A glimpse at the p-calculus

Precise Modeling and Analysis group
University of Oslo
Daniel Fava

May 19, 2017

Roadmap

I o

Start with LTL and motivate greater expressivity

Give some background: Hennessy Milner Logic (HML)

Build a modest foundation for understanding fixed points
p-calculus syntax, semantics, and examples

Game theoretic approach to model checking the p-calculus

Bisimulation

Motivation

What do these mean?

Op
Op
pUq
pRq

Motivation

What do these mean?

(p=pAO0p
Op=pvOOp

pq =qv (p A O(pUq))

pRq=(pAq)v (qA0O(pRq))

Motivation

What do these mean? Notice the recursion

(p=pAO0p
Op=pvOOp

pq =qv (p A O(pUq))

pRq=(pAq)v (qA0O(pRq))

Think of [, O, U, R as special purpose recursive operators

e What if we could have more powerful (arbitrary) recursions?

Motivation

LTL: a trace o or sets of traces
[a]” ={T,F}
p-calculus: Labeled Transition System (LTS) M = (S, N P;)
[a]M < S

1. Talk about a node’s direct children
2. Talk about a node's descendants

n2

{p.q} b =@

nl n3

n4

Motivation

LTL: a trace o or sets of traces
[a]” ={T, F}
p-calculus: Labeled Transition System (LTS) M = (S, N P;)
[a]M < S

1. Talk about a node’s direct children <= Hennessy Milner Logic
2. Talk about a node's descendants < Fixed points

Background: Hennessy Milner Logic a3
> Syntax b= tt| fF | pi | —p;i | (OB O | $1vh, | [a]CD | <a>d>

» Semantics

[tt]M =S [fFIM = &
[pi]™M = P; [-pI™ =5—P
Examples:
L. [tt]™ = {n1, na, n3, na, ns}
n2 2. [p]™ = {n1, n3, ng}
. q} L =@
nl n3

Background: Hennessy Milner Logic @

» Syntax @ =ttt | ff | pi| —pi | PLADy | D1V Dy | [a]P | (a)P

» Semantics

[oo v BIM =[a]™ U [B]M
[A BIM =[a]™ A [BIM

Example:

n2 [p A q]™ = {n1, ny}

{p.q} b =@

nl n3

Background: Hennessy Milner Logic @

» Syntax @ = tt | fF | pi| —pi | P1ADPy | PV Dy | [a]P | (a)P
» Semantics
[a] All children accessible via an a-transition
[[a]la]M ={se S |Vt. s>t —te[a]™}
(a) At least one child accessible via an
Kaya]lM ={seS|3t. s>t A te[a]M}

Examples:
1. ny € [[a]q]M
2. ny ¢ [[a]p]

® (0) 3 e Kapl

nl n3

Background: Fixed-points 3

» Fixed point

» Monotonic function

» Partial order relation =

» Upper bound

» Least Upper Bound (lub) |]

» Lower bound

» Greatest Lower Bound (glb) []
» Complete lattice

» Boundedness of complete lattices

Tarski-Knaster theorem

> A monotonic function f : L — L on a complete lattice L has a
greatest fixed point (gfp) and a least fixed point (Ifp).

Background: Fixed-points 3

» Fixed point f(x) =x?>+x —4

» Monotonic function x < x — f(x) < f(x)

» Partial order relation =

» Upperbound Y £ S, ue S, ifVseS.scu

» Least Upper Bound (lub) | |

» Lower bound Y S,/ €5, ifVseS. |Cs

» Greatest Lower Bound (glb) []

» Complete lattice (S, =, | |,[])

» Boundedness of complete lattices llg=1, T[lg=T

Tarski-Knaster theorem

> A monotonic function f : L — L on a complete lattice L has a
greatest fixed point (gfp) and a least fixed point (Ifp).

Background: Fixed-points ¢/

. Red(f) - - - -
» Reductive f(x) & x o
Fix(f) - - -
» Extensive x = f(x)
Ext(f) - - - -

Tarski-Knaster theorem
> A monotonic function f : L — L on a complete lattice L has a
greatest fixed point (gfp) and a least fixed point (Ifp).

gfp(f) = | [{xeL|xef(x)} = | [{Ext(f)} e Fix(f)
Ip(f) =[[{xe L] fF(x) =x} = [[{Red(f)} € Fix(f)

Background: Fixed-points ¢

. Red(f) - - - -
» Reductive f(x) = x o
Fix(f) - - -
» Extensive x = f(x)
Ext(f) - - - -

Kleene fixed-point theorem
gfp = £(T) = Tpzo £"(T) Ip = (L) = [pso (1)

p~-calculus o)

» Extends HML by adding variables X, Y, Z, ...

» Syntax
» Add variables and fixed point operators on top of HML

S u=tt | fF|pi| —pi| 1Ay | Prv Dy [a]d | ()|
X | pX.® | vX.®

» Variable occurrences can be free, or
» bounded by the fixed-point operators

e Note the absence of negation from the syntax

p-calculus @)

» Semantics
» Adds function from variables to sets of states called valuation

V: Var —2°
» A variable occurring free is interpreted by the valuation
[X]5 = V(X)
» Fixed-points are defined according to Tarski-Knaster theorem
[nX.aly' =[|{S' =S [[olfs)x =5} (p)
[|{s’=s|f(s)<cs}
[X.afi = |{S'= 5|5 < [alifsx} (gfp)
| [{s'csis<fs)
where £(S') = [al{s

e Tarski-Knaster doesn't help us compute FPs
It only guarantees their existence

e We will use Kleene's FP theorem for computing FPs

p-calculus: Example o3

pX.[a]X represent state with infinite sequences of a-transitions

pX [a]X = & false
X [a)X = [alo
={seS|Vt.sSt->tE= T}
since no t satisfies (¢, the right hand side (RHS) of — is false;
thus the left hand side (LHS) of — cannot be true.
This represents states with no outgoing a-transitions
p’X.[a]lX = [a] T
where T = p!X.[a]X are states with no outgoing a-transitions

Thus ;® means states with no aa-paths

p-calculus: Example @)

vX.p A [a]X is informally analogous to LTL [Jp

X palaX =S5 true
vIX.pAala]X =pnlaS
Intersection between all nodes satisfying p (LHS of A)
and all nodes (RHS of A)
’X.palalX=pnlaT
Where T = v X.p A [a]X are all nodes that satisfy p
Thus p? is the intersection between all nodes that satisfy p
and all nodes that have an outgoing edge labeled a

to a node that satisfies p

All nodes that satisfy p and whose descendants that are reachable
through a-transitions also satisfy p.

p~calculus: Example @3
uX.p v ((ayTrue A [a]X) is informally analogous to LTL {p

X pv ((a)True A [a]X) = &
prX.pv ((a)True A [a]@) = p v ((a) True A [a] D)
{ayTrue is the set of states with an outer a-transition
[a] is the set of states with no outgoing a-transition
Therefore, intersection A is empty
and the formula boils down to the set of states satisfying p
w?X.pv ((ayTrue A [a]T) = p v ((a) True A [a] T)
where T = ! which means nodes satisfying p

[a] T are nodes whose children reachable via a-transitions satisfy p

Thus either p is satisfied, or it is satisfied via a node reachable
through an a-transitions, or via an aa-transition, or via an
a-transition.

Note

» Increasing complexity with alternation of fixed point types

» With one fix-point we talk about termination properties
» With two fix-points we can write fairness formulas

Model checking via parity games s

sE? [a](p1 V (p2 A p3))

/ forallt:s 3¢

tE? p1 V (p2 A ps3)

tE" p1 t E? pa Aps

Adam pick t from s 3 t such that t ¥ (py v (p2 A p3)
Eve reply by showing that either t = p; or that t = pp and t = p3.

Model checking via parity games s

Definition (Game)
A game is a triple G = (V, T, Acc) where
1. V are nodes partitioned between two players, Adam and Eve,
V = VAUVEand VAﬁVE:@,
2. T € V x V is a transition relation determining the possible
successors of each node, and

3. Acc € V¥ is a set defining the winning condition

» It is Adam’s turn if v € V), otherwise v € Vg and it is Eve's
» The player who cannot make a move loses

» If a play is infinite, vgvi..., then Eve wins if vgv;... € Acc

Model checking via parity games s

Theorem (Reducing model-checking to parity games)

Let G(M,) denote a game constructed from the labeled
transition system M and the p-calculus formula o.
For every sentence «, transition system M, and initial state s,

then M, s = « iff Eve has a winning strategy for the position
(s,a) in GIM,).

Model checking via parity games s

Define G(M, «) inductively on the syntax of «

» Create node (s, 3) for every state s of M and every formula 5 in
the closure of « (similar to the automata based LTL model checking construction we have seen)

» Recall that Eve's goal is to show that a formula holds, and that

the player who can't make a move loses

(s,p)

Eve wins if p holds in s
Thus assign (s, p) to Adam and we put no transitions from it

Same as (s, p) but reversing Adam and Eve's roles

Connect to (t,3) for all t such that s % t and
assign (s, [a]B) to Adam and (s,{a)5) to Eve

Connect to (s, B(uX.8(X))) and to (s, B(vX.B(X)))
This corresponds to the intuition that a fixed-point
is equivalent to its unfolding. See [Cleaveland, 1990]

Model checking via parity games s

» How to define Acc and the parity winning condition
See [Bradfield and Walukiewicz, 2015]

» Model checking M &= «

Use algorithm for determining winner of parity game
once G(M, «) has been created

Bisimulation 3

» Equivalence between systems
» Preserves compositionality
» Programs as functions (denotational semantics)

x:=2 and x:=1 x:=x+1

x:=2|x:=2 wversus x:=2| x:=1, x:=x+1

» Language acceptance (trace equivalence)

Q| requesttea |
Q3

coffee P4 C

C
P1 P2 Ql coffee

request-tea
tea
C

P3 request-coffee

Q4/—>Q5

Bisimulation

» Equivalence between systems
» Not overly strong as graph isomorphism

P1

P2

Ql

Q2

Q3

Bisimulation

Definition (Bisimulation)
Bisimulation is a symmetric relation R on the states of an LTS
such that whenever P R Q, for all t we have:

» for all P’ which P 5 P’, there is Q' such that Q 5 Q' and P’ R Q'

Definition (Logic equivalence)
Two statements are logically equivalent if they have the same truth
value in every model

logic logic equivalence
LTL trace equivalence
HML, p-calculus, CTL bisimilarity

References
» Lattice and fixed points

» Nielson, F., Nielson, H. R., and Hankin, C. (2015). Principles of
program analysis.
Springer
» Davey, B. A. and Priestley, H. A. (2002). Introduction to lattices
and order.
Cambridge university press
» p-calculus and model checking

» Bradfield, J. and Walukiewicz, |. (2015). The mu-calculus and
model-checking.
Handbook of Model Checking. Springer-Verlag, pages 35—-45

» Cleaveland, R. (1990). Tableau-based model checking in the
propositional mu-calculus.
Acta Informatica, 27(8):725-747
» Bisimulation
» Sangiorgi, D. (2012). Introduction to bisimulation and
coinduction.
Cambridge University Press

	Outline
	Motivation
	-calculus
	Bisimulation
	Bisimulation

