
A glimpse at the µ-calculus

Precise Modeling and Analysis group
University of Oslo

Daniel Fava

May 19, 2017

Roadmap

1. Start with LTL and motivate greater expressivity

2. Give some background: Hennessy Milner Logic (HML)

3. Build a modest foundation for understanding fixed points

4. µ-calculus syntax, semantics, and examples

5. Game theoretic approach to model checking the µ-calculus

6. Bisimulation

Motivation

What do these mean?

Notice the recursion

lp

“ p ^ll p

♦p

“ p _l♦p

pUq

“ q _
`

p ^lppUqq
˘

pRq

“ pp ^ qq _
`

q ^lppRqq
˘

Think of l, ♦, U , R as special purpose recursive operators

‚ What if we could have more powerful (arbitrary) recursions?

Motivation

What do these mean?

Notice the recursion

lp “ p ^ll p

♦p “ p _l♦p

pUq “ q _
`

p ^lppUqq
˘

pRq “ pp ^ qq _
`

q ^lppRqq
˘

Think of l, ♦, U , R as special purpose recursive operators

‚ What if we could have more powerful (arbitrary) recursions?

Motivation

What do these mean? Notice the recursion

lp “ p ^ll p

♦p “ p _l♦p

pUq “ q _
`

p ^lppUqq
˘

pRq “ pp ^ qq _
`

q ^lppRqq
˘

Think of l, ♦, U , R as special purpose recursive operators

‚ What if we could have more powerful (arbitrary) recursions?

Motivation
LTL: a trace σ or sets of traces

JαKσ “ tT ,F u

µ-calculus: Labeled Transition System (LTS) M “ pS ,
l
ÝÑ,Pi q

JαKM Ď S

1. Talk about a node’s direct children

ðù Hennessy Milner Logic

2. Talk about a node’s descendants

ðù Fixed points

{q}

n2

a

{p}

n3

b

{p, q}

n4

a

{q}

n5

a

a

b

{p, q}

n1

Motivation
LTL: a trace σ or sets of traces

JαKσ “ tT ,F u

µ-calculus: Labeled Transition System (LTS) M “ pS ,
l
ÝÑ,Pi q

JαKM Ď S

1. Talk about a node’s direct children ðù Hennessy Milner Logic

2. Talk about a node’s descendants ðù Fixed points

{q}

n2

a

{p}

n3

b

{p, q}

n4

a

{q}

n5

a

a

b

{p, q}

n1

Background: Hennessy Milner Logic (1/3)

§ Syntax Φ ::“ tt | ff | pi | pi | Φ1^Φ2 | Φ1_Φ2 | rasΦ | xayΦ

§ Semantics

JttKM “ S Jff KM “ H

JpiKM “ Pi J piKM “ S ´ Pi

{q}

n2

a

{p}

n3

b

{p, q}

n4

a

{p, q}

n1

Examples:

1. JttKM “ tn1, n2, n3, n4, n5u

2. JpKM “ tn1, n3, n4u

Background: Hennessy Milner Logic (2/3)

§ Syntax Φ ::“ tt | ff | pi | pi | Φ1^Φ2 | Φ1_Φ2 | rasΦ | xayΦ

§ Semantics

Jα_ βKM “JαKM Y JβKM

Jα^ βKM “JαKM X JβKM

{q}

n2

a

{p}

n3

b

{p, q}

n4

a

{p, q}

n1

Example:

Jp ^ qKM “ tn1, n4u

Background: Hennessy Milner Logic (3/3)

§ Syntax Φ ::“ tt | ff | pi | pi | Φ1^Φ2 | Φ1_Φ2 | rasΦ | xayΦ
§ Semantics

ras All children accessible via an a-transition

JrasαKM “ ts P S | @t. s
a
ÝÑ t Ñ t P JαKMu

xay At least one child accessible via an

JxayαKM “ ts P S | Dt. s
a
ÝÑ t ^ t P JαKMu

{q}

n2

a

{p}

n3

b

{p, q}

n4

a

{p, q}

n1

Examples:

1. n1 P JrasqKM

2. n1 R JraspKM

3. n1 P JxaypKM

Background: Fixed-points (1/3)

§ Fixed point

f pxq “ x2 ` x ´ 4

§ Monotonic function

x ď x 1 Ñ f pxq ď f px 1q

§ Partial order relation Ď

§ Upper bound

Y Ď S , u P S , if @s P S . s Ď u

§ Least Upper Bound (lub)
Ů

§ Lower bound

Y Ď S , l P S , if @s P S . l Ď s

§ Greatest Lower Bound (glb)
Ű

§ Complete lattice

pS ,Ď,
Ů

,
Ű

q

§ Boundedness of complete lattices

Ů

H “ K,
Ű

H “ J

Tarski-Knaster theorem
§ A monotonic function f : L Ñ L on a complete lattice L has a

greatest fixed point (gfp) and a least fixed point (lfp).

Background: Fixed-points (1/3)

§ Fixed point f pxq “ x2 ` x ´ 4

§ Monotonic function x ď x 1 Ñ f pxq ď f px 1q

§ Partial order relation Ď

§ Upper bound Y Ď S , u P S , if @s P S . s Ď u

§ Least Upper Bound (lub)
Ů

§ Lower bound Y Ď S , l P S , if @s P S . l Ď s

§ Greatest Lower Bound (glb)
Ű

§ Complete lattice pS ,Ď,
Ů

,
Ű

q

§ Boundedness of complete lattices
Ů

H “ K,
Ű

H “ J

Tarski-Knaster theorem
§ A monotonic function f : L Ñ L on a complete lattice L has a

greatest fixed point (gfp) and a least fixed point (lfp).

Background: Fixed-points (2/3)

§ Reductive f pxq Ď x

§ Extensive x Ď f pxq

Tarski-Knaster theorem
§ A monotonic function f : L Ñ L on a complete lattice L has a

greatest fixed point (gfp) and a least fixed point (lfp).

gfppf q “
ğ

tx P L | x Ď f pxqu “
ğ

tExtpf qu P Fixpf q

lfppf q “
ę

tx P L | f pxq Ď xu “
ę

tRedpf qu P Fixpf q

Background: Fixed-points (3/3)

§ Reductive f pxq Ď x

§ Extensive x Ď f pxq

Kleene fixed-point theorem
gfp “ f 8pJq “

Ű

ně0 f npJq lfp “ f 8pKq “
Ů

ně0 f npKq

µ-calculus (1/2)

§ Extends HML by adding variables X ,Y ,Z , ...

§ Syntax
§ Add variables and fixed point operators on top of HML

Φ ::“tt | ff | pi | pi | Φ1 ^ Φ2 | Φ1 _ Φ2 | rasΦ | xayΦ |

X | µX .Φ | νX .Φ

§ Variable occurrences can be free, or
§ bounded by the fixed-point operators

‚ Note the absence of negation from the syntax

µ-calculus (2/2)

§ Semantics
§ Adds function from variables to sets of states called valuation

V : Var Ñ 2S

§ A variable occurring free is interpreted by the valuation

JX KMV “ VpX q

§ Fixed-points are defined according to Tarski-Knaster theorem

JµX .αKMV “
ę

tS 1 Ď S | JαKMVrS 1{X s Ď S 1u (lfp)

“
ę

tS 1 Ď S | f pS 1q Ď S 1u

JνX .αKMV “
ğ

tS 1 Ď S | S 1 Ď JαKMVrS 1{X su (gfp)

“
ğ

tS 1 Ď S | S 1 Ď f pS 1q

where f pS 1q “ JαKMVrS 1{X s

‚ Tarski-Knaster doesn’t help us compute FPs
It only guarantees their existence

‚ We will use Kleene’s FP theorem for computing FPs

µ-calculus: Example (1/3)

µX .rasX represent state with infinite sequences of a-transitions

µ0X .rasX “ H false

µ1X .rasX “ rasH

“ ts P S | @t. s
a
ÝÑ t Ñ t (Hu

since no t satisfies H, the right hand side (RHS) of Ñ is false;

thus the left hand side (LHS) of Ñ cannot be true.

This represents states with no outgoing a-transitions

µ2X .rasX “ rasT

where T “ µ1X .rasX are states with no outgoing a-transitions

Thus µ2 means states with no aa-paths

µ-calculus: Example (2/3)

νX .p ^ rasX is informally analogous to LTL lp

ν0X .p ^ rasX “ S true

ν1X .p ^ rasX “ p ^ rasS

Intersection between all nodes satisfying p (LHS of ^)

and all nodes (RHS of ^)

ν2X .p ^ rasX “ p ^ rasT

Where T “ ν1X .p ^ rasX are all nodes that satisfy p

Thus µ2 is the intersection between all nodes that satisfy p

and all nodes that have an outgoing edge labeled a

to a node that satisfies p

All nodes that satisfy p and whose descendants that are reachable
through a-transitions also satisfy p.

µ-calculus: Example (3/3)

µX .p _ pxayTrue ^ rasX q is informally analogous to LTL ♦p

µ0X .p _ pxayTrue ^ rasX q “ H

µ1X .p _ pxayTrue ^ rasHq “ p _ pxayTrue ^ rasHq

xayTrue is the set of states with an outer a-transition

rasH is the set of states with no outgoing a-transition

Therefore, intersection ^ is empty

and the formula boils down to the set of states satisfying p

µ2X .p _ pxayTrue ^ rasT q “ p _ pxayTrue ^ rasT q

where T “ µ1 which means nodes satisfying p

rasT are nodes whose children reachable via a-transitions satisfy p

Thus either p is satisfied, or it is satisfied via a node reachable
through an a-transitions, or via an aa-transition, or via an
an-transition.

Note

§ Increasing complexity with alternation of fixed point types
§ With one fix-point we talk about termination properties
§ With two fix-points we can write fairness formulas

Model checking via parity games (1/5)

Adam pick t from s
a
ÝÑ t such that t * pp1 _ pp2 ^ p3q

Eve reply by showing that either t (p1 or that t (p2 and t (p3.

Model checking via parity games (2/5)

Definition (Game)

A game is a triple G “ pV ,T ,Accq where

1. V are nodes partitioned between two players, Adam and Eve,
V “ VA Y VE and VA X VE “ H,

2. T Ď V ˆ V is a transition relation determining the possible
successors of each node, and

3. Acc Ď V ω is a set defining the winning condition

§ It is Adam’s turn if v P VA, otherwise v P VE and it is Eve’s

§ The player who cannot make a move loses

§ If a play is infinite, v0v1..., then Eve wins if v0v1... P Acc

Model checking via parity games (3/5)

Theorem (Reducing model-checking to parity games)

Let GpM, αq denote a game constructed from the labeled
transition system M and the µ-calculus formula α.
For every sentence α, transition system M, and initial state s,
then M, s (α iff Eve has a winning strategy for the position
ps, αq in GpM, αq.

Model checking via parity games (4/5)

Define GpM, αq inductively on the syntax of α
§ Create node ps, βq for every state s of M and every formula β in

the closure of α (similar to the automata based LTL model checking construction we have seen)

§ Recall that Eve’s goal is to show that a formula holds, and that

the player who can’t make a move loses

ps, pq Eve wins if p holds in s
Thus assign ps, pq to Adam and we put no transitions from it

ps, pq Same as ps, pq but reversing Adam and Eve’s roles

ps, xayβq Connect to pt, βq for all t such that s
a
ÝÑ t and

ps, rasβq assign ps, rasβq to Adam and ps, xayβq to Eve

ps, µX .βpX qq Connect to ps, βpµX .βpX qqq and to ps, βpνX .βpX qqq
ps, νX .βpX qq This corresponds to the intuition that a fixed-point

is equivalent to its unfolding. See [Cleaveland, 1990]

Model checking via parity games (5/5)

§ How to define Acc and the parity winning condition

See [Bradfield and Walukiewicz, 2015]

§ Model checking M (α

Use algorithm for determining winner of parity game
once GpM, αq has been created

Bisimulation (1/3)

§ Equivalence between systems
§ Preserves compositionality

§ Programs as functions (denotational semantics)

x :“ 2 and x :“ 1; x :“ x ` 1

x :“ 2 || x :“ 2 versus x :“ 2 || x :“ 1; x :“ x ` 1

§ Language acceptance (trace equivalence)

P1 P2C

P3

request-tea

P4
request-coffee

tea

coffee

Q1

Q2
C

Q4

C

Q3
request-tea

Q5request-coffee

tea

coffee

Bisimulation (2/3)

§ Equivalence between systems
§ Not overly strong as graph isomorphism

P1 P2
a

b
Q1 Q2a Q3

b

a

Bisimulation (3/3)

Definition (Bisimulation)

Bisimulation is a symmetric relation R on the states of an LTS
such that whenever P R Q, for all t we have:

§ for all P 1 which P
t
ÝÑ P 1, there is Q 1 such that Q

t
ÝÑ Q 1 and P 1 R Q 1

Definition (Logic equivalence)

Two statements are logically equivalent if they have the same truth
value in every model

logic logic equivalence

LTL trace equivalence
HML, µ-calculus, CTL bisimilarity

References
§ Lattice and fixed points

§ Nielson, F., Nielson, H. R., and Hankin, C. (2015). Principles of
program analysis.

Springer

§ Davey, B. A. and Priestley, H. A. (2002). Introduction to lattices
and order.

Cambridge university press
§ µ-calculus and model checking

§ Bradfield, J. and Walukiewicz, I. (2015). The mu-calculus and
model-checking.

Handbook of Model Checking. Springer-Verlag, pages 35–45

§ Cleaveland, R. (1990). Tableau-based model checking in the
propositional mu-calculus.

Acta Informatica, 27(8):725–747
§ Bisimulation

§ Sangiorgi, D. (2012). Introduction to bisimulation and
coinduction.

Cambridge University Press

	Outline
	Motivation
	-calculus
	Bisimulation
	Bisimulation

