
INF5140 – Specification and Verification of
Parallel Systems

Spring 2017

Institutt for informatikk, Universitetet i Oslo

February 3, 2017

1 / 85

INF5140 – Specification and Verification of
Parallel Systems
Logics, lecture 2

Spring 2017

February 3, 2017

2 / 85

Introduction

Logic is “the” specification language for us.1

There are many logics to choose from.
Today we see two of them:

First-order logic (FOL) can be used to describe the state of a
program.
Modal logic can be used to describe the change of state of a
program.

Other logics that we will see in other lectures:

Temporal logics has features not available in FOL like
possibility to describe sequences of states.
Hoare logic is specially designed to reason about (imperative)
programs.
Dynamic logics: more expressive than Hoare logic, more
abstract constructs and is more in the tradition of modal logic.

1Note: there is no such thing as “the logics”. There are many . . .
3 / 85

First-order logic

Syntax

Language
The symbols of our first-order language are

variables (a countable set of them V = {x , y , . . . })
relation symbols P = {P,Q, . . . } of varying arity (incl. .= of
arity 2)
function symbols F = {f , g , . . . } of varying arity (if the arity
of f is 0 then f is called a constant symbols)a

the propositional connectives ¬, ∨, ∧, → and ↔
the quantifiers ∀ and ∃

aCf. also the notion of signature in the term-rewriting talk later (by L.
Tveito, 2015)

5 / 85

Syntax: expressions

Expressions (terms)
Variables are atomic expressions.
If f is a function symbol of arity n, and t1, . . . , tn are terms,
then the following is also an expression.

f (t1, . . . , tn)

If n = 0, f is a constant.

Example
Using infix notation, the following are expressions:

x U ∪ V

y − 1 U ∩ V

(x + y) + z U \ V
6 / 85

Syntax: Atomic formulae

Atomic formulae
> (top) and ⊥ (bottom) are atomic formulae.
If P is a relation symbol of arity n, and t1, . . . , tn are terms,
then the following is an atomic formulae.

P(t1, . . . , tn)

Example
Using infix notation, the following are atomic formulae.

> x ∈ U

x < y + 1 U ⊆ V

x
.
= x − 1 U ∩ V

.
= ∅

7 / 85

Boolean formulae

Boolean formulae
All atomic formulae are boolean formulae.
If ϕ and ψ are boolean formulae, so are the following.

¬ϕ (ϕ ∨ ψ) (ϕ ∧ ψ) (ϕ→ ψ) (ϕ↔ ψ)

Example
Some examples of Boolean formulas are:

¬¬>
¬(x < y + 1)→ ⊥
P → (Q → P)

8 / 85

FO formulae

First-order formulae
All boolean formulae are first-order formulae.
Let x be a variable. If ϕ is a first-order formulae, so are the
following.

(∃x)ϕ (∀x)ϕ

If ϕ and ψ are first-order formulae, so are the following.

¬ϕ (ϕ ∨ ψ) (ϕ ∧ ψ) (ϕ→ ψ) (ϕ↔ ψ)

L denotes the set of first-order formulae.

Example
Q(y) ∨ (∀x)P(x)
(∀x)(∀y)(x < y → (∃z)(x < z ∧ z < y))

9 / 85

First-order model

Definition
A model is a pair M = (D, I), such that

D is a non-empty set (the domain)
I is mapping (the interpretation), such that

f I : Dn → D for every function symbol f of arity n
P I ⊆ Dn for every relation symbol P of arity n

Observation
We will assume an implicit model, whose domain will include
the natural numbers and sets of natural numbers, and it will
be obvious what function and relation symbols should be
mapped to.
E.g.: if + is a function symbol +I is the addition function on
the natural numbers, and .

= is mapped to a suitable =.
Simplification here: no “sorts” or “types”: only one sort ⇒ only
one domain. Normally: many-sorted

10 / 85

Valuation / state

Given a model

Definition (Valuation)
A valuation s over a set of variables V is a mapping from V to D.

other names: variable assignment
here, in the context of using logics to speak about programs,
where variables in the formula may refer to program variables:
we will often call a valuation a state

Example
Let V = {x , y , z}, let x and z be variables of type natural number,
and y a variable of type “set of natural numbers”.

s(x) = 256
s(y) = {1, 2, 3}
s(z) = 512

11 / 85

Valuation of an expression/term

Definition
To every FOL expression t we associate a value s(t) from the
domain D in a homomorphic way:

s(f (t1, . . . , tn)) = f I (s(t1), . . . , s(tn))

Example

s((2 ∗ x) + z) = s([2 ∗ x]I) +I s(z)

= (s(2I) ∗I s(x)) +I s(z)

= (2 ∗ s(x)) + s(z)

= (2 ∗ 256) + 512
= 1024

12 / 85

Free and bound variable occurrences

Definition
A variable occurrence is free in a formula if it is not within the
scope of a quantifier. A variable occurrence that is not free is
bound.
Let s1 and valn2 be states over V , and x ∈ V . s2 is an
x-variant of s1 if

s1(y) = s2(y) for all y ∈ V \ {x}.

Thus, x is the only variable the states disagree on.

13 / 85

Substitution

Definition (Substitution)
Let ϕ be a first order formula, x a variable and t an expression.
Then ϕ[t/x] is ϕ, only with every free occurrence of the x
replaced with t.

Note, the same definition is also used in the lecture about
term rewriting (used on terms, not on general FOL formula,
but it’s “the same”.)
Some other notation has been used like ϕx←c . The one used
here is the (most) standard one.
A really exact definition would have to cater for situations like
(∀x .x + y = 19)[x + 1/y].

Example

ϕ = (∀x)P(x) ∨ P(x)

ϕ[c/x] = (∀x)P(x) ∨ P(c) 14 / 85

Satisfaction

Definition (Satisfaction)
We define the notion that a state formula ϕ is true (false) relative
to a model M = (D, I) in a state s, written M, s |= ϕ (M, s 6|= ϕ)
as follows.

M, s |= > and M, s 6|= ⊥
M, s |= R(t1, . . . , tn) iff (s(t1), . . . , s(tn)) ∈ R I

M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= ϕ→ ψ iff M, s 6|= ϕ or M, s |= ψ

M, s |= ϕ↔ ψ iff M, s |= ϕ→ ψ and M, s |= ψ → ϕ

M, s |= (∀x)ϕ iff M, t |= ϕ for every t that is an x-variant of s

M, s |= (∃x)ϕ iff M, t |= ϕ for some t that is an x-variant of s

15 / 85

“Truth” and validity

Definition
We say that ϕ is true in the model M, written M |= ϕ, if

M, s |= ϕ for every state s.
We say that ϕ is valid, written |= ϕ, if

M |= ϕ for every model M.

Observation
We will abuse this notation, and write |= ϕ if ϕ is true in our
implicit model, and refer to this as state-validity.
For instance: |= x + y

.
= y + x .

In a model where +I is the subtraction function, this will
obviously not hold.

16 / 85

Exercises

Model the statement: “There are infinitely many primes”.
(∀x)(∃y)(x ≤ y ∧ (∀z)(z divides y → (z = 1 ∨ z = y)))
where we define: z divides y , (∃w)(z · w = y).
Can define prime(y) , (∀z)(z divides y → (z = 1 ∨ z = y))

“There is a person with at least two neighbors”
(∃x , y , z)(y 6= z ∧ Neigh(x , y) ∧ Neigh(x , z))
where Neigh(·, ·) is a binary relation.
Model now: “There is a person with exactly two neighbors”
(∃x , y , z)(y 6= z ∧ Neigh(x , y) ∧ Neigh(x , z) ∧
((∀w)Neigh(x ,w)→ (w = y ∨ w = z))).
“Every even number can be written as a sum of two primes”
(∀x)((even(x) ∧ x > 2)→
(∃y , z)(prime(y) ∧ prime(z) ∧ y + z = x))
where the shorthand even(x) , (∃w)(2 · w = x).

We assume the domain − with standard ·,+, >.
17 / 85

Deductions and proof systems

Definition
A proof system for a given logic consists of

axioms (or axiom schemata), which are formulae assumed to
be true, and
inference rules, of approx. the form

ϕ1 . . . ϕn

ψ

where ϕ1, . . . , ϕn are premises and ψ the conclusion.

18 / 85

Derivations and proofs

Definition
A derivation from a set of formulae S is a sequence of
formulae, where each formula is either in S , an axiom or can
be obtained by applying an inference rule to formulae earlier in
the sequence.
A proof is a derivation from the empty set.
A theorem is the last formula in a proof.
A proof system is

sound if every theorem is valid.
complete if evey valid formula is a theorem.

We do not study soundness and completeness in this course.

19 / 85

Proof systems and proofs: remarks

the “definitions” from the previous slides: not very formal
in general: a proof system: a “mechanical” (= formal and
constructive) way of conclusions from axioms (= “given”
formulas), and other already proven formulas
Many different “representations” of how to draw conclusions
exists
the one sketched on the previous slide

works with “sequences”
corresponds to the historically oldest “style” of proof systems
(“Hilbert-style”)
otherwise, in that naive form: impractical (but sound &
complete).
nowadays, better ways and more suitable for computer support
of representation exists (especially using trees). For instance
natural deduction style system

for the course, those variations don’t matter.

20 / 85

a proof system for prop. logic

Observation
We can axiomatize a subset of propositional logic as follows.

ϕ→ (ψ → ϕ) (A1)
(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) (A2)
((ϕ→ ⊥)→ ⊥)→ ϕ (DN)
ϕ ϕ→ ψ

ψ
(MP)

Let us call this logic PPL.

Note: As said, it’s only one of many different ways and styles to
axiomatize logic (here prop. logic)

21 / 85

A proof system

Example
p → p is a theorem of PPL:

(p → ((p → p)→ p))→
((p → (p → p))→ (p → p))

AX2 (1)

p → ((p → p)→ p) AX1 (2)
(p → (p → p))→ (p → p) MP on (1) and (2) (3)
p → (p → p) AX1 (4)
p → p MP on (3) and (4) (5)

Observation
A proof can be represented as a tree of inferences where the leaves
are axioms.

22 / 85

Modal logics

Introduction

Modal logic: logic of “necessity” and “possibility”, in that
originally the intended meaning of the modal operators � and
♦ was

�ϕ: ϕ is necessarily true.
♦ϕ: ϕ is possibly true.

Depending on what we intend to capture: we can interpret �ϕ
differently.

temporal ϕ will always hold.
doxastic I believe ϕ.
epistemic I know ϕ.
intuitionistic ϕ is provable.
deontic It ought to be the case that ϕ.

We will restrict here the modal operators to � and ♦ (and
mostly work with a temporal “mind-set”.

24 / 85

Kripke structure

Definition (Kripke model)
A Kripke frame is a structure (W ,R) where

W is a non-empty set of worlds, and
R ⊆W ×W is called the accessibility relation between worlds.

A Kripke model M is a structure (W ,R,V) where
(W ,R) is a frame, and
V : W → 2Φ labels each world with a set of propositional
variables.

Remark: some also consider propositional variables as propositional
constants, propositional “symbols”, it’s unimportant. Kripke models
are sometimes called Kripke structures.

25 / 85

Example

Example
Let M = (W ,R,V) be the Kripke model such that

W = {w1,w2,w3,w4,w5}
R = {(w1,w5), (w1,w4), (w4,w1), . . . }
V = 〈w1 : ∅,w2 : {φ},w3 : {φ′}, . . . 〉

26 / 85

Satisfaction

Definition
A modal formula ϕ is true in the world w of a model M, written
M,w |= ϕ, if:

M,w |= pi iff pi ∈ V (w)

M,w |= ¬ϕ iff M,w 6|= ϕ

M,w |= ϕ1 ∨ ϕ2 iff M,w |= ϕ1 or M,w |= ϕ2

M,w |= �ϕ iff M,w ′ |= ϕ for all w ′ such that wRw ′

M,w |= ♦ϕ iff M,w ′ |= ϕ for some w ′ such that wRw ′

27 / 85

But what does box and diamond intuitively “mean”?

Observation
The semantics only differs for � and ♦.
We don’t put any restriction on the accessibility relation R .
The “mental picture” of what to think of � and ♦ depends on
the properties of R (and what we think R actually represent)

28 / 85

Different kinds of accessibility relations

Definition
A binary relation R ⊆W ×W is

reflexive if every element in W is R-related to itself.

(∀a)aRa

transitive if
(∀abc)(aRb ∧ bRc → aRc)

euclidean if
(∀abc)(aRb ∧ aRc → bRc)

total if
(∀a)(∃b)(aRb)

29 / 85

Modal Logic
Semantics

If (W ,R,V), s |= ϕ for all s and V , we write

(W ,R) |= ϕ

Example
(W ,R) |= �ϕ→ ϕ iff R is reflexive.
(W ,R) |= �ϕ→ ♦ϕ iff R is total.
(W ,R) |= �ϕ→ ��ϕ iff R is transitive.
(W ,R) |= ¬�ϕ→ �¬�ϕ iff R is euclidean.

Observation
The axioms above are said to “hold on a frame”, which means, for
any valuation and at any state.

30 / 85

Modal Logic
Exercises

Prove the double implications from the slide before!

1. The forward implications are based on the fact that we
quantify over all valuations and all states. More precisely;
assume an arbitrary frame (W ,R) which does NOT have the
property (e.g., reflexive). Find a valuation and a state where
the axiom does not hold. You have now the contradiction . . .

2. For the backward implication take an arbitrary frame (W ,R)
which has the property (e.g., euclidian). Take an arbitrary
valuation and an arbitrary state on this frame. Show that the
axiom holds in this state under this valuation. Sometimes one
may need to use an inductive argument or to work with
properties derived from the main property on R (e.g., if R is
euclidian then (∀w1,w2 ∈W)(w1Rw2 → w2Rw2))

31 / 85

An axiomatic system

Every normal modal logic has the following inference rules.

ϕ is a tautology instance

ϕ
(PL)

ϕ ϕ→ ψ

ψ
(MP)

ϕ

�ϕ
(G)

We will only be concerned with normal modal logics.

32 / 85

Sample axioms for different accessibility relations

Formulae that can be used to axiomatize logics with different
properties.

�(ϕ→ ψ)→ (�ϕ→ �ψ) (K)
�ϕ→ ♦ϕ (D)
�ϕ→ ϕ (T)
�ϕ→ ��ϕ (4)
¬�ϕ→ �¬�ϕ (5)
�(�ϕ→ ψ)→ �(�ψ → ϕ) (3)
�(�(ϕ→ �ϕ)→ ϕ)→ (♦�ϕ→ ϕ)) (Dum)

Every normal logic has K as axiom schema.
Observe that T implies D.

33 / 85

Different “flavors” of modal logic

Logic Axioms Interpretation Properties of R
D K D deontic total
T K T reflexive
K45 K 4 5 doxastic transitive/euclidean
S4 K T 4 reflexive/transitive
S5 K T 5 epistemic reflexive/euclidean

reflexive/symmetric/transitive
equivalence relation

34 / 85

Exercises

1. Consider the frame (W ,R) with W = {1, 2, 3, 4, 5} and
(i , i + 1) ∈ R

Choose the valuation V (p) = {2, 3} and V (q) = {1, 2, 3, 4, 5}
to get the model M = (W ,R,V).
Which of the following statements are correct in M and why?

1.1 M, 1 |= ♦�p Correct
1.2 M, 1 |= ♦�p → p Incorrect
1.3 M, 3 |= ♦(q ∧ ¬p) ∧�(q ∧ ¬p) Correct
1.4 M, 1 |= q ∧ ♦(q ∧ ♦(q ∧ ♦(q ∧ ♦q))) Correct
1.5 M |= �q Correct . . . but why?

35 / 85

Exercises 2 (bidirectional frames)

We call a frame (W ,R) bidirectional iff R = RF] RP s.t.
∀w ,w ′(wRFw

′ ↔ w ′RPw).
i.e.: The R can be separated into two disjoind relations RF

and RP , which one is the inverse of the other.

Consider the model M = (W ,R,V) from before.
Which of the following statements are correct in M and why?
0.1 M, 1 |= ♦�p Incorrect
0.2 M, 1 |= ♦�p → p Correct
0.3 M, 3 |= ♦(q ∧ ¬p) ∧�(q ∧ ¬p) Incorrect
0.4 M, 1 |= q ∧ ♦(q ∧ ♦(q ∧ ♦(q ∧ ♦q))) Correct
0.5 M |= �q Correct . . . but is it the same explanation as

before?
0.6 M |= �q → ♦♦p

36 / 85

Exercises 3 (validities)

Which of the following are valid in modal logic. For those that are
not, argue why and find a class of frames on which they become
valid.

1. �⊥
Valid on frames where R = ∅.

2. ♦p → �p
Valid on frames where R is a partial function.

3. p → �♦p
Valid on bidirectional frames.

4. ♦�p → �♦p
Valid on Euclidian frames.

37 / 85

Further readings

[Harel et al., 2000]
[Blackburn et al., 2001]

38 / 85

Linear-Time Temporal Logic (LTL)

Remark

We have left out this semester Hoare logic.

40 / 85

Introduction

Temporal Logic?
Temporal logic is the logic of “time”a

It is a modal logic.
There are different ways of modeling time.

linear time vs. branching time
time instances vs. time intervals
discrete time vs. continuous time
past and future vs. future only

apay attention, it will be something kind of abstract, it’s mostly not what’s
known as real-time, but there are variants of temporal logics which can handle
real-time. They won’t occur in this lecture .

41 / 85

FOL (repetition)

First Order Logic
We have used FOL to express properties of states.

〈x : 21, y : 49〉 ||= x < y
〈x : 21, y : 7〉 6||= x < y

A computation is a sequence of states.
To express properties of computations, we need to extend FOL.
This we can do using temporal logic.

42 / 85

LTL: speaking about “time”

In Linear Temporal Logic (LTL) (also called linear-time temporal
logic) we can describe such properties as follows: assume time is a
sequence2 of discrete points i in time, then: if i is now,

p holds in i and every following point (the future)
p holds in i and every preceding point (the past)

We will only be concerned with the future.

. . . •pi−2 •pi−1 •pi •pi+1 •pi+2 . . .

2a sequence is linear
43 / 85

LTL operators

We extend our first-order language3 L to a temporal language LT
by adding the temporal operators �, ♦, ©, U, R and W .

Interpretation of the operators
�ϕ ϕ will always (in every state) hold
♦ϕ ϕ will eventually (in some state) hold
©ϕ ϕ will hold at the next point in time
ϕUψ ψ will eventually hold, and until that point ϕ will hold
ϕRψ ψ holds until (incl.) the point (if any) where ϕ holds

(release)
ϕWψ ϕ will hold until ψ holds (weak until or waiting for)

3Note: it’s equally ok to extend a propositional language the same way. The
difference is between a first-order LTL or propositional LTL.

44 / 85

Syntax

We define LTL formulae as follows.

Definition
L ⊆ LT : first-order formulae are also LTL formulae.
If ϕ is an LTL formula, so are the following.

�ϕ ♦ϕ © ϕ ¬ϕ

If ϕ and ψ are LTL formulae, so are

ϕUψ ϕRψ (ϕWψ)

(ϕ ∨ ψ) (ϕ ∧ ψ) (ϕ→ ψ) (ϕ↔ ψ)

nothing else

45 / 85

Paths and computations

Definition
A path is an infinite sequence

σ = s0, s1, s2, . . .

of states.
σk denotes the path sk , sk+1, sk+2, . . .

σk denotes the state sk .
All computations are paths, but not vice versa.

46 / 85

Satisfaction (semantics)

Definition
We define the notion that an LTL formula ϕ is true (false) relative
to a path σ, written σ |= ϕ (σ 6|= ϕ) as follows.

σ |= ϕ iff σ0 ||= ϕ when ϕ ∈ L
σ |= ¬ϕ iff σ 6|= ϕ

σ |= ϕ ∨ ψ iff σ |= ϕ or σ |= ψ

σ |= �ϕ iff σk |= ϕ for all k ≥ 0

σ |= ♦ϕ iff σk |= ϕ for some k ≥ 0

σ |=©ϕ iff σ1 |= ϕ

(cont.)

47 / 85

Satisfaction (semantics) (2)

Definition
(cont.)

σ |= ϕUψ iff σk |= ψ for some k ≥ 0, and

σi |= ϕ for every i such that 0 ≤ i < k

σ |= ϕRψ iff for every j ≥ 0,

if σi 6|= ϕ for every i < j then σj |= ψ

σ |= ϕWψ iff σ |= ϕUψ or σ |= �ϕ

48 / 85

Validity and semantic equivalence

Definition
We say that ϕ is (temporally) valid, written |= ϕ, if

σ |= ϕ for all paths σ.
We say that ϕ and ψ are equivalent, written ϕ ∼ ψ, if

|= ϕ↔ ψ (i.e. σ |= ϕ iff σ |= ψ, for all σ).

Example
� distributes over ∧, while ♦ distributes over ∨.

�(ϕ ∧ ψ) ∼ (�ϕ ∧�ψ)
♦(ϕ ∨ ψ) ∼ (♦ϕ ∨ ♦ψ)

49 / 85

Semantics

σ |= �p

•p0 •p1 •p2 •p3 •p4 . . .

σ |= ♦p

•0 •1 •2 •p3 •4 . . .

σ |=©p

•0 •p1 •2 •3 •4 . . .

50 / 85

σ |= pUq (sequence of p’s is finite)

•p0 •p1 •p2 •q3 •4 . . .

σ |= pRq (The sequence of qs may be infinite)

•q0 •q1 •q2 •p,q3 •4 . . .

σ |= pW q. The sequence of ps may be infinite.
(pW q ∼ pUq ∨�p).

•p0 •p1 •p2 •p3 •p4 . . .

51 / 85

The past

Observation
[Manna and Pnueli, 1992] uses pairs (σ, j) of paths and
positions instead of just the path σ because they have
past-formulae: formulae without future operators (the ones we
use) but possibly with past operators, like �−1 and ♦−1.

(σ, j) |= �−1ϕ iff (σ, k) |= ϕ for all k , 0 ≤ k ≤ j

(σ, j) |= ♦−1ϕ iff (σ, k) |= ϕ for some k , 0 ≤ k ≤ j

However, it can be shown that for any formula ϕ, there is a
future-formula (formulae without past operators) ψ such that

(σ, 0) |= ϕ iff (σ, 0) |= ψ

52 / 85

The past: examples

Example
What is a future version of �(p → ♦−1q)?
(σ, 0) |= �(p → ♦−1q)

•p→♦−1q •p→♦−1q •p→♦−1q •p→♦−1q • . . .

(σ, 0) |= qR(p → q)

•p→q •p→q •p→q,q • • . . .

53 / 85

Examples

Example
ϕ→ ♦ψ: Inf ϕ holds initially, then ψ holds eventually.

•ϕ • • •ψ • . . .

This formula will also hold in every path where ϕ does not hold
initially.

•¬ϕ • • • • . . .

54 / 85

Example: Response

Example (Response)
�(ϕ→ ♦ψ)
Every ϕ-position coincides with or is followed by a ψ-position.

• •ϕ • •ψ • •ϕ,ψ . . .

This formula will also hold in every path where ϕ never holds.

•¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ . . .

55 / 85

Examples

Example
�♦ψ
There are infinitely many ψ-positions.

•ϕ • • •ϕ • •ϕ • . . .

This formula can be obtained from the previous one, �(ϕ→ ♦ψ),
by letting ϕ = >: �(> → ♦ψ).

56 / 85

Example: permanence

Example
♦�ϕ
Eventually ϕ will hold permanently.

• •ϕ • • •ϕ •ϕ •ϕ . . .

Equivalently: there are finitely many ¬ϕ-positions.

57 / 85

LTL example

Example
(¬ϕ)Wψ
The first ϕ-position must coincide or be preceded by a ψ-position.

•¬ϕ •¬ϕ •¬ϕ •ψ •ϕ • • . . .

ϕ may never hold

•¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ . . .

58 / 85

LTL Example

Example
�(ϕ→ ψWχ)
Every ϕ-position initiates a sequence of ψ-positions, and if
terminated, by a χ-position.

• •ϕ,ψ •ψ •ψ •χ • •ϕ,ψ . . .

The sequence of ψ-positions need not terminate.

• •ϕ,ψ •ψ •ψ •ψ •ψ •ψ . . .

59 / 85

Nested waiting-for

A nested waiting-for formula is of the form

�(ϕ→ (ψmW (ψm−1W · · · (ψ1Wψ0) · · ·))),

where ϕ,ψ0, . . . , ψm ∈ L. For the sake of convenience, we write

�(ϕ→ ψm W ψm−1 W · · · W ψ1 W ψ0).

Every ϕ-position initiates a succession of intervals, beginning with a
ψm-interval, ending with a ψ1-interval and possibly terminated by a
ψ0-position. Each interval may be empty or extend to infinity.

. . . •ϕ,ψm •ψm •ψm •ψm−1 •ψm−1 . . .

. . . •ψ2 •ψ2 •ψ1 •ψ1 •ψ0 . . .

60 / 85

Capturing informally understood temporal specifications
formally

It can be difficult to correctly formalize informally stated
requirements in temporal logic.

Example
How does one formalize the informal requirement “ϕ implies ψ”?

ϕ→ ψ? ϕ→ ψ holds in the initial state.
�(ϕ→ ψ)? ϕ→ ψ holds in every state.
ϕ→ ♦ψ? ϕ holds in the initial state, ψ will hold in some state.
�(ϕ→ ♦ψ)? We saw this earlier.
None of these is necessarily what we intended

61 / 85

Duals

Definition (Duals)
For binary boolean connectivesa ◦ and •, we say that • is the dual
of ◦ if

¬(ϕ ◦ ψ) ∼ (¬ϕ • ¬ψ).

Similarly for unary connectives: • is the dual of ◦ if ¬ ◦ ϕ ∼ •¬ϕ.
aThose are not concrete connectives or operators, they are meant as

“placeholders”

Duality is symmetric:
If • is the dual of ◦ then
◦ is the dual of •, thus
we may refer to two connectives as dual (of each other).

62 / 85

Dual connectives

Which connectives are duals?
∧ and ∨ are duals:

¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ).

¬ is its own dual:
¬¬ϕ ∼ ¬¬ϕ.

What is the dual of →? It’s 6←:

¬(ϕ 6← ψ) ∼ ϕ← ψ

∼ ψ → ϕ

∼ ¬ϕ→ ¬ψ

63 / 85

Complete sets of connectives

A set of connectives is complete (for boolean formulae) if
every other connective can be defined in terms of them.
Our set of connectives is complete (e.g., 6← can be defined),
but also subsets of it, so we don’t actually need all the
connectives.

Example
{∨,¬} is complete.

∧ is the dual of ∨.
ϕ→ ψ is equivalent to ¬ϕ ∨ ψ.
ϕ↔ ψ is equivalent to (ϕ→ ψ) ∧ (ψ → ϕ).
> is equivalent to p ∨ ¬p
⊥ is equivalent to p ∧ ¬p

64 / 85

Duals in LTL

We can extend the notions of duality and completeness to temporal
formulae.

Duals of temporal operators
What is the dual of �? And of ♦?
� and ♦ are duals.

¬�ϕ ∼ ♦¬ϕ
¬♦ϕ ∼ �¬ϕ

Any other?
U and R are duals.

¬(ϕUψ) ∼ (¬ϕ)R(¬ψ)
¬(ϕRψ) ∼ (¬ϕ)U(¬ψ)

65 / 85

Complete set of LTL operators

We don’t need all our temporal operators either.

Proposition
{∨,¬,U,©} is complete for LTL.

Proof: ♦ϕ ∼ >Uϕ
�ϕ ∼ ⊥Rϕ
ϕRψ ∼ ¬(¬ϕU¬ψ)
ϕWψ ∼ �ϕ ∨ (ϕUψ)

66 / 85

Classification of properties

We can classify properties expressible in LTL.

Classification
safety �ϕ

liveness ♦ϕ

obligation �ϕ ∨ ♦ψ
recurrence �♦ϕ
persistence ♦�ϕ
reactivity �♦ϕ ∨ ♦�ψ

67 / 85

Safety

important basic class of properties
relation to testing and run-time verification
“nothing bad ever happens”

Definition (Safety)
A safety formula is of the form

�ϕ

for some first-order formula ϕ.
A conditional safety formula is of the form

ϕ→ �ψ

for (first-order) formulae ϕ and ψ.
Safety formulae express invariance of some state property ϕ:
that ϕ holds in every state of the computation.

68 / 85

Safety property example

Example
Mutual exclusion is a safety property. Let Ci denote that
process Pi is executing in the critical section. Then

�¬(C1 ∧ C2)

expresses that it should always be the case that not both P1
and P2 are executing in the critical section.
Observe that the negation of a safety formula is a liveness
formula; the negation of the formula above is the liveness
formula

♦(C1 ∧ C2)

which expresses that eventually it is the case that both P1 and
P2 are executing in the critical section.

69 / 85

Liveness properties

Definition (Liveness)
A liveness formula is of the form

♦ϕ

for some first-order formula ϕ.
A conditional liveness formula is of the form

ϕ→ ♦ψ

for first-order formulae ϕ and ψ.
Liveness formulae guarantee that some event ϕ eventually
happens: that ϕ holds in at least one state of the computation.

70 / 85

Connection to Hoare logic

Observation
Partial correctness is a safety property. Let P be a program
and ψ the post condition.

�(terminated(P)→ ψ)

In the case of full partial correctness, where there is a
precondition ϕ, we get a conditional safety formula,

ϕ→ �(terminated(P)→ ψ),

which we can express as { ϕ } P { ψ } in Hoare Logic.

71 / 85

Total correctness and liveness

Observation
Total correctness is a liveness property. Let P be a program
and ψ the post condition.

♦(terminated(P) ∧ ψ)

In the case of full total correctness, where there is a
precondition ϕ, we get a conditional liveness formula,

ϕ→ ♦(terminated(P) ∧ ψ).

72 / 85

Duality of partial and total correctness

Observation
Partial and total correctness are dual.
Let

PC (ψ) , �(terminated → ψ)

TC (ψ) , ