A glimpse at the μ-calculus

Precise Modeling and Analysis group
University of Oslo
Daniel Fava

May 19, 2017

Roadmap

1. Start with LTL and motivate greater expressivity
2. Give some background: Hennessy Milner Logic (HML)
3. Build a modest foundation for understanding fixed points
4. μ-calculus syntax, semantics, and examples
5. Game theoretic approach to model checking the μ-calculus
6. Bisimulation

Motivation

What do these mean?

$$
\begin{array}{r}
\square p \\
\diamond p \\
p \mathcal{U q} q \\
p \mathcal{R} q
\end{array}
$$

Motivation

What do these mean?

$$
\begin{aligned}
\square p & =p \wedge \bigcirc \square p \\
\diamond p & =p \vee \bigcirc \diamond p \\
p \mathcal{U} q & =q \vee(p \wedge \bigcirc(p \mathcal{U} q)) \\
p \mathcal{R} q & =(p \wedge q) \vee(q \wedge \bigcirc(p \mathcal{R} q))
\end{aligned}
$$

Motivation

What do these mean? Notice the recursion

$$
\begin{aligned}
\square p & =p \wedge \bigcirc \square p \\
\diamond p & =p \vee \bigcirc \diamond p \\
p \mathcal{U} q & =q \vee(p \wedge \bigcirc(p \mathcal{U} q)) \\
p \mathcal{R} q & =(p \wedge q) \vee(q \wedge \bigcirc(p \mathcal{R} q))
\end{aligned}
$$

Think of $\square, \diamond, \mathcal{U}, \mathcal{R}$ as special purpose recursive operators

- What if we could have more powerful (arbitrary) recursions?

Motivation

LTL: a trace σ or sets of traces

$$
\llbracket \alpha \rrbracket^{\sigma}=\{T, F\}
$$

μ-calculus: Labeled Transition System (LTS) $\mathcal{M}=\left(S, \xrightarrow{\prime}, P_{i}\right)$

$$
\llbracket \alpha \rrbracket^{\mathcal{M}} \subseteq S
$$

1. Talk about a node's direct children
2. Talk about a node's descendants

Motivation

LTL: a trace σ or sets of traces

$$
\llbracket \alpha \rrbracket^{\sigma}=\{T, F\}
$$

μ-calculus: Labeled Transition System (LTS) $\mathcal{M}=\left(S, \xrightarrow{\prime}, P_{i}\right)$

$$
\llbracket \alpha \rrbracket^{\mathcal{M}} \subseteq S
$$

1. Talk about a node's direct children \Longleftarrow Hennessy Milner Logic
2. Talk about a node's descendants \Longleftarrow Fixed points

Background: Hennessy Milner Logic (1/3)

- Syntax $\Phi::=t t|f f| p_{i}\left|\neg p_{i}\right| \Phi_{1} \wedge \Phi_{2}\left|\Phi_{1} \vee \Phi_{2}\right|[a] \Phi \mid\langle a\rangle \Phi$
- Semantics

$$
\begin{aligned}
\llbracket t \rrbracket^{\mathcal{M}}=S & \llbracket f f \rrbracket^{\mathcal{M}}=\varnothing \\
\llbracket p_{i} \rrbracket^{\mathcal{M}}=P_{i} & \llbracket \neg p_{i} \rrbracket^{\mathcal{M}}=S-P_{i}
\end{aligned}
$$

Examples:

1. $\llbracket t t \rrbracket^{\mathcal{M}}=\left\{n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right\}$
2. $\llbracket p \rrbracket^{\mathcal{M}}=\left\{n_{1}, n_{3}, n_{4}\right\}$

Background: Hennessy Milner Logic (2/3)

- Syntax $\Phi::=t t|f f| p_{i}\left|\neg p_{i}\right| \Phi_{1} \wedge \Phi_{2}\left|\Phi_{1} \vee \Phi_{2}\right|[a] \Phi \mid\langle a\rangle \Phi$
- Semantics

$$
\begin{aligned}
& \llbracket \alpha \vee \beta \rrbracket^{\mathcal{M}}=\llbracket \alpha \rrbracket^{\mathcal{M}} \cup \llbracket \beta \rrbracket^{\mathcal{M}} \\
& \llbracket \alpha \wedge \beta \rrbracket^{\mathcal{M}}=\llbracket \alpha \rrbracket^{\mathcal{M}} \cap \llbracket \beta \rrbracket^{\mathcal{M}}
\end{aligned}
$$

Example:

$$
\llbracket p \wedge q \rrbracket^{\mathcal{M}}=\left\{n_{1}, n_{4}\right\}
$$

Background: Hennessy Milner Logic (3/3)

- Syntax $\Phi::=t t|f f| p_{i}\left|\neg p_{i}\right| \Phi_{1} \wedge \Phi_{2}\left|\Phi_{1} \vee \Phi_{2}\right|[a] \Phi \mid\langle a\rangle \Phi$
- Semantics
[a] All children accessible via an a-transition

$$
\llbracket[a] \alpha \rrbracket^{\mathcal{M}}=\left\{s \in S \mid \forall t . \quad s \xrightarrow{a} t \quad \rightarrow t \in \llbracket \alpha \rrbracket^{\mathcal{M}}\right\}
$$

〈a〉At least one child accessible via an

$$
\llbracket\langle a\rangle \alpha \rrbracket^{\mathcal{M}}=\left\{s \in S \mid \exists t . \quad s \xrightarrow{a} t \quad \wedge \quad t \in \llbracket \alpha \rrbracket^{\mathcal{M}}\right\}
$$

Examples:

1. $n_{1} \in \llbracket[a] q \rrbracket^{\mathcal{M}}$
2. $n_{1} \notin \llbracket[a] p \rrbracket^{\mathcal{M}}$
3. $n_{1} \in \llbracket\langle a\rangle p \rrbracket^{\mathcal{M}}$

Background: Fixed-points ${ }_{(1 / 3)}$

- Fixed point
- Monotonic function
- Partial order relation \sqsubseteq
- Upper bound
- Least Upper Bound (lub) $\quad \square$
- Lower bound
- Greatest Lower Bound (glb) Π
- Complete lattice
- Boundedness of complete lattices

Tarski-Knaster theorem

- A monotonic function $f: L \rightarrow L$ on a complete lattice L has a greatest fixed point (gfp) and a least fixed point (lfp).

Background: Fixed-points ${ }_{(1 / 3)}$

- Fixed point $f(x)=x^{2}+x-4$
- Monotonic function $x \leqslant x^{\prime} \rightarrow f(x) \leqslant f\left(x^{\prime}\right)$
- Partial order relation \sqsubseteq
- Upper bound $Y \subseteq S, u \in S$, if $\forall s \in S . s \sqsubseteq u$
- Least Upper Bound (lub) $\quad \square$
- Lower bound $Y \subseteq S, I \in S$, if $\forall s \in S$. $I \sqsubseteq s$
- Greatest Lower Bound (glb) Π
- Complete lattice $(S, \sqsubseteq, \sqcup, \sqcap)$
- Boundedness of complete lattices $\quad \bigsqcup \varnothing=\perp, \quad \Pi \varnothing=\top$

Tarski-Knaster theorem

- A monotonic function $f: L \rightarrow L$ on a complete lattice L has a greatest fixed point (gfp) and a least fixed point (lfp).

Background: Fixed-points ${ }_{(2 / 3)}$

- Reductive $f(x) \sqsubseteq x$
- Extensive $x \sqsubseteq f(x)$

Tarski-Knaster theorem

- A monotonic function $f: L \rightarrow L$ on a complete lattice L has a greatest fixed point (gfp) and a least fixed point (lfp).

$$
\begin{aligned}
& \operatorname{gfp}(f)=\bigsqcup\{x \in L \mid x \sqsubseteq f(x)\}=\bigsqcup\{\operatorname{Ext}(f)\} \in \operatorname{Fix}(f) \\
& \operatorname{lfp}(f)=\prod\{x \in L \mid f(x) \sqsubseteq x\}=\prod\{\operatorname{Red}(f)\} \in \operatorname{Fix}(f)
\end{aligned}
$$

Background: Fixed-points ${ }_{(3 / 3)}$

- Reductive $f(x) \sqsubseteq x$
- Extensive $x \sqsubseteq f(x)$

Kleene fixed-point theorem
$\operatorname{gfp}=f^{\infty}(T)=\prod_{n \geqslant 0} f^{n}(T)$
$\operatorname{lfp}=f^{\infty}(\perp)=\bigsqcup_{n \geqslant 0} f^{n}(\perp)$

μ-calculus ${ }_{(1 / 2)}$

- Extends HML by adding variables X, Y, Z, \ldots
- Syntax
- Add variables and fixed point operators on top of HML

$$
\begin{aligned}
\Phi::= & t t|f f| p_{i}\left|\neg p_{i}\right| \Phi_{1} \wedge \Phi_{2}\left|\Phi_{1} \vee \Phi_{2}\right|[a] \Phi|\langle a\rangle \Phi| \\
& X|\mu X . \Phi| \nu X . \Phi
\end{aligned}
$$

- Variable occurrences can be free, or
- bounded by the fixed-point operators
- Note the absence of negation from the syntax

μ-calculus ${ }_{(2 / 2)}$

- Semantics
- Adds function from variables to sets of states called valuation

$$
\mathcal{V}: \operatorname{Var} \rightarrow 2^{S}
$$

- A variable occurring free is interpreted by the valuation

$$
\llbracket X \rrbracket \mathbb{\mathcal { V }}=\mathcal{V}(X)
$$

- Fixed-points are defined according to Tarski-Knaster theorem

$$
\begin{aligned}
\llbracket \mu X . \alpha \rrbracket \mathcal{V} & =\prod\left\{S^{\prime} \subseteq S \mid \llbracket \alpha \rrbracket \mathcal{M}\left[S^{\prime} / X\right]\right. \\
& =\prod\left\{S^{\prime} \subseteq S \mid f\left(S^{\prime}\right) \subseteq S^{\prime}\right\} \\
\llbracket \nu X . \alpha \rrbracket \mathcal{V} & =\bigsqcup\left\{S^{\prime} \subseteq S \mid S^{\prime} \subseteq \llbracket \alpha \rrbracket_{\mathcal{V}\left[S^{\prime} / X\right]}^{\mathcal{M}}\right\} \\
& =\bigsqcup\left\{S^{\prime} \subseteq S \mid S^{\prime} \subseteq f\left(S^{\prime}\right)\right. \\
\text { where } f\left(S^{\prime}\right) & =\llbracket \alpha \rrbracket_{\mathcal{V}\left[S^{\prime} / X\right]}
\end{aligned}
$$

- Tarski-Knaster doesn't help us compute FPs

It only guarantees their existence

- We will use Kleene's FP theorem for computing FPs

μ-calculus: Example ${ }_{(1 / 3)}$

$\mu X .[a] X$ represent state with infinite sequences of a-transitions
$\mu^{0} X .[a] X=\varnothing \quad$ false
$\mu^{1} X \cdot[a] X=[a] \varnothing$ $=\{s \in S \mid \forall t . s \xrightarrow{a} t \rightarrow t \models \varnothing\}$
since no t satisfies \varnothing, the right hand side (RHS) of \rightarrow is false; thus the left hand side (LHS) of \rightarrow cannot be true.
This represents states with no outgoing a-transitions
$\mu^{2} X .[a] X=[a] T$
where $T=\mu^{1} X$.[a]X are states with no outgoing a-transitions
Thus μ^{2} means states with no aa-paths

μ-calculus: Example ${ }_{(2 / 3)}$

$\nu X . p \wedge[a] X$ is informally analogous to LTL $\square p$
$\nu^{0} X . p \wedge[a] X=S \quad$ true
$\nu^{1} X . p \wedge[a] X=p \wedge[a] S$
Intersection between all nodes satisfying $p($ LHS of $\wedge)$ and all nodes (RHS of \wedge)
$\nu^{2} X . p \wedge[a] X=p \wedge[a] T$
Where $T=\nu^{1} X . p \wedge[a] X$ are all nodes that satisfy p
Thus μ^{2} is the intersection between all nodes that satisfy p
and all nodes that have an outgoing edge labeled a to a node that satisfies p

All nodes that satisfy p and whose descendants that are reachable through a-transitions also satisfy p.

μ-calculus: Example ${ }_{(3 / 3)}$

$\mu X . p \vee(\langle a\rangle$ True $\wedge[a] X)$ is informally analogous to LTL $\diamond p$
$\mu^{0} X . p \vee(\langle a\rangle$ True $\wedge[a] X)=\varnothing$
$\mu^{1} X . p \vee(\langle a\rangle$ True $\wedge[a] \varnothing)=p \vee(\langle a\rangle$ True $\wedge[a] \varnothing)$
〈a〉True is the set of states with an outer a-transition
$[a] \varnothing$ is the set of states with no outgoing a-transition
Therefore, intersection \wedge is empty
and the formula boils down to the set of states satisfying p
$\mu^{2} X . p \vee(\langle a\rangle$ True $\wedge[a] T)=p \vee(\langle a\rangle$ True $\wedge[a] T)$
where $T=\mu^{1}$ which means nodes satisfying p
[a] T are nodes whose children reachable via a-transitions satisfy p
Thus either p is satisfied, or it is satisfied via a node reachable through an a-transitions, or via an aa-transition, or via an a^{n}-transition.

Note

- Increasing complexity with alternation of fixed point types
- With one fix-point we talk about termination properties
- With two fix-points we can write fairness formulas

Model checking via parity games ${ }_{(1 / 5)}$

Adam pick t from $s \xrightarrow{a} t$ such that $t \not \vDash\left(p_{1} \vee\left(p_{2} \wedge p 3\right)\right.$
Eve reply by showing that either $t \models p_{1}$ or that $t \models p_{2}$ and $t \models p_{3}$.

Model checking via parity games ${ }_{(2 / 5)}$

Definition (Game)
A game is a triple $G=(V, T, A c c)$ where

1. V are nodes partitioned between two players, Adam and Eve, $V=V_{A} \cup V_{E}$ and $V_{A} \cap V_{E}=\varnothing$,
2. $T \subseteq V \times V$ is a transition relation determining the possible successors of each node, and
3. Acc $\subseteq V^{\omega}$ is a set defining the winning condition

- It is Adam's turn if $v \in V_{A}$, otherwise $v \in V_{E}$ and it is Eve's
- The player who cannot make a move loses
- If a play is infinite, $v_{0} v_{1} \ldots$, then Eve wins if $v_{0} v_{1} \ldots \in A c c$

Model checking via parity games ${ }_{(3 / 5)}$

Theorem (Reducing model-checking to parity games)
Let $\mathcal{G}(\mathcal{M}, \alpha)$ denote a game constructed from the labeled transition system \mathcal{M} and the μ-calculus formula α.
For every sentence α, transition system \mathcal{M}, and initial state s, then $\mathcal{M}, s \vDash \alpha$ iff Eve has a winning strategy for the position (s, α) in $\mathcal{G}(\mathcal{M}, \alpha)$.

Model checking via parity games ${ }_{(4 / 5)}$

Define $\mathcal{G}(\mathcal{M}, \alpha)$ inductively on the syntax of α

- Create node (s, β) for every state s of \mathcal{M} and every formula β in the closure of α (similar to the automata based LTL model checking construction we have seen)
- Recall that Eve's goal is to show that a formula holds, and that the player who can't make a move loses
(s, p) Eve wins if p holds in s
Thus assign (s, p) to Adam and we put no transitions from it
$(s, \neg p)$ Same as (s, p) but reversing Adam and Eve's roles
$(s,\langle a\rangle \beta)$ Connect to (t, β) for all t such that $s \xrightarrow{a} t$ and $(s,[a] \beta) \quad \operatorname{assign}(s,[a] \beta)$ to Adam and $(s,\langle a\rangle \beta)$ to Eve
$(s, \mu X . \beta(X)) \quad$ Connect to $(s, \beta(\mu X . \beta(X)))$ and to $(s, \beta(\nu X . \beta(X)))$
$(s, \nu X . \beta(X)) \quad$ This corresponds to the intuition that a fixed-point is equivalent to its unfolding. See [Cleaveland, 1990]

Model checking via parity games ${ }_{(5 / 5)}$

- How to define Acc and the parity winning condition See [Bradfield and Walukiewicz, 2015]
- Model checking $\mathcal{M} \vDash \alpha$

Use algorithm for determining winner of parity game once $\mathcal{G}(\mathcal{M}, \alpha)$ has been created

Bisimulation $_{(1 / 3)}$

- Equivalence between systems
- Preserves compositionality
- Programs as functions (denotational semantics)

$$
\begin{aligned}
x:=2 \quad \text { and } \quad x:=1 ; x:=x+1 \\
x:=2 \| x:=2 \quad \text { versus } \quad x:=2 \| x:=1 ; x:=x+1
\end{aligned}
$$

- Language acceptance (trace equivalence)

Bisimulation $_{(2 / 3)}$

- Equivalence between systems
- Not overly strong as graph isomorphism

Bisimulation $_{(3 / 3)}$

Definition (Bisimulation)

Bisimulation is a symmetric relation \mathcal{R} on the states of an LTS such that whenever $P \mathcal{R} Q$, for all t we have:

- for all P^{\prime} which $P \xrightarrow{\mathrm{t}} P^{\prime}$, there is Q^{\prime} such that $Q \xrightarrow{\mathrm{t}} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$

Definition (Logic equivalence)

Two statements are logically equivalent if they have the same truth value in every model

logic	logic equivalence
LTL	trace equivalence
HML, μ-calculus, CTL	bisimilarity

References

- Lattice and fixed points
- Nielson, F., Nielson, H. R., and Hankin, C. (2015). Principles of program analysis.
Springer
- Davey, B. A. and Priestley, H. A. (2002). Introduction to lattices and order.
Cambridge university press
- μ-calculus and model checking
- Bradfield, J. and Walukiewicz, I. (2015). The mu-calculus and model-checking.
Handbook of Model Checking. Springer-Verlag, pages 35-45
- Cleaveland, R. (1990). Tableau-based model checking in the propositional mu-calculus.
Acta Informatica, 27(8):725-747
- Bisimulation
- Sangiorgi, D. (2012). Introduction to bisimulation and coinduction.
Cambridge University Press

