML2 models are loaded

 hasStereoType, getAppliedStereotypes, getAppliedStereotype

Telecom and Informatics 31

Textual syntax

 Textmodule

 Rules

 Files

 Escaped output

'public class ' c.name

' extends Serializable {'

file f2 (c.name + “.java”)

' package ' c.ownerPackage.name';'

f2.println (“public class” + c.name);

myMod.Package::mapPackage () {

'package ' self.name ';'

}

textmodule UML2Java (in myMod:uml2)

Telecom and Informatics 32

Textual syntax

 Entry point rule

 Iterators

 Conditional statements

self.ownedMember->forEach(c:myMod.Class)

'<class name=”' c.name ' “/>'

}

myMod.Model::main () {

// code for entry point

}

if (self.hasStereotype(“Feature”) {

' This is a feature type '

} else if (self.hasStereotype(“Product”)) {

' This is a product type '

} else {

' this is neither '

}

Telecom and Informatics 33

Textual syntax

 Collections

var packageNames_List:List

var packageName_Hashtable:Hashtable

self.ownedMember->forEach(p:uml.Package) {

packageNames_List.add (p.name)

packageName_Hashtable.put (p.id, p.name)

}

if (packageName_Hashtable.size () > 0) {

' Listing the package names that does not start with ‘S’ '

packageName_Hashtable->forEach (s:String | not(s.startsWith(“S”)) {

' Package: ' s

}

}

Telecom and Informatics 34

Textual syntax

 Invoking rules

 Return results uml.Package::getPackageNameToLower(): String {

result = self.name.toLower()

}

uml.Package::interfacePackages () {

if (self.getStereotype() = “Service”){

file (self.name.toLower() + ".wsdl")

self.wsdlHeader()

self.wsdlTypes()

self.ownedMember->forEach(i:uml.Interface)

{

i.wsdlMessages()

i.wsdlPortType()

i.wsdlBindings()

i.wsdlService()

}

self.wsdlFooter()

}

}

Telecom and Informatics 35

Uml2Java Example

//Context class

self.ownedAttribute->forEach(p : uml.Property | p.association = null) {

p.attributeGetterSetters()

}

// Generate Getter and Setters

uml.Property::attributeGettersSetters () {

'public ' self.type.name ' get' self.name.firstToUpper() ' () {'

'return ' self.name ';\n }\n'

'public void set' self.name.firstToUpper() '(' self.type.name ' input) { '

self .name ' = input; \n } '

}

public String getBookTitle(){

return bookTitle;

}

public void setBookTitle(String input){

bookTitle = input;

}

public Integer getNumberOfPages(){

return numberOfPages

}

public void setNumberOfPages(Integer

input){

numberOfPages = input;

}

Telecom and Informatics 36

FamilyModel example

uml.Class::outputGeneralization(){

self.generalization->forEach(g: uml.Generalization){

if(not g.target.isEmpty()){

g.target->forEach(c: uml.Class){

stdout.println("Generalization target name: "+ c.name)

} //g.target forEach

}//if target

if(not g.source.isEmpty()){

g.source->forEach(c:uml.Class){

stdout.println("Generalization source name: "+c.name)

}//g.sourse forEach

}//if source

}//self.generalization

}//outputGeneralization()

Generalization target name: Individual

Generalization source name: Male

Telecom and Informatics 37

MOFScript Example

Telecom and Informatics 38

Example Model

Telecom and Informatics 39

Example Transformation

uml.Class::main(){

file(self.name+ ".java")

'package ‘ packageName';\n

import java.util.*;\n'

self.visibility' class ' self.name'{

'

self.ownedAttribute->forEach(p:uml.Property | p.association = null){

' ' p.visibility' ' p.type.name' ' p.name';\n'

}

self.ownedAttribute->forEach(p:uml.Property | p.association !=null){

' // Association: authors:Author(1..-1)'

'\t ‘ p.visibility‘ HashMap<‘ p.type.name', ‘ p.name '>_'

p.name.toLower()';'

}

Telecom and Informatics 40

Example Generated Java Code

package org.sintef.no;

import java.util.HashMap;

public class Book {

private String _title ;

// Association: authors:Author(1..-1)

protected HashMap<String, Author>_authors;

// Association: category:Category(1..-1)

protected HashMap<String, Category>_category;

}

Telecom and Informatics 41

Overview

package org.sintef.no;

import java.util.HashMap;

public class Book {

private String _title ;

// Association: authors:Author(1..-1)

protected HashMap<String, Author>_authors;

// Association: category:Category(1..-1)

protected HashMap<String, Category>_category;

}

uml.Class::main(){

file(self.name+".java")

'package 'packageName';\n

import java.util.*;\n'

self.visibility' class ' self.name'{

'

self.ownedAttribute->forEach(p:uml.Property | p.association =
null){

' ' p.visibility' ' p.type.name' ' p.name';\n'

}

self.ownedAttribute->forEach(p:uml.Property | p.association
!=null){

' // Association: authors:Author(1..-1)'

'\t 'p.visibility'HashMap<'p.type.name', 'p.name '>_'

p.name.toLower()';'

}

Telecom and Informatics 42

Model transformation service

 http://www.modelbased.net/tools/model-transformation-

service

http://www.modelbased.net/tools/model-transformation-service

Telecom and Informatics 43

References

 OMG MOF Model to Text Transformation RFP
 http://www.omg.org/cgi-bin/apps/doc?ad/04-04-07.pdf

 MOFScript submission
 http://www.omg.org/cgi-bin/apps/doc?ad/05-05-04.pdf

 MOFScript tool
 http://www.modelbased.net/mofscript

 http://www.eclipse.org/gmt/mofscript

 MOFScript lecture:
 http://www.modelware-

ist.org/index.php?option=com_remository&Itemid=79&func=fileinfo&id=94

 OMG MOF to Text
 http://www.omg.org/docs/ptc/06-11-01.pdf

 http://modelbased.net/modelplex/mof2text/index.html

http://www.omg.org/cgi-bin/apps/doc?ad/04-04-07.pdf
http://www.omg.org/cgi-bin/apps/doc?ad/05-05-04.pdf
http://www.modelbased.net/mofscript
http://www.eclipse.org/gmt/mofscript
http://www.modelware-ist.org/index.php?option=com_remository&Itemid=79&func=fileinfo&id=94
http://www.omg.org/docs/ptc/06-11-01.pdf
http://modelbased.net/modelplex/mof2text/index.html

Telecom and Informatics - 44 -

"Families to Persons"
A simple illustration of model-to-model transformation

Freddy Allilaire
Frédéric Jouault

ATLAS group, INRIA & University of Nantes, France

Adapted from

Telecom and Informatics - 45 -

Context of this work

 The present courseware has been elaborated in the

context of the “Usine Logicielle” project (www.usine-

logicielle.org) of the cluster System@tic Paris-Région with

the support of the Direction Générale des Entreprises,

Conseil Régional d‘Ile de France, Conseil Général des

Yvelines, Conseil Général de l'Essonne, and Conseil

Général des Hauts de Seine.

 The MDD courseware provided here with the status of

open source software is produced under the EPL 1.0

license.

http://www.usine-logicielle.org/

Telecom and Informatics - 46 -

Overview

 This presentation describes a very simple model

transformation example, some kind of ATL "hello world".

 It is intended to be extended later.

 The presentation is composed of the following parts:

 Prerequisites.

 Introduction.

 Metamodeling.

 Transformation.

 Conclusion.

Telecom and Informatics - 47 -

Prerequisites

 In the presentation we will not discuss the prerequisites.

 The interested reader may look in another presentation to

these prerequisites on:

 MDE (MOF, XMI, OCL).

 Eclipse/EMF (ECORE).

 AMMA/ATL.

Telecom and Informatics - 48 -

Introduction

 The goal is to present a use case of a model to model

transformation written in ATL.

 This use case is named: “Families to Persons”.

 Initially we have a text describing a list of families.

 We want to transform this into another text describing a list

of persons.

Telecom and Informatics - 49 -

Goal of the ATL transformation we

are going to write

…
Family March

Father: Jim
Mother: Cindy
Son: Brandon
Daughter: Brenda

… other Families

…
Mr. Jim March
Mrs. Cindy March
Mr. Brandon March
Mrs. Brenda March
… other Persons

Transforming this … … into this.

Let's suppose these are not texts, but models
(we'll discuss the correspondence
between models and texts later).

Telecom and Informatics - 50 -

Input of the transformation is a model

Family March
Father: Jim
Mother: Cindy
Son: Brandon
Daughter: Brenda

Family Sailor
Father: Peter
Mother: Jackie
Son: David
Son: Dylan
Daughter: Kelly

<?xml version="1.0" encoding="ISO-8859-1"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://

www.omg.org/XMI" xmlns="Families">

 <Family lastName="March">

 <father firstName="Jim"/>

 <mother firstName="Cindy"/>

 <sons firstName="Brandon"/>

 <daughters firstName="Brenda"/>

 </Family>

 <Family lastName="Sailor">

 <father firstName="Peter"/>

 <mother firstName="Jackie"/>

 <sons firstName="David"/>

 <sons firstName="Dylan"/>

 <daughters firstName="Kelly"/>

 </Family>

</xmi:XMI>

This is the text. This is the corresponding model.
It is expressed in XMI,
a standard way to represent models.

Telecom and Informatics - 51 -

Output of the transformation should

be a model

<?xml version="1.0" encoding="ISO-8859-1"?>

<xmi:XMI xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI"

xmlns="Persons">

 <Male fullName="Dylan Sailor"/>

 <Male fullName="Peter Sailor"/>

 <Male fullName="Brandon March"/>

 <Male fullName="Jim March"/>

 <Male fullName="David Sailor"/>

 <Female fullName="Jackie Sailor"/>

 <Female fullName="Brenda March"/>

 <Female fullName="Cindy March"/>

 <Female fullName="Kelly Sailor"/>

</xmi:XMI>

Mr. Dylan Sailor
Mr. Peter Sailor
Mr. Brandon March
Mr. Jim March
Mr. David Sailor
Mrs. Jackie Sailor
Mrs. Brenda March
Mrs. Cindy March
Mrs. Kelly Sailor

This is the text. This is the corresponding model
(The corresponding XMI file is named

"sample-Persons.ecore").

Telecom and Informatics - 52 -

Each model conforms to a metamodel

<?xml version="1.0" encoding="ISO-8859-1"?>

<xmi:XMI xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI"

xmlns="Persons">

 <Male fullName="Dylan Sailor"/>

 <Male fullName="Peter Sailor"/>

 <Male fullName="Brandon March"/>

 <Male fullName="Jim March"/>

 <Male fullName="David Sailor"/>

 <Female fullName="Jackie Sailor"/>

 <Female fullName="Brenda March"/>

 <Female fullName="Cindy March"/>

 <Female fullName="Kelly Sailor"/>

</xmi:XMI>

<?xml version="1.0" encoding="ISO-8859-1"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://

www.omg.org/XMI" xmlns="Families">

 <Family lastName="March">

 <father firstName="Jim"/>

 <mother firstName="Cindy"/>

 <sons firstName="Brandon"/>

 <daughters firstName="Brenda"/>

 </Family>

 <Family lastName="Sailor">

 <father firstName="Peter"/>

 <mother firstName="Jackie"/>

 <sons firstName="David"/>

 <sons firstName="Dylan"/>

 <daughters firstName="Kelly"/>

 </Family>

</xmi:XMI>

Source model
"sample-Families.ecore"

Target model
"sample-Persons.ecore"

Source metamodel

conformsTo

Target metamodel

conformsTo

Telecom and Informatics - 53 -

The general picture

Source metamodel

conformsTo

Target metamodel

conformsTo

Source model Target model

Metametamodel (ECORE)

conformsTo

conformsTo

conformsTo

Telecom and Informatics - 54 -

What we need to provide

 In order to achieve the transformation, we need to

provide:

1. A source metamodel in KM3 ("Families").

2. A source model (in XMI) conforming to "Families".

3. A target metamodel in KM3 ("Persons").

4. A transformation model in ATL ("Families2Persons").

 When the ATL transformation is executed, we obtain:

 A target model (in XMI) conforming to "Persons".

Telecom and Informatics - 55 -

Definition of the source metamodel

"Families"

What is “Families”:

A collection of families.

Each family has a name and is

composed of members:

A father

A mother

Several sons

Several daughters

Each family member has a first name.

Family March
Father: Jim
Mother: Cindy
Son: Brandon
Daughter: Brenda

Family Sailor
Father: Peter
Mother: Jackie
Sons: David, Dylan
Daughter: Kelly

Family

lastName : String

Member

firstName : String

fatherfamilyFather

familyMother mother

familySon sons

daughtersfamilyDaughter

0..1

0..1

0..1

0..1

1

1

*

*

Telecom and Informatics - 56 -

"Families" metamodel (visual presentation and KM3)

package Families {

class Family {

attribute lastName : String;

reference father container : Member oppositeOf familyFather;

reference mother container : Member oppositeOf familyMother;

reference sons[*] container : Member oppositeOf familySon;

reference daughters[*] container : Member oppositeOf familyDaughter;

}

class Member {

attribute firstName : String;

reference familyFather[0-1] : Family oppositeOf father;

reference familyMother[0-1] : Family oppositeOf mother;

reference familySon[0-1] : Family oppositeOf sons;

reference familyDaughter[0-1] : Family oppositeOf daughters;

}

}

package PrimitiveTypes {

datatype String;

}

Family

lastName : String

Member

firstName : String

fatherfamilyFather

familyMother mother

familySon sons

daughtersfamilyDaughter

0..1

0..1

0..1

0..1

1

1

*

*

Telecom and Informatics - 57 -

"Persons" metamodel (visual

presentation and KM3)

package Persons {

abstract class Person {

attribute fullName : String;

}

class Male extends Person { }

class Female extends Person { }

}

package PrimitiveTypes {

datatype String;

}

Person

fullName

Male Female

Telecom and Informatics - 58 -

sample-

Families.ecore

Eclipse Modeling Framework (EMF)

M3

M2

M1

Families.km3 ATL.km3 Persons.km3

C2C2C2

Families2Persons.atl

sample-

Persons.ecore

C2 C2 C2

Ecore.ecore C2

The big picture

1. Our goal in this mini-tutorial is to
write the ATL transformation,
stored in the "Families2Persons"
file.

2. Prior to the execution of this
transformation the resulting file
"sample-Persons.ecore" does not
exist. It is created by the
transformation.

3. Before defining the
transformation itself, we need to
define the source and target
metamodels ("Families.km3" and
"Person.KM3").

4. We take for granted that the
definition of the ATL language is
available (supposedly in the
"ATL.km3" file).

5. Similarly we take for granted
that the environment provides the
recursive definition of the
metametamodel (supposedly in
the "Ecore.ecore" file).

Telecom and Informatics - 59 -

Families to Persons Architecture

1. Families and Persons
metamodels have been
created previously.

2. They have been written in
the KM3 metamodel
specification DSL (Domain
Specific Language).

sample-

Families.ecore

Eclipse Modeling Framework (EMF)

M3

M2

M1

Families.km3 ATL.km3 Persons.km3

C2C2C2

Families2Persons.atl

sample-

Persons.ecore

C2 C2 C2

Ecore.ecore C2

Telecom and Informatics - 60 -

Families to Persons Architecture

1. The following file is the
sample that we will use as
source model in this use
case:

sample-

Families.ecore

Eclipse Modeling Framework (EMF)

M3

M2

M1

Families.km3 ATL.km3 Persons.km3

C2C2C2

Families2Persons.atl

sample-

Persons.ecore

C2 C2 C2

Ecore.ecore C2

<?xml version="1.0" encoding="ISO-8859-1"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://

www.omg.org/XMI" xmlns="Families">

 <Family lastName="March">

 <father firstName="Jim"/>

 <mother firstName="Cindy"/>

 <sons firstName="Brandon"/>

 <daughters firstName="Brenda"/>

 </Family>

 <Family lastName="Sailor">

 <father firstName="Peter"/>

 <mother firstName="Jackie"/>

 <sons firstName="David"/>

 <sons firstName="Dylan"/>

 <daughters firstName="Kelly"/>

 </Family>

</xmi:XMI>

Telecom and Informatics - 61 -

Families to Persons Architecture

1. Now, let us start the
creation of the ATL
transformation
Families2Persons.atl.

2. We suppose the ATL
environment is already
installed.

3. The creation of the ATL
transformation will follow
several steps as described in
the next slides.

sample-

Families.ecore

Eclipse Modeling Framework (EMF)

M3

M2

M1

Families.km3 ATL.km3 Persons.km3

C2C2C2

Families2Persons.atl

sample-

Persons.ecore

C2 C2 C2

Ecore.ecore C2

Telecom and Informatics - 62 -

Families to Persons: project creation

 First we create an ATL project by using the ATL Project

Wizard.

Telecom and Informatics - 63 -

Families to Persons: ATL

transformation creation

 Next we create the ATL transformation. To do this, we use

the ATL File Wizard. This will generate automatically the

header section.

IN:
Name of the

source model in
the

transformation

Families:
Name of the

source metamodel
in the

transformation

Persons:
Name of the

target metamodel
in the

transformation

OUT:
Name of the

target model in
the

transformation

Telecom and Informatics - 64 -

Families to Persons: header section

 The header section names the transformation module and

names the variables corresponding to the source and

target models ("IN" and "OUT") together with their

metamodels ("Persons" and "Families") acting as types.

The header section of "Families2Persons" is:

module Families2Persons;

create OUT : Persons from IN : Families;

Telecom and Informatics - 65 -

Families to Persons: helper

"isFemale()"
 A helper is an auxiliary function

that computes a result needed in

a rule.

 The following helper "isFemale()"

computes the gender of the

current member:

helper context Families!Member def: isFemale() : Boolean =

if not self.familyMother.oclIsUndefined() then

true

else

if not self.familyDaughter.oclIsUndefined() then

true

else

false

endif

endif;

Family

lastName : String

Member

firstName : String

fatherfamilyFather

familyMother mother

familySon sons

daughtersfamilyDaughter

0..1

0..1

0..1

0..1

1

1

*

*

Telecom and Informatics - 66 -

Families to Persons: helper

"familyName"
 The family name is not directly

contained in class “Member”. The

following helper returns the family

name by navigating the relation

between “Family” and “Member”:

helper context Families!Member def: familyName : String =

if not self.familyFather.oclIsUndefined() then

self.familyFather.lastName

else

if not self.familyMother.oclIsUndefined() then

self.familyMother.lastName

else

if not self.familySon.oclIsUndefined() then

self.familySon.lastName

else

self.familyDaughter.lastName

endif

endif

endif;

Family

lastName : String

Member

firstName : String

fatherfamilyFather

familyMother mother

familySon sons

daughtersfamilyDaughter

0..1

0..1

0..1

0..1

1

1

*

*

Telecom and Informatics - 67 -

Families to Persons: writing the rules

 After the helpers we now write the rules:

 Member to Male

 Member to Female

rule Member2Male {

from

s : Families!Member (not s.isFemale())

to

t : Persons!Male (

fullName <- s.firstName + ' ' + s.familyName

)

}

rule Member2Female {

from

s : Families!Member (s.isFemale())

to

t : Persons!Female (

fullName <- s.firstName + ' ' + s.familyName

)

}

Telecom and Informatics - 68 -

Summary of the Transformation 1. For each instance of the
class "Member" in the IN
model, create an
instance in the OUT
model.

2. If the original "Member"
instance is a "mother" or
one of the "daughters"
of a given "Family", then
we create an instance of
the "Female" class in the
OUT model.

3. If the original "Member"
instance is a "father" or
one of the "sons" of a
given "Family", then we
create an instance of the
"Male" class in the OUT
model.

4. In both cases, the
"fullname" of the created
instance is the
concatenation of the
Member "firstName" and
of the Family
"lastName", separated
by a blank.

+ If isFemale()
Female

Else
Male

Person

fullName : String

Male Female

Family

lastName : String

Member

firstName : String

fatherfamilyFather

familyMother mother

familySon sons

daughtersfamilyDaughte
r

0..1

0..1

0..1

0..1

1

1

*

*

Telecom and Informatics - 69 -

Families to Persons Architecture

1. Once the ATL transformation
“Families2Persons” is created,
we can execute it to build the
OUT model.

sample-

Families.ecore

Eclipse Modeling Framework (EMF)

M3

M2

M1

Families.km3 ATL.km3 Persons.km3

C2C2C2

Families2Persons.atl

sample-

Persons.ecore

C2 C2 C2

Ecore.ecore C2

<?xml version="1.0" encoding="ISO-8859-1"?>

<xmi:XMI xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI"

xmlns="Persons">

 <Male fullName="Dylan Sailor"/>

 <Male fullName="Peter Sailor"/>

 <Male fullName="Brandon March"/>

 <Male fullName="Jim March"/>

 <Male fullName="David Sailor"/>

 <Female fullName="Jackie Sailor"/>

 <Female fullName="Brenda March"/>

 <Female fullName="Cindy March"/>

 <Female fullName="Kelly Sailor"/>

</xmi:XMI>

Telecom and Informatics - 70 -

ATL Launch Configuration - 1

Telecom and Informatics - 71 -

ATL Launch Configuration - 2
module Families2Persons;

create OUT : Persons from IN : Families;

Telecom and Informatics - 72 -

Summary

 We have presented here a "hello world" level basic ATL

transformation.

 This is not a recommendation on how to program in ATL,

just an initial example.

 Several questions have not been answered

 Like how to transform a text into an XMI-encoded model.

 Or how to transform the XMI-encoded result into text.

 For any further questions, see the documentation

mentioned in the resource page (FAQ, Manual, Examples,

etc.).

Telecom and Informatics - 73 -

ATL Resource page

 ATL Home page

 http://www.eclipse.org/m2m/atl/

 ATL Documentation page

 http://www.eclipse.org/m2m/atl/doc/

 ATL Newsgroup

 news://news.eclipse.org/eclipse.modeling.m2m

 ATL Wiki

 http://wiki.eclipse.org/index.php/ATL

Telecom and Informatics - 74 -

Working on the example

 There are a lot of exercise

questions that could be based

on this simple example.

 For example, modify the target

metamodel as shown and

compute the "grandParent" for

any Person.

