
1

Chapter 3

STRUCTURAL MODELING WITH UML2.0
Classes, Interactions and State Machines

Øystein Haugen1, Birger Møller-Pedersen1, Thomas Weigert2
1Ericsson, 2Motorola, Inc.

Abstract: This chapter will provide an overview of the structuring concepts that are
proposed for the coming UML 2.0. This will be done through an example. We
will illustrate that these concepts are designed such that structuring applied to
classes may be reflected in the corresponding structuring of the interactions
between the parts of a class.

Key words: UML 2.0, Structured classes, Interactions, State machines

1. STRUCTURAL CONCEPTS OF UML 2.0 – THE
ORIGINS

The structuring of systems in terms of their constituents and the topology
of connections between these constituents have been addressed by various
communities, and a number of languages and notations have been designed
in its support. While programming languages often merely provide the
general mechanism of object references, specification and modeling
languages typically support more advanced structuring mechanisms.

In the telecom industry, specifying systems as a set of interconnected
(composite) blocks was common practice already in the seventies [1]. SDL
was one of the first standardized notations for modeling and specification
with support for such structuring mechanisms [2]. In the 1984 version, the
notion of systems consisting of entities executing state machines that define
their behavior and connected by communication links was introduced.
Object-orientation was first proposed for SDL in 1987 [3]; in 1992 these
concepts became part of the language, when types of entities and gates as
connection points for communication links were introduced. In addition,

2 Chapter 3

specialization was defined for types of entities with an internal structure of
connected parts, and for state machines.

Proprietary variations of sequence diagrams (these were often referred to
as “message flow graphs” or “bounce diagrams”) had long been in use in the
telecom industry. The standardization of Message Sequence Charts (MSC)
was triggered by a paper by Rudolph and Grabowski [4], leading to the first
MSC recommendation in 1992. MSC-2000 [5] refined earlier structuring
mechanisms such as MSC references and inline expressions. UML chose a
somewhat different dialect similar to, but not identical to MSC-92, as the
foundation of sequence diagrams, and did not support reuse and hierarchy.
With UML 2.0, the two dialects have reached more or less the same
expressiveness.

In 1987, Harel introduced structuring mechanisms for state machines [6].
While then state machine-based languages relied on “flat” state machines
(albeit SDL supported hierarchy through calls to procedures in turn specified
by state machines), Harel’s state machines were explicitly hierarchical, with
composite states containing in turn states and transitions.

Work on Architecture Description Languages began in the early nineties
(see, for example, [7]). This area has produced a number of modeling
languages such as ACME [8] and Rapide [9] which aim at analyzing certain
properties of a system based upon the description of its architecture, without
considering the detailed specification of its behavior.

In 1994, ROOM [10] combined statecharts and structuring mechanisms
like those of SDL, inspired by the Chorus distributed operating system.
While SDL gates are just connection points, ROOM introduced more general
ports, i.e., boundary objects mediating the communication between
connected objects. ROOM further introduced the ability to associate protocol
specifications to both ports and connectors.

From the world of data and object modeling came the notion of
contextual composition, i.e. composition with contextual links between parts
of the composite [11].

In 1997, Harel and Gery applied the same structuring mechanism that had
been proposed for SDL [3] earlier to statecharts, especially the mechanisms
for specializing behavior specified through state machines [12].

SDL-2000 [13] adopted the ROOM port concept, as well as the
hierarchical state machines of statecharts. However, it extended the latter
with connection points taken from its structuring mechanisms.

When UML 1.1 was adopted, only few of these structuring mechanisms
became part of the language. Lessons learned with respect to the lack of
structuring mechanisms for UML have been summarized in [14] and [15].
The structuring mechanisms of the coming UML 2.0 are based upon
experiences with all these efforts.

3. STRUCTURAL MODELING WITH UML2.0 3

These languages have formalized what engineers and system designers
have been doing all along: making informal “block” or “structure” diagrams
for various reasons. Interconnected blocks were used in order to specify the
structures (in terms of instances) of the complete running systems,
statecharts were introduced in order to specify structures of state machines,
while message sequence charts pioneered the structuring of behavior in a
declarative manner.

2. EXAMPLE – AN ACCESS CONTROL SYSTEM

This chapter will use one example – an access control system – to explain
how UML 2.0 structural concepts can be used to model a system in a
compact, but readable way. This example has earlier been elaborated in the
TIMe method [16].

2.1 Introducing the Example – Domain Statement

In order to give the reader a first insight into our example system, we
present the structured domain statement in natural English. At this stage
many UML users would also apply use cases. We have chosen to omit the
use cases to save space and since our focus is on the structuring mechanisms.

Area of Concern: Access control has to do with controlling the access of
users to a set of access zones. Only a user with known identity and correct
access rights shall be allowed to enter into an access zone. Other users shall
be denied access.
Services
– User Access: The user will enter an access zone through an access point.

The authentication of a user shall be established by some means for
secret personal identification (PIN code). The authorization is based on
the identity of the user and the access rights associated with that user.

– New User: A supervisor will have the ability to insert new users into the
system.

– PIN change: Users shall be able to change their personal code.

As the reader now clearly understands, we will describe a system known

to many from their daily life.

4 Chapter 3

2.2 Domain Class Model

We begin by constructing a simple class model describing the domain of
the access control system (see Figure 3-1). While the domain model does not
yet describe the classes as they ultimately make up the system to be
developed, it captures the essence of the system as it applies to the domain
statement. We see a number of classes that we expect to appear in the final
system, based on the domain statement, as well as high-level relationships
between these classes: An AccessPoint controls access to one or two Doors,
through which the user enters the AccessZone. The Authorizer controls
access through an AccessPoint, and thus governs access to each AccessZone.
Users interact with a Panel of the AccessPoint or the Console. We use
multiplicities and role names on the relationship to document important
characteristics of the system.

ACSystem
Console

AccessPoint

Authorizer Door

Panel

controls
controls

AccessZone

access

governsAccess

*

1

1

1..2

1

*

1

*

User

1
1

*

*

*

*

Figure 3-1. Domain model for the access control system.

As discussed in the domain statement, the system will interact with
various types of users: ordinary users try to gain authenticated access to the
access zones. A supervisor is a user who in addition has the ability to add
new users to the authentication system. A new user is not yet authorized to
enter any access zones. The hierarchy of users is shown in the class diagram
depicted in Figure 3-2.

User

NewUserSupervisor

Figure 3-2. User class hierarchy.

3. STRUCTURAL MODELING WITH UML2.0 5

Figure 3-3 shows the context of the access control system. The system
context is modeled as a collaboration. A UML collaboration describes a
structure of cooperating entities, each performing some specific function,
which jointly accomplishes the desired functionality. The behavior of the
system is the result of the cooperation of the entities that play a part in the
collaboration.

The context in which the ACSystem operates is comprised of four sets of
objects: the ACSystem proper, a set of User objects, a set of NewUser
objects, and a set of Supervisor objects. These sets are shown as parts of the
collaboration. The specified system will be made up of objects
corresponding to each of these parts, as specified by the multiplicities of the
parts.1 The parts are linked by connectors, which specify communication
paths between the objects playing these parts. Every one of these objects will
be able to communicate along these paths with the linked objects.

A collaboration often specifies a view of the cooperating entities only. It
specifies the required features of the parts as well as required
communications between them. Any object that plays these parts must at
least possess the properties specified by the classifiers that type the parts of
the collaboration. The system specified by the collaboration may have
additional parts not shown, and the objects playing the parts may possess
additional properties.

ACContext

:ACSystem

:User

:Supervisor

:NewUser

0..*

1..*

0..*

Figure 3-3. The context for the ACSystem.

1 Multiplicities indicate lower and upper bounds on the number of objects that may play

such part and are shown in the upper right-hand corner of the symbol representing a part,
as shown in Figure 3-3. If no multiplicity is shown, it indicates that exactly one instance
will be created for a part.

6 Chapter 3

2.3 Behavior Modeling with Interactions (I)

In this section, we will describe the services of the access control system
based on the domain statement in Section 2.1 and the concepts and structure
outlined in Section 2.2.

Interactions are often described by Sequence Diagrams where horizontal
arrows represent the messages between the lifelines represented by vertical
lines.2 Each lifeline represents a structural aspect of the system, such as its
parts. In UML 1.x such sequence diagrams were quite simple, as illustrated
by the utility service GivePIN in Figure 3-4: the ACSystem requests the
personal identification number from the user and the user enters four digits.
Each diagram has a frame with a name tag in the upper left corner.3

sd GivePIN

:User :ACSystem

msg("Give your PIN!")

Digit

Digit

Digit

Digit

Figure 3-4. GivePIN - a very simple sequence diagram

We realize that GivePIN could be used within another interaction with

the purpose of establishing access through the access control system. The
sequence diagram EstablishAccess is shown in Figure 3-5.

We see in Figure 3-5 that GivePIN is referenced from within another
sequence diagram with the obvious interpretation that the GivePIN reference
(interaction occurrence) will be replaced by the full GivePIN interaction. The
EstablishAccess interaction also shows a loop (depicted as a rectangle with a
loop tag in the upper left corner) where the loop may iterate between 0 and 3

2 The term “message” is used both for asynchronous signaling and procedure calls. The

difference between these types of communication is indicated by the shape of the
arrowhead. In our example we use asynchronous messages.

3 The keyword “sd” is an abbreviation for “sequence diagram,” but is used for all Interaction
diagrams. There are four variants of interaction diagrams: sequence diagrams,
communication diagrams, interaction overview diagrams and timing diagrams. This
example uses only sequence diagrams.

3. STRUCTURAL MODELING WITH UML2.0 7

times, allowing for the user to try several times. Finally we show an
alternative construct (depicted by a rectangle marked with the keyword
“alt”) distinguishing between the situation where the user is successful in
getting access (ending in the continuation label PIN OK) and the situation
where an error message (parameterized) is given (and ending in the
continuation PIN NOK).4 A dashed horizontal dividing line separates the
different alternatives.

Loop and alternative are constructs introduced in UML 2.0 called
combined fragments. This notation allows to concisely describe within one
diagram a set of traces, which would otherwise require a number of
diagrams.

:User :ACSystem
ref AC_EstablishAccess(txt)

sd EstablishAccess(String txt)

GivePINref

loop(0,3)

GivePINref

alt

Idle

PIN NOK

PIN OK

Cardid

msg("Try again!")

msg(txt)

Figure 3-5. EstablishAccess

The interaction EstablishAccess is applied in the specifications of the
three services UserAccess (see Figure 3-6), PINChange (see Figure 3-7),
and NewUser (see Figure 3-8).5

4 A “continuation” is a label such that scenarios starting on a continuation with a given label

will continue where scenarios ending in the continuation with that label left off.
Continuations are merely a syntactic device to break sequence diagrams into smaller units;
no synchronization between lifelines is implied.

5 The ACSystem lifelines have a ref-clause in their head. This notation refers to
decomposition of the lifeline described in section 2.5.

8 Chapter 3

:ACSystem
ref AC_UserAccess

sd UserAccess

EstablishAccess ("Illegal PIN")ref

opt

OpenDoorref

Idle

Idle

:User

msg("Please Enter")

CardOut

PIN OK

Figure 3-6. UserAccess

:User :ACSystem
ref AC_PINChange

sd PINChange

opt

opt

Idle

Idle

[wrong PIN]

EstablishAccess ("Illegal PIN")ref

GivePINref

GivePINref

msg("Give new PIN")

msg("Give PIN again")

msg("Wrong PIN")

CardOut

PIN OK

Figure 3-7. PINChange

3. STRUCTURAL MODELING WITH UML2.0 9

:NewUser :Supervisor :ACSystem
ref AC_NewUser

sd New_User

EstablishAccess
("NotSupervisor")

ref

alt

GivePINref

Idle

Idle

msg("Sorry")

Cardid

Card(Cid,PIN)

CardOut

PIN NOK

CardOut

PIN OK

Figure 3-8. NewUser

In this section we have seen how the new structuring mechanisms of
UML 2.0 contributes to making the description more compact and easier to
overview.

2.4 Modeling with Internal Structures

As section 2.3 has shown, the behavior of the access control system is too
complex to be captured by a simple class, and therefore we design ACSystem
by decomposition: The ACSystem contains a number of access points,
represented by parts specified by the class AccessPoint. The access points
interact with the users who request access and are granted or denied access
to the access zones. The access point does not make this decision; instead, it
communicates with an Authorizer to verify the validity of an access request.
The ACSystem may further have several Consoles that allow a supervisor to
interact with the system, for example, to add new users.

The behavior of the ACSystem results from the cooperation of its parts,
and the interaction of these parts with the context of the access control
system. However, in contrast to the system shown in Figure 3-3, the
ACSystem not merely emerges from its parts but there will indeed be a
physical system object that can be identified as an instance of the ACSystem.
Consequently, we use a class to model the ACSystem. The internal structure

10 Chapter 3

of the ACSystem is represented in a similar manner as shown earlier as a
structure of connected parts.

ACSystem

ap: AccessPoint
0..100

c: Console
1..5

:Authorizer

e

d v v

e
outp inp

isOpen, isClosed

unlock, lock

outpinp

Figure 3-9. Internal structure of the access control system.

In addition to specifying which parts comprise the ACSystem, Figure 3-9
also specifies how many of these parts may be created when an instance of
an ACSystem is created. As described by the multiplicities, the system will
have at most hundred access points and at most five consoles. When an
ACSystem is created, it also will have an Authorizer object and one Console
object (a non-zero lower multiplicity indicates the number of initial objects).
Access points and additional consoles can be created up to the specified
maximum and each will be linked as specified in the internal structure. The
parts of the ACSystem can communicate amongst each other only as
specified by the connectors; for example, it is not ordinarily possible for an
AccessPoint object to communicate directly with a Console object.

Figure 3-9 shows the parts of the ACSystem linked in two manners:
Connectors may directly attach to a part (as is the case with the Authorizer)
or they may attach at ports. A port specifies a distinct interaction point
between an object and its environment or between an object and its internal
parts. It specifies the services a classifier provides to its environment as well
as the services that a classifier requires of its environment. The provided and
required interfaces of a port completely characterize any interaction that may
occur between an object at the interaction point specified by the port and its
environment. As such, a port fully isolates the object from its environment.
This allows an object to be used in any context that satisfies the constraints
specified by the ports on its classifier.

A port may forward any communicated information on attached
connectors. Alternatively, a behavior port indicates that the instance directly
handles the communication arriving at this port. Similarly, connectors
attached to a part indicate that any arriving communication is handled by the
corresponding instance rather than forwarded on a connector.

3. STRUCTURAL MODELING WITH UML2.0 11

At times it will be of interest to highlight the information that is
communicated along the connectors between parts of the internal structure.
Information flows may be associated with connectors and describe the data
that is communicated, as shown in Figure 3-9 for the information
communicated from and to the environment of ACSystem.

Figure 3-10 shows the class definition for Console. With each of its ports
we also show the interfaces that are provided and required by the respective
ports. The services that are offered by the classifier at this port to its
environment are indicated by the “ball” symbol. The services that this
classifier expects from its environment are indicated by the “socket” symbol.
(Alternatively, these interfaces can also be shown with the type of the port.)

Console

e

Code

inp

outp

validity

v

Figure 3-10. Class definition for AccessPoint.

2.5 Behavior Modeling with Interactions (II) –
Decomposition

In section 2.3, we have shown how interactions are used to specify
services between the system and its environment. Our next step towards
designing the access control system would be to take advantage of the
decomposition mechanisms of interactions and the internal structure of
classes, as described in section 2.4. These mechanisms are closely related.

We shall have a closer look at the PINChange service (Figure 3-7) and
see how this service is decomposed with respect to the ACSystem. Intuitively
we apply magnifying glasses and look at the lifeline representing the
ACSystem within PINChange following the ref-clause to AC_PINChange,
shown in Figure 3-11. We see that the lifelines of AC_PINChange refer to
the parts of the class ACSystem, as shown in Figure 3-9.

Furthermore, we observe that there are a number of messages going to
and from the frame of the sequence diagram. The points on the diagram
frame are called gates and represent the message interface between the
decomposition and the environment of the lifeline being decomposed.
Comparing with the service PINChange in Figure 3-7, we see that the gates

12 Chapter 3

and structuring concepts of the decomposition AC_PINChange correspond
one to one with the event occurrences and structuring elements of
PINChange. From the top we see that the interaction EstablishAccess has a
counterpart in AC_EstablishAccess, the opt-fragment6 has a counterpart and
inside it we have GivePIN with its counterpart AC_GivePIN. A small dif-
ference is that in the decomposition the inner opt-fragment has an alt-
fragment as its counterpart. This works since an opt-fragment is shorthand
for an alt-fragment and the second operand of the alt-fragment in
AC_PINChange has only a message that is between lifelines not visible on
the upper level.

We also notice that the operands of the inner alt-fragment contain
introductory constraints. These constraints are guards showing the
assumptions that need to be true for the operand to be valid.7

:Authorizer :Console
ref Console_PINChange

sd AC_PINChange

AC_EstablishAccess("Illegal PIN")
ref

opt

AC_GivePINref

 AC_GivePINref

alt

Idle

[wrong PIN]

[else]

Idle

PIN OK

Cardid, Digit,
msg("Try again")

msg("Give new PIN")

Digit
msg("Give PIN again")

Digit

msg("Wrong PIN")

CardOut

NewCode(Cid,PIN)

Figure 3-11. AC_PINChange

6 An “opt-fragment” is an “option” combined fragment. An option combined fragment is a

shorthand for an alternative combined fragment (“alt-fragment” for short) where the
second operand is empty.

7 The keyword “else” represents the assumption that results from negating all other
constraints of the same enclosing fragment.

3. STRUCTURAL MODELING WITH UML2.0 13

:Authorizer:Entry
ref Entry_EstablishAccess(txt)

sd AC_EstablishAccess(String txt)

loop<0,3>

alt

AC_GivePINref

PIN NOK

PIN OK

AC_GivePINref

Idle

Cardid

Digit

Code(Cid, PIN)

msg("Try Again") AccLevel(m)
[too low access level]

Digit

Code(Cid, PIN)

AccLevel(lev)

[too low access level 'lev']

msg("Try Again")

[sufficient access level 'lev']

Figure 3-12. AC_EstablishAccess

A decomposition is an interaction occurrence; thus we may wonder about
the interplay between plain interaction occurrences and decompositions. In
Figure 3-7, we have decomposed ACSystem, which is covered by
EstablishAccess. We can see the decomposition in Figure 3-11 and
EstablishAccess in Figure 3-5. What would happen if we (as indicated in
Figure 3-5) were to decompose the lifeline representing the ACSystem of
EstablishAccess? As one can expect we must then obtain AC_Establish-
Access, which is given in Figure 3-12. This interaction represents the
intersection between the ACSystem lifeline in ChangePIN and the
EstablishAccess interaction occurrence. The reader might want to verify that
these sequence diagrams are consistent.

In doing so, the reader will notice that in AC_EstablishAccess (Figure 3-
12) one of the lifelines represents an anonymous part of the class Entry,
while no such part is present in the internal structure of ACSystem given in
Figure 3-9. Entry represents the commonality between AccessPoint and
Console, which we discovered through the decomposition process: in the
services we have applied EstablishAccess between the ACSystem and the

14 Chapter 3

user. When we decomposed ACSystem into parts of type AccessPoint,
Console, and Authorizer, we realized that in AC_ChangePIN (Figure 3-11)
only the Console and the Authorizer were involved, since the user has to
operate the Console when he wants to change the PIN. On the other hand, if
we were to decompose ACSystem in the service UserAccess, we would see
that the Console is not involved at all while the AccessPoint was involved
together with the Authorizer. Nevertheless, Console and AccessPoint are
both be involved in establishing user access. This commonality is captured
by the Entry class of the lifeline in AC_EstablishAccess (Figure 3-12).

2.6 Finalizing the Internal Structure

When studying the behavioral decomposition of ACSystem, we have
learned that there are significant similarities between an access point and a
console. This similarity was already hinted at in the internal structure shown
in Figure 3-9: both AccessPoint and Console share a number of ports and are
connected similarly. We introduce a common superclass, Entry, which
abstracts these commonalities. Entry will not be able to stand alone; instead
it is an abstract class, of which no objects will ever be created. Its concrete
subclasses will add the necessary detail. This class hierarchy is shown in
Figure 3-13.

Entry

AccessPoint Console

Figure 3-13. Class hierarchy for Entry, AccessPoint, and Console.

From examining the structure of ACSystem, we conclude that Entry will
specify the interaction with the Authorizer as well as the user interactions.
We decompose Entry further as shown in Figure 3-14. The Entry class also
defines the classes for its Panel and Controller parts; these are shown as
defined locally to Entry and are not visible outside of the context of Entry.
We also see that Entry defines further interactions, Entry_EstablishAccess
and Entry_GivePIN. Every instance of Entry will have the two interaction
points represented by ports e and v.

3. STRUCTURAL MODELING WITH UML2.0 15

Entry

p:Panel c:Controller

Controller Panel

e

v

sd Entry_
Establish
Access

sd
Entry_

GivePIN

Figure 3-14. Internal structure of abstract class Entry.

We decide that the interaction with the user is mediated by a Panel where
the user can enter the PIN. The interaction with the Authorizer will be
mediated by the Controller class. It is clear that the Controller will provide
different functionalities between access points and consoles. When
specializing a class, all properties of the general class are inherited by the
specialization but any redefinable element of the general class may be either
replaced or extended. We make use of this capability and specify Controller
as a redefinable class to indicate that subclasses of Entry will redefine its
behavior.

Figure 3-15 and Figure 3-16 show the specification of Console and
AccessPoint, respectively. From Entry, these classes inherit the structure
comprised of Controller and Panel. As expected, both classes redefine the
Controller to provide their specific behavior. For example, the Console will
add the specifics of the interaction with the supervisor for adding a new user.
While the Console is rather simple, the AccessPoint adds an additional part:
a Door. The Controller in an access point also interacts with the door object;
it senses the status of the door and sends lock and unlock commands. Class
AccessPoint redefines the Controller inherited from Entry, extending it by
adding a port to communicate with the associated door instance, in addition
to augmenting its behavior. (Note that the inherited aspects are graphically
represented by dashed lines to differentiate them from the extensions added
in this class.)

16 Chapter 3

Console

Controller
sd

Console_NewUser
sd

Console_PinChange
{ redefined }

Figure 3-15. Internal structure of Console.

AccessPoint

d: Door

Controller

d

sd
AP_UserAccess

{ redefined }

c: Controller

Figure 3-16. Internal structure of AccessPoint.

2.7 Behavioral Modeling with State machines

We have identified Panel as one of the parts of Entry. We could have
synthesized the state machine behavior of Panel from the identified and
specified interactions, but we choose to make it based upon an intuitive
understanding of what the behavior is supposed to do.

This intuitive understanding takes as starting point the obvious states of
the panel that a user will recognize: there is “no card” in the card reader or
there is “one card” in the reader. The panel will behave differently in the two
situations, and the user is supposed to do different things in the two
situations.

In order to illustrate the different mechanisms of UML state machines,
we give two versions of the Panel state machine. The Panel is not the
intelligent part of our entry points: its only purpose is to accept cards with
identifications and accept four digits of the PIN. In Figure 3-17, the behavior
of GivePIN is defined by an operation, which is performed as part of two of
the transitions. We have chosen to give the state machine behavior of class
Panel the same name, but there is no such requirement.

3. STRUCTURAL MODELING WITH UML2.0 17

givePIN/GivePIN; sen d(code(cid,PIN))

CardOut

sm Panel

msg(t)/send(msg(t))

NoCard

OneCard

CardId(cid)/GivePIN;
send(code(cid,PIN))

H

Figure 3-17. State machine Panel with GivePIN as an operation

In UML 1.x, the operation GivePIN would have to be defined as a private
operation in the class Panel. With UML 2.0 it is also possible to define it
more locally (and where it really belongs): as part of the state machine of
Panel, as is illustrated in Figure 3-18: this symbol defines the properties
(private attributes and operations) of the state machine Panel, while Figure
3-17 defines the states and transitions of Panel.

 <<statemachine>>
Panel

- GivePIN()

Figure 3-18. GivePIN defined as part of the Panel state machine

In the other version of the Panel state machine we have used a sub-state
machine: GivePIN is defined as a separate state machine, and the OneCard
state of the Panel state machine is a submachine state referring to the
GivePIN state machine, see Figure 3-19 and Figure 3-20.

The effect of the submachine state OneCard is as if the Panel state
machine had a composite state with the contents of GivePIN. The benefit of
submachine states is that the referenced state machine can be defined
independently of the containing state machine. Reading four digits and
producing a PIN is a rather general behavior and can be (re)used in other
parts of the same containing state machine, or even in other state machines,
as we have already observed in the corresponding interactions.

18 Chapter 3

sm Panel

NoCard

OneCard:
GivePIN

Cardid(cid)

H

msg(t)/send(msg(t))

Figure 3-19. State machine Panel with submachine state according to GivePIN

sm GivePIN

enterDigit

send(msg("Give your PIN!")); n=0

waitCommand

[n==4] digit/
send(code(cid,PIN))

givePIN/send(msg("PIN:"))

Cardout
[n<4]digit/ n++

Figure 3-20. The state machine GivePIN

The reusability of sub-state machines becomes more obvious when the
independently defined state machine has a defined “interface” in terms of
connection points for its transitions. Assume that the GivePIN state machine
also has the ability to be triggered by a “golden” card instead of entering
four digits. Entering a golden card will bypass the digit entering and send the
code directly to the Controller and then wait for the card to be ejected from
the panel. While the former GivePIN state machine only had an initial state
as entry point, the gold card GivePIN state machine has a separate entry
point called goldenEntry, see Figure 3-21. Entering the state machine
through this entry point, the effect action of the transition leading to
waitCommand will send the code to the controller. For illustration purposes,
the former final state has been exchanged with an exit point called exit.

3. STRUCTURAL MODELING WITH UML2.0 19

exit

send(code(cid,PIN))
sm GivePIN

enterDigit

send(msg("Give your PIN!")); n=0

waitCommand

[n==4] digit/
send(code(cid,PIN))

givePIN/send(msg("PIN:"))

Cardout

goldenEntry

[n<4]digit/ n++

Figure 3-21. GivePIN state machine with goldenEntry

In Figure 3-22, the Panel state machine uses this new GivePIN sub-state
machine by directing the transition triggered by the goldcard event to the
entry point goldenEntry of the submachine state. It is also illustrated how an
exit point is used as the source of a transition: a transition within OneCard
leading to the exit point will imply that the transition in the containing state
machine is triggered.

sm Panel

NoCard

OneCard:
GivePIN

Cardid(cid)

goldcard(cid,pin)

goldenEntry

exit

H

msg(t)/send(msg(t))

Figure 3-22. Panel with support for goldcard transition.

The benefit of entry/exit points is that the sub-state machine and the state
machine referring to it may be defined independently. A referenced sub-state

20 Chapter 3

machine with entry/exit points can change internally without changing the
referencing state machine.8

In addition to defining connection points for sub-state machines, the
entry/exit points also split transitions. As an example, the transition triggered
by the goldcard event is separated into one at the level of Panel and one at
the level of GivePIN. Each of these partial transitions can have an effect
action. In this example only the transition from the entry point and further to
the waitCommand has an effect action.

This short introduction to state machine modeling with UML2.0 did not
allow all structuring mechanisms to be covered in full detail. In addition,
state machines can be specialized not only by behavioral subtyping, but also
by structural subtyping [13]: similar to the inheritance of the internal
structure of composite classes, a specialized state machine inherits the
structure of the inherited state and transition graph and may redefine these
states and transitions.

2.8 The Consistency of Interactions and State Machines

Having developed the UML model as a medley of creating class
diagrams, interactions, composite structures and state machines, we may
wonder whether our end result is internally consistent. Consistency is
partially ensured by static requirements of the language, but there are
behavioral aspects that we will not be able to establish from purely static
rules.

Having established a number of behaviors defined through interactions
on one hand and state machines on the other, we would like to assess
whether the desired behavior of the interactions can be fulfilled by
implementations derived from the state machines.

Our example here is the establishment of access, a utility applied in more
than one of the services. We shall compare the definition of Panel given by
state machines in Figure 3-19 and Figure 3-20 with the interaction given in
Figure 3-12. In order to reach the necessary level of detail, Figure 3-23
shows the decomposition of Entry containing the Panel and the Controller.

The simple, partial check that we shall conduct is based on these
principles:
1. Establish an initial alignment between the interaction and the state

machine. What is the state of the state machine?
2. Assume that the messages into the state machine are determined by

the interaction.

8 Stub states of UML 1.4 had a similar purpose, but stub states in the referring state machine

had to be changed if the referenced sub-state machine was changed.

3. STRUCTURAL MODELING WITH UML2.0 21

3. Check that the actions and especially output messages from the

transition of the state machine correspond with the event occurrences
on a lifeline.

4. Perform this test for all traces of the interaction.

The reader should appreciate that this procedure of consistency checking

can be automated provided that the model is sufficiently precise. In our
example there are a few places where informal text is used to simplify the
illustrations, and this would obstruct automatic checking. It is, however,
possible to define the interactions and the state machines such that automatic
checking is feasible.

In our scenario, we will initially assume that the state NoCard
corresponds to the continuation Idle in the interaction.

:Panel :Controller

sd Entry_EstablishAccess(String txt)

Entry_GivePINref

loop(0,3)

alt

Entry_GivePINref

Idle

PIN NOK

PIN OK

Cardid

Digit

Code(Cid, PIN)

msg("Try Again")
msg("Try Again")

Digit

msg(txt)

Code(Cid, PIN)

AccLevel(m)

GivePIN

Code(Cid,PIN) Code(Cid,PIN)

AccLevel(lev)

msg(txt)
[too low access level 'lev']

[sufficient access level 'lev']

Figure 3-23. Entry_EstablishAccess

22 Chapter 3

The interaction then describes that Panel will receive a Cardid message.
In the Panel state machine this will trigger a transition leading to the state
OneCard that is of sub-state machine GivePIN. There a message will be sent
“Give your PIN!”. We have not given the interaction Entry_GivePIN here,
but looking in Figure 3-4 we can imagine what happens. The output from
the state machine corresponds to that of the interaction. The interaction now
specifies that there will be a number of digits entered. The corresponding
behavior can easily be seen from the state enterDigit in GivePIN. The fourth
digit will trigger a transition to state waitCommand and a code message with
arguments is emitted. Again, the output message corresponds well with that
specified in the interaction.

The loop of the interaction specifies a situation where the user has
entered an incorrect PIN value and needs to reenter the PIN while the card is
still in the card reader of the panel.

The interaction specifies the arrival of a message msg and that is handled
from an outer composite state and returning to the same inner state
OneCard::waitCommand through the history pseudo state. The output again
corresponds to that of the interaction as msg is only forwarded to the user.

Then the interaction describes that the message givePIN arrives. The state
machine then outputs a prompt and waits for digits again. The interaction
indicates the same as pointed out above when first entering Entry_GivePIN.

Leaving the loop, the interaction specifies an alternative. One possibility
is that a message is again relayed through the panel as we have considered
before. Another variant is that nothing happens, but the interaction specifies
a continuation label that indicates that the access has been successfully
established. In either case, the panel is in state OneCard::waitCommand and
depending on the services applying Entry_EstablishAccess, it will eventually
get a CardOut message to eject the card.

We conclude that given our initial alignment assumption, the utility
Entry_EstablishAccess is fulfilled by the state machine Panel, as defined.

3. CONCLUSIONS

In this chapter, we have introduced the structuring mechanisms of UML
2.0 showing that these new facilities will potentially make descriptions more
concise, more precise, more detailed, more compact, and more easily reused.

The new structural concepts have made UML more expressive especially
in domains where precise behavioral specifications and reuse of
specifications are important.

The composite structure of classes makes it possible to define contextual
structures. Interaction occurrences in interactions and sub-state machines in

3. STRUCTURAL MODELING WITH UML2.0 23

state machines have added to reusability of behavior. More widespread
application of such mechanisms also makes the overall specification more
compact and more maintainable.

In section 2.8, we showed that there is simple correspondence between
concepts of declarative descriptions through interactions and the imperative
descriptions through state machines. Formal or semi-formal validation
techniques can be applied.

REFERENCES

1. I. Jacobson, “Language Support for Changeable Large Real Time Systems”, OOPSLA’86,
ACM Special Issue of Sigplan Notices, Vol. 21, No. 11, 1986. pp. 377-384.

2. A. Rockstrom, and R. Saracco, “SDL--CCITT specification and description language”,
IEEE Trans. Communications, Vol. 30, No. 6, 1982. pp. 1310-1318.

3. B. Møller-Pedersen, D. Belsnes, and H.P. Dahle, “Rationale and Tutorial on OSDL: An
Object-Oriented Extension of SDL”, Computer Networks, Vol. 13, No. 2, 1987.

4. J. Grabowski and E. Rudolph, “Putting Extended Sequence Charts to Practice”, in Proc.
4th SDL Forum. North-Holland, Lisbon, 1989.

5. International Telecommunications Union, Message Sequence Charts (MSC),
Recommendation Z.120, ITU-T, Geneva, 1999.

6. D. Harel. “Statecharts: A visual formalism for complex systems”, Science of Computer
Programming, Vol. 8, No. 3, 1987.

7. D. Garlan and M. Shaw, “An Introduction to Software Architecture”, 1-39. Advances in
Software Engineering and Knowledge Engineering, Vol. 2., World Scientific Press, New
York, 1993.

8. D. Garlan, R. Monroe, and D. Wile: “ACME: An Architecture Description Interchange
Language”, Proc. of CASCON, 1997. pp. 169-183.

9. D. Luckham, et al., “Specification and Analysis of System Architecture Using Rapide”,
IEEE Transactions on Software Engineering, Vol. 21, No. 6, 1995.

10. B. Selic, G. Gullekson, and P.T. Ward, Real-Time Object-Oriented Modeling, 1994.
11. C. Bock and J. Odell, “A Foundation for Composition”, Journal Of Object-Oriented

Programming, Vol. 7, No 6, 1994.
12. D. Harel and E. Gery, “Executable Object Modeling with Statecharts”, IEEE Computer,

July 1997.
13. International Telecommunications Union, Specification and Description Language (SDL),

Recommendation Z.100, ITU-T, Geneva, 1999.
14. B. Møller-Pedersen and T. Weigert, “Towards a Convergence of SDL and UML”, Proc.

2nd Intl. Conf. on the Unified Modeling Language, Ft. Collins, 1999.
15. D. Garlan, J. Knapman, B. Møller-Pedersen, B. Selic, and T. Weigert, “Modeling of

Architectures with UML”, Proc. 3rd Intl. Conf. on the Unified Modeling Language, York,
2000.

16. R. Bræk, J. Gorman, Ø. Haugen, G. Melby, B. Møller-Pedersen, and R. Sanders, “Quality
by construction exemplified by TIMe – The Integrated Methodology, Telektronikk, Vol.
95, No. 1, 1999. pp. 73-82. See also http://www.sintef.no/time, Sintef, Trondheim, 1997.

17. International Telecommunications Union, SDL Combined with UML, Recommendation
Z.109, ITU-T, Geneva. 1999.

