A glimpse at the μ -calculus

Precise Modeling and Analysis group University of Oslo Daniel Fava

May 19, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Roadmap

- 1. Start with LTL and motivate greater expressivity
- 2. Give some background: Hennessy Milner Logic (HML)
- 3. Build a modest foundation for understanding fixed points
- 4. μ -calculus syntax, semantics, and examples
- 5. Game theoretic approach to model checking the μ -calculus

6. Bisimulation

What do these mean?

□p ◊p pUq pRq

What do these mean?

$$\Box p = p \land \bigcirc \Box p$$

$$\Diamond p = p \lor \bigcirc \Diamond p$$

$$p\mathcal{U}q = q \lor (p \land \bigcirc (p\mathcal{U}q))$$

$$p\mathcal{R}q = (p \land q) \lor (q \land \bigcirc (p\mathcal{R}q))$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

What do these mean? Notice the recursion

$$\Box p = p \land \bigcirc \Box p$$

$$\Diamond p = p \lor \bigcirc \Diamond p$$

$$p\mathcal{U}q = q \lor (p \land \bigcirc (p\mathcal{U}q))$$

$$p\mathcal{R}q = (p \land q) \lor (q \land \bigcirc (p\mathcal{R}q))$$

Think of \Box , \Diamond , \mathcal{U} , \mathcal{R} as special purpose recursive operators • What if we could have more powerful (arbitrary) recursions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

LTL: a trace σ or sets of traces

 $\llbracket \alpha \rrbracket^{\sigma} = \{T, F\}$ *µ*-calculus: Labeled Transition System (LTS) $\mathcal{M} = (S, \xrightarrow{i}, P_i)$ $\llbracket \alpha \rrbracket^{\mathcal{M}} \subseteq S$

- 1. Talk about a node's direct children
- 2. Talk about a node's descendants

LTL: a trace σ or sets of traces

 $\llbracket \alpha \rrbracket^{\sigma} = \{T, F\}$ *µ*-calculus: Labeled Transition System (LTS) $\mathcal{M} = (S, \stackrel{i}{\rightarrow}, P_i)$ $\llbracket \alpha \rrbracket^{\mathcal{M}} \subseteq S$

1. Talk about a node's direct children \leftarrow Hennessy Milner Logic

Talk about a node's descendants ← Fixed points

Background: Hennessy Milner Logic (1/3)

- Syntax $\Phi ::= tt \mid ff \mid p_i \mid \neg p_i \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [a] \Phi \mid \langle a \rangle \Phi$
- Semantics

$$\llbracket tt \rrbracket^{\mathcal{M}} = S \qquad \llbracket ff \rrbracket^{\mathcal{M}} = \emptyset$$
$$\llbracket p_i \rrbracket^{\mathcal{M}} = P_i \qquad \llbracket \neg p_i \rrbracket^{\mathcal{M}} = S - P_i$$

Examples:

1.
$$\llbracket tt \rrbracket^{\mathcal{M}} = \{n_1, n_2, n_3, n_4, n_5\}$$

2. $\llbracket p \rrbracket^{\mathcal{M}} = \{n_1, n_3, n_4\}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

Background: Hennessy Milner Logic (2/3)

- Syntax $\Phi ::= tt \mid ff \mid p_i \mid \neg p_i \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [a] \Phi \mid \langle a \rangle \Phi$
- Semantics

$$\llbracket \alpha \lor \beta \rrbracket^{\mathcal{M}} = \llbracket \alpha \rrbracket^{\mathcal{M}} \smile \llbracket \beta \rrbracket^{\mathcal{M}}$$
$$\llbracket \alpha \land \beta \rrbracket^{\mathcal{M}} = \llbracket \alpha \rrbracket^{\mathcal{M}} \cap \llbracket \beta \rrbracket^{\mathcal{M}}$$

Example: $\llbracket p \land q \rrbracket^{\mathcal{M}} = \{n_1, n_4\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Background: Hennessy Milner Logic (3/3)

• Syntax $\Phi ::= tt \mid ff \mid p_i \mid \neg p_i \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [a] \Phi \mid \langle a \rangle \Phi$

Semantics

Examples:

1. $n_1 \in \llbracket [a]q \rrbracket^{\mathcal{M}}$

2.
$$n_1 \notin \llbracket [a]p \rrbracket^{\mathcal{M}}$$

3. $n_1 \in \llbracket \langle a \rangle p \rrbracket^{\mathcal{M}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ⊙

Background: Fixed-points (1/3)

- Fixed point
- Monotonic function
- Partial order relation \sqsubseteq
- Upper bound
- Least Upper Bound (lub)
- Lower bound
- ▶ Greatest Lower Bound (glb)
- Complete lattice
- Boundedness of complete lattices

Tarski-Knaster theorem

 A monotonic function f : L → L on a complete lattice L has a greatest fixed point (gfp) and a least fixed point (lfp).

Background: Fixed-points (1/3)

- Fixed point $f(x) = x^2 + x 4$
- Monotonic function $x \leq x' \rightarrow f(x) \leq f(x')$
- Partial order relation
- Upper bound $Y \subseteq S$, $u \in S$, if $\forall s \in S$. $s \subseteq u$
- Least Upper Bound (lub)
- Lower bound $Y \subseteq S$, $I \in S$, if $\forall s \in S$. $I \subseteq s$
- Greatest Lower Bound (glb)
- Complete lattice $(S, \subseteq, ||, ||)$
- ▶ Boundedness of complete lattices $| \emptyset = \bot, \quad \square \emptyset = \top$

Tarski-Knaster theorem

• A monotonic function $f: L \rightarrow L$ on a complete lattice L has a greatest fixed point (gfp) and a least fixed point (lfp).

Background: Fixed-points (2/3)

• Reductive $f(x) \sqsubseteq x$

• Extensive $x \sqsubseteq f(x)$

Tarski-Knaster theorem

 A monotonic function f : L → L on a complete lattice L has a greatest fixed point (gfp) and a least fixed point (lfp).

$$gfp(f) = \bigsqcup \{ x \in L \mid x \sqsubseteq f(x) \} = \bigsqcup \{ Ext(f) \} \in Fix(f)$$
$$lfp(f) = \bigsqcup \{ x \in L \mid f(x) \sqsubseteq x \} = \bigsqcup \{ Red(f) \} \in Fix(f)$$

Background: Fixed-points (3/3)

• Reductive $f(x) \sqsubseteq x$

• Extensive $x \sqsubseteq f(x)$

イロト イポト イヨト イヨト э

μ -calculus (1/2)

- Extends HML by adding variables X, Y, Z, ...
- Syntax
 - Add variables and fixed point operators on top of HML

$$\Phi ::= tt \mid ff \mid p_i \mid \neg p_i \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [a] \Phi \mid \langle a \rangle \Phi \mid X \mid \mu X. \Phi \mid \nu X. \Phi$$

- Variable occurrences can be free, or
- bounded by the fixed-point operators
- Note the absence of negation from the syntax

μ -calculus (2/2)

- Semantics
 - Adds function from variables to sets of states called valuation

$$\mathcal{V}: Var \rightarrow 2^S$$

A variable occurring free is interpreted by the valuation

$$[\![X]\!]_{\mathcal{V}}^{\mathcal{M}} = \mathcal{V}(X)$$

Fixed-points are defined according to Tarski-Knaster theorem

$$\begin{split} \llbracket \mu X. \alpha \rrbracket_{\mathcal{V}}^{\mathcal{M}} &= \bigcap \{ S' \subseteq S \mid \llbracket \alpha \rrbracket_{\mathcal{V}[S'/X]}^{\mathcal{M}} \subseteq S' \} \qquad \text{(lfp)} \\ &= \bigcap \{ S' \subseteq S \mid f(S') \subseteq S' \} \\ \llbracket \nu X. \alpha \rrbracket_{\mathcal{V}}^{\mathcal{M}} &= \bigsqcup \{ S' \subseteq S \mid S' \subseteq \llbracket \alpha \rrbracket_{\mathcal{V}[S'/X]}^{\mathcal{M}} \} \qquad \text{(gfp)} \\ &= \bigsqcup \{ S' \subseteq S \mid S' \subseteq f(S') \end{cases} \end{split}$$

where $f(S') = \llbracket \alpha \rrbracket_{\mathcal{V}[S'/X]}^{\mathcal{M}}$

- Tarski-Knaster doesn't help us compute FPs It only guarantees their existence
- We will use Kleene's FP theorem for computing FPs

μ -calculus: Example (1/3)

 μX . [a] X represent state with infinite sequences of a-transitions $\mu^0 X.[a] X = \emptyset$ false $\mu^{1}X.[a]X = [a]\emptyset$ $= \{ s \in S \mid \forall t. \ s \xrightarrow{a} t \to t \models \emptyset \}$ since no t satisfies \emptyset , the right hand side (RHS) of \rightarrow is false; thus the left hand side (LHS) of \rightarrow cannot be true. This represents states with no outgoing *a*-transitions $\mu^2 X \cdot [a] X = [a] T$ where $T = \mu^1 X \cdot [a] X$ are states with no outgoing *a*-transitions Thus μ^2 means states with no *aa*-paths

μ -calculus: Example (2/3)

 $\nu X.p \wedge [a]X$ is informally analogous to LTL $\Box p$ $\nu^0 X.p \wedge [a]X = S$ true $\nu^1 X.p \wedge [a]X = p \wedge [a]S$ Intersection between all nodes satisfying p (LHS of \wedge) and all nodes (RHS of \wedge) $\nu^2 X.p \wedge [a]X = p \wedge [a]T$ Where $T = \nu^1 X \cdot p \wedge [a] X$ are all nodes that satisfy pThus μ^2 is the intersection between all nodes that satisfy pand all nodes that have an outgoing edge labeled ato a node that satisfies p

All nodes that satisfy p and whose descendants that are reachable through *a*-transitions also satisfy p.

μ -calculus: Example (3/3)

 $\mu X.p \lor (\langle a \rangle True \land [a]X)$ is informally analogous to LTL $\Diamond p$

 $\mu^{0}X.p \lor (\langle a \rangle True \land [a]X) = \emptyset$ $\mu^{1}X.p \lor (\langle a \rangle True \land [a]\emptyset) = p \lor (\langle a \rangle True \land [a]\emptyset)$ $\langle a \rangle True \text{ is the set of states with an outer } a\text{-transition}$ $[a]\emptyset \text{ is the set of states with no outgoing } a\text{-transition}$ Therefore, intersection \land is empty

and the formula boils down to the set of states satisfying p $\mu^2 X.p \lor (\langle a \rangle True \land [a]T) = p \lor (\langle a \rangle True \land [a]T)$ where $T = \mu^1$ which means nodes satisfying p[a] T are nodes whose children reachable via *a*-transitions satisfy p

Thus either p is satisfied, or it is satisfied via a node reachable through an *a*-transitions, or via an *aa*-transition, or via an *aⁿ*-transition.

Note

- Increasing complexity with alternation of fixed point types
 - With one fix-point we talk about termination properties

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

With two fix-points we can write fairness formulas

Model checking via parity games (1/5)

Adam pick t from $s \xrightarrow{a} t$ such that $t \not\models (p_1 \lor (p_2 \land p_3))$ Eve reply by showing that either $t \models p_1$ or that $t \models p_2$ and $t \models p_3$.

Model checking via parity games (2/5)

Definition (Game)

A game is a triple G = (V, T, Acc) where

- 1. *V* are *nodes* partitioned between two players, Adam and Eve, $V = V_A \cup V_E$ and $V_A \cap V_E = \emptyset$,
- 2. $T \subseteq V \times V$ is a *transition relation* determining the possible successors of each node, and
- 3. $Acc \subseteq V^{\omega}$ is a set defining the *winning condition*
 - It is Adam's turn if $v \in V_A$, otherwise $v \in V_E$ and it is Eve's
 - The player who cannot make a move loses
 - ▶ If a play is infinite, $v_0v_1...$, then Eve wins if $v_0v_1... \in Acc$

Model checking via parity games (3/5)

Theorem (Reducing model-checking to parity games) Let $\mathcal{G}(\mathcal{M}, \alpha)$ denote a game constructed from the labeled transition system \mathcal{M} and the μ -calculus formula α . For every sentence α , transition system \mathcal{M} , and initial state s, then $\mathcal{M}, s \models \alpha$ iff Eve has a winning strategy for the position (s, α) in $\mathcal{G}(\mathcal{M}, \alpha)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Model checking via parity games (4/5)

Define $\mathcal{G}(\mathcal{M}, \alpha)$ inductively on the syntax of α

- Create node (s, β) for every state s of \mathcal{M} and every formula β in the closure of lpha (similar to the automata based LTL model checking construction we have seen)
- Recall that Eve's goal is to show that a formula holds, and that the player who can't make a move loses
- (s, p) Eve wins if p holds in s Thus assign (s, p) to Adam and we put no transitions from it

$$(s, \neg p)$$
 Same as (s, p) but reversing Adam and Eve's roles

$$egin{array}{l} (m{s},\langlem{a}
anglem{eta})\ (m{s},[m{a}]m{eta}) \end{array}$$

Connect to (t, β) for all t such that $s \xrightarrow{a} t$ and assign $(s, [a]\beta)$ to Adam and $(s, \langle a \rangle \beta)$ to Eve

 $(s, \mu X.\beta(X))$ Connect to $(s, \beta(\mu X.\beta(X)))$ and to $(s, \beta(\nu X.\beta(X)))$ $(s, \nu X.\beta(X))$ This corresponds to the intuition that a fixed-point is equivalent to its unfolding. See [Cleaveland, 1990]

Model checking via parity games (5/5)

- How to define Acc and the parity winning condition See [Bradfield and Walukiewicz, 2015]
- Model checking $\mathcal{M} \models \alpha$

Use algorithm for determining winner of parity game once $\mathcal{G}(\mathcal{M},\alpha)$ has been created

Bisimulation (1/3)

- Equivalence between systems
 - Preserves compositionality
 - Programs as functions (denotational semantics)

x := 2 and x := 1; x := x + 1x := 2 || x := 2 versus x := 2 || x := 1; x := x + 1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Language acceptance (trace equivalence)

Bisimulation (2/3)

- Equivalence between systems
 - Not overly strong as graph isomorphism

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Bisimulation (3/3)

Definition (Bisimulation)

Bisimulation is a symmetric relation \mathcal{R} on the states of an LTS such that whenever $P \mathcal{R} Q$, for all t we have:

• for all P' which $P \xrightarrow{t} P'$, there is Q' such that $Q \xrightarrow{t} Q'$ and $P' \mathcal{R} Q'$

Definition (Logic equivalence)

Two statements are logically equivalent if they have the same truth value in every model

logic	logic equivalence
LTL	trace equivalence
HML, μ -calculus, CTL	bisimilarity

References

- Lattice and fixed points
 - Nielson, F., Nielson, H. R., and Hankin, C. (2015). Principles of program analysis.
 Springer
 - Davey, B. A. and Priestley, H. A. (2002). Introduction to lattices and order.

Cambridge university press

- µ-calculus and model checking
 - Bradfield, J. and Walukiewicz, I. (2015). The mu-calculus and model-checking.

Handbook of Model Checking. Springer-Verlag, pages 35-45

 Cleaveland, R. (1990). Tableau-based model checking in the propositional mu-calculus.

Acta Informatica, 27(8):725-747

- Bisimulation
 - Sangiorgi, D. (2012). Introduction to bisimulation and coinduction.

Cambridge University Press