Person

fullName: String

Male Female

grandParent

Telecom and Informatics

Acceleo

75

https://en.wikipedia.org/wiki/Acceleo

Telecom and Informatics 76

UML OCL

Object Constraint Language

 The Object Constraint Language

 ISBN 0-201-37940-6

 OCL home page

 www.klasse.nl/ocl/index.htm

Telecom and Informatics 77

Model examples

ThiNgami

nos

knnn

doZzzkf()

karPhew(zAA)

Editor

text

Font

changeFont(font)

addElem(elem)

spellCheck()

NuclearReactorCore

add(ControlRod, int)

ControlRod

remove(int)

Telecom and Informatics 78

Precise modeling – Details in models

 Avoid misunderstanding

 Completeness

 Baseline for code generation

 Model analysis

 Consistence among models

 Relationships and mappings between models

 Analysis of models

Telecom and Informatics 79

Simplify with OCL

Flight Airplane

CargoFlightPassengerFlight

PasssengerPlane CargoPlane
1

0..*
1

0..*

0..*

1flights

Telecom and Informatics 80

Diagram with invariants

context Flight

inv: type = #cargo implies airplane.type = #cargo

inv: type = #passenger implies airplane.type = #passenger

10..*Flight Airplane

type =

enum{cargo, passenger}

type =

enum{cargo, passenger}

flights

Telecom and Informatics 81

Definition of constraint

 “A constraint is a restriction on one or more values of (part

of) an object-oriented model or system.”

Telecom and Informatics 82

Example model

Airport

Flight

Passenger

Airline

*

*

*

*

$minAge: Integer

age: Integer

needsAssistance: Boolean

departTime: Time

/arrivalTime: Time

duration : Interval

maxNrPassengers: Integer

origin

desti-

nation

name: String

name: String

{ordered}

arriving

Flights

departing

Flights

CEO

0..1

flights

passengers

book(f : Flight)

0..1

airline

airline

Telecom and Informatics 83

Constraint context and self

 Every OCL expression is bound to a specific context.

 The context may be denoted within the expression using

the keyword ‘self’.

Who?

Me?

Telecom and Informatics 84

Notation

 Constraints may be denoted within the UML model or in a

separate document.

 the expression:

context Flight inv: self.duration < 4

 is identical to:

context Flight inv: duration < 4

 is identical to:

Flight

duration: Integer<<invariant>>

duration < 4

Telecom and Informatics 85

Elements of an OCL expression

 In an OCL expression these elements may be used:

 basic types: String, Boolean, Integer, Real.

 classifiers from the UML model and their features

 attributes, and class attributes

 query operations, and class query operations

 associations from the UML model

Telecom and Informatics 86

OCL types

Collection

Set Bag Sequence

OclTypeReal

Integer

String Boolean

OclState

OclExpression

OclAny

Telecom and Informatics 87

Example: OCL basic types

context Airline inv:

name.toLower = ‘klm’

context Passenger inv:

age >= ((9.6 - 3.5)* 3.1).abs implies

mature = true

Telecom and Informatics 88

Model classes and attributes

 “Normal” attributes

context Flight inv:

self.maxNrPassengers <= 1000

 Class attributes

context Passenger inv:

age >= Passenger.minAge

Telecom and Informatics 89

Example: query operations

context Flight inv:

self.departTime.difference(self.arrivalTime)

.equals(self.duration)

Time

difference(t:Time):Interval

before(t: Time): Boolean

plus(d : Interval) : Time

Interval

equals(i:Interval):Boolean

$Interval(d, h, m : Integer) :

Interval

$midnight: Time

month : String

day : Integer

year : Integer

hour : Integer

minute : Integer

nrOfDays : Integer

nrOfHours : Integer

nrOfMinutes : Integer

Telecom and Informatics 90

Example: navigations

 Navigations

context Flight

inv: origin <> destination

inv: origin.name = ‘Amsterdam’

context Flight

inv: airline.name = ‘KLM’

Telecom and Informatics 91

Basic “Navigation” expressions

 i: Instructor, c: Course, s: Session

 The name of the course:

 c.name

 The date of the session:

 s.date

 The instructor assigned to the session:

 s.instructor

 The course of the session:

 s.course

 The name of the course of the session:

 s.course.name

 The instructors qualified for the session:

 s.course.qualifiedInstructors

Instructor

name

Course

name

Session

date

qualifiedInstructors qualifiedFor

assignedTo
*

0..1

*

**

Let’s
navigate on a
model

Telecom and Informatics 92

Navigation Example

 What does a1.r1.r2.r3 yield?

 Assuming the B’s have a boolean attribute “black”; black=false for b6, b8 -

what expression refers from a2 to the set { b1 }

r2

a

* *

* 1

0..11
A B C

c1

c2

c3

c4

a1

a2

r3
r1

b1

b2

b3

b4

b5

b6

b7

b8

Telecom and Informatics 93

Association classes

context Person inv:

if employer.name = ‘Klasse Objecten’ then

job.type = #trainer

else

job.type = #programmer

endif

Person Company

Job

* 1

employee employer

type : {trainer, programmer}

name : String

Telecom and Informatics 94

Three subtypes to Collection

 Set:

 arrivingFlights(from the context Airport)

 Bag:

 arrivingFlights.duration (from the context Airport)

 Sequence:

 passengers (from the context Flight)

Telecom and Informatics 95

 OCL has a great number of predefined operations on the

collections types.

 Syntax:

collection->operation

Collection operations

Telecom and Informatics 96

The collect operation

 Syntax:
collection->collect(elem : T | expr)

collection->collect(elem | expr)

collection->collect(expr)

 Shorthand:
collection.expr

 The collect operation results in the collection of the values
resulting evaluating expr for all elements in the collection

Telecom and Informatics 97

The select operation

 Syntax:

collection->select(elem : T | expression)

collection->select(elem | expression)

collection->select(expression)

 The select operation results in the subset of all elements

for which expression is true

Telecom and Informatics 98

The forAll operation

 Syntax:

collection->forAll(elem : T | expr)

collection->forAll(elem | expr)

collection->forAll(expr)

 The forAll operation results in true if

expr is true for all elements of the

collection

Telecom and Informatics 99

The exists operation

 Syntax:

collection->exists(elem : T | expr)

collection->exists(elem | expr)

collection->exists(expr)

 The exists operation results in true if

there is at least one element in the

collection for which the expression expr

is true.

Telecom and Informatics 100

Example: exists operation

context Airport inv:

self.departingFlights ->

exists(departTime.hour < 6)

Telecom and Informatics 101

Other collection operations

 isEmpty: true if collection has no elements

 notEmpty: true if collection has at least one element

 size: number of elements in collection

 count(elem): number of occurences of elem in collection

 includes(elem): true if elem is in collection

 excludes(elem): true if elem is not in collection

 includesAll(coll): true if all elements of coll are in collection

Telecom and Informatics 102

Iterate example

 Example iterate:
context Airline inv:

flights->select(maxNrPassengers > 150)->notEmpty

 Is identical to:
context Airline inv:

flights->iterate(f : Flight; answer : Set(Flight) = Set{ } |

if f.maxNrPassengers > 150 then

answer->including(f)

else answer endif)->notEmpty

Telecom and Informatics 103

OCL — Navigation Details

 An association end with cardinality maximum > 1 yields a set or

sequence

 anInstructor.Session yields a sequence

 anInstructor.qualifiedFor yields a set

 An association end with cardinality maximum of 1 yields an object or a

set (with zero or one elements)

 aSession.Instructor yields an object

 aSession.Instructor->isEmpty yields a Boolean

*

*

qualifiedFor

Instructor

qualifiedFor

Course
qualifiedInstructors

Session

date

evaluation

* {seq}

*

0..1

Telecom and Informatics 104

Collections use

 i: Instructor

 The courses an instructor is qualified to teach

 Course.allInstances ->select (c | c.qualifiedInstructors ->includes (i))

 Sessions delivered by an instructor who is no longer qualified to teach it

 Session.allInstances ->select (s | s.delivered and

s.course.qualifiedInstructors ->excludes (s.instructor))

 The last can be simplified significantly with “convenience” attributes

 Session.allInstances ->select (s | s.teacherNotQualified)

Instructor

name
Course

name

Session

date

delivered

qualifiedInstructors qualifiedFor

assignedTo

*
0..1

*

**

Let’s navigate
on a model

Telecom and Informatics 105

Another Invariant Formalized

Always combine formal and narrative descriptions

-- for every instructor ...

Instructor::invariant

-- for any course

Course.allInstances->forAll (c |

-- if the evaluation bad

Session->select(Course=c)->forAll(s |

s.evaluation = bad

-- then instructor is disqualified for course

implies qualifiedFor ->excludes (c)))

Instructor

Course

*

*

qualifiedFor

Session

date

evaluation

* {seq}

*

qualifiedInstructors

Telecom and Informatics 106

Same Invariant on Course

-- for every course ...

Course::invariant

-- for all sessions

Session->forAll (s |

-- if the evaluation is bad

s.evaluation = bad implies

-- then the instructor is not a qualified

instructor

qualifiedInstructors->excludes(s.Instructor))

Instructor

Course

*

*

qualifiedFor

Session

date

evaluation

* {seq}

*

qualifiedInstructors

Telecom and Informatics 107

Operation Specification

operation SeminarSystem::pay (in client:Client, out amount: Money)

-- When you pay off an invoice

pre -- Provided the payment amount is not negative and does not

-- exceed amount owed

client .balance >= amount and amount>=0

post -- The balance is reduced by the amount of the payment

client.balance@pre = client.balance + amount

SeminarSystem

pay(client:Client, amount: Money)

Client

balance

Telecom and Informatics 108

let, new: Convenient Names, New Objects

Any specification can introduce local names using let … in ...

operation SeminarSystem::scheduleCourse

(client: Client, date: Date, course: Course)

let (availableInstructors =

instructors ->select (qualifiedFor(course) and availableOn(date)))

in (-- the name “availableInstructors” can be used in pre or post

pre availableInstructors ->notEmpty

post -- some instructor from available instructors is assigned …

)

Actions often result in the creation of a new object

let (s = Session.new) in (-- s is a new member of Session type

s.client = client and s.date = date and s.course = course

and ….

)

Telecom and Informatics 109

OCL — Misc.

 Special words

 @pre designates a value at the start of an operation

total = total@pre + amount

 self designates the object itself

self.total = self.total@pre + amount

 result designates the returned object (if any)

result = total

 Comments

 -- Two hyphens start a comment that goes through the end of line

Telecom and Informatics 110

OCL Tools

 Cybernetics
 ww.cybernetic.org

 University of Dresden
 www-st.inf.tu-dresden.de/ocl/

 Boldsoft
 www.boldsoft.com

 ICON computing
 www.iconcomp.com

 Royal Dutch Navy

Others … …

Telecom and Informatics 111

Conclusions and Tips

OCL invariants allow you to
 model more precisely

 stay implementation independent

OCL pre- and postconditions allow you to
 specify contracts (design by contract)

 precisely specify interfaces of components

OCL usage tips
 keep constraints simple

 always combine natural language with OCL

 use a tool to check your OCL

Telecom and Informatics 112

UML og OCL

 Skriver OCL som tilleggsdokumentasjon til

modeller

 Skriver OCL i Constraints

 (Verktøy)problem: hvordan bruke aktivt

 forfining

 konsistens

 kodegenerering

Telecom and Informatics 113

OclAny

x,y:OclAny; T is a OclType

x = y

x < > y

x.oclIsNew

x.oclType

x.isKindOf(T)

x.isTypeOf(T)

x.asType(T)

x and y are the same object

not (x=y)

True if x is a new instance

The type of x

True if T is a supertype (transitive) of

the type of x

True if T is equal to the type of x

Results in x, but of type T.

Telecom and Informatics 114

OclType and operators

 Logical operators in Boolean expressions

 and, or, xor, not, implies

T is a OclType

T.new

T.allInstances

Create a new instance of type T

All of the instances of type T

Telecom and Informatics 115

Collection (1)

c,c2 : Collection(T); x,e:T; P:T Boolean;

f, f2: T  Object

c->size Number of elements

c->sum Sum of elements (elements must support

addition)

c->count(e) Number of times e is in c

c->isEmpty c->size = 0

c->notEmpty not c->isEmpty

Telecom and Informatics 116

Collection (2)

c->includes(e) True if e is in c

c->includesAll(c2) True if c2 in c

c->excludes(e) True if e not in c

c->exludesAll(c2) True if none in c2 is in c

c->exists(P) True if an e makes P true

c->forAll(P) True if P true for all e in c

c->isUnique(f) True if f evaluates to different value for all e

in c

c->sortedBy(f) Sequence sorted by f

c->iterate(x;e=f;f2) Iterate x over c and apply f2, initialise e to f

Telecom and Informatics 117

Collection subtypes (1)

Applies to set and bag

set, bag: Collection; e,x:T; P: TBoolean;

f, f2: TObject

set->union(set2)

set->union(bag)

set = set2

set->intersection(set2)

set->intersection(bag)

set – set2

set->including(e)

Telecom and Informatics 118

Collection subtypes (2)

set->excluding(e)

set->symmetricDifference(set2)

The set of elements in set or set2,

but not in both

set->select(x|P) All elements for which P is valid

set->select(P) Same as set->select(self|P)

set->reject(x|P) Same as set->select(x|not P)

set->reject(P) Same as set->select(self|not P)

set->collect(x|f) The bag of elements which results

from applying f to every member of

set

set->asSequence

set->asBag

Telecom and Informatics 119

Sequence

seq->append(e) seq followed by e

seq->prepend(e) e followed by seq

seq->subSequence(lower, upper) Subsequence in range [lower,

upper]

seq->at(i) Element at position i

seq->first seq->at(1)

seq->last seq->at(seq->size)

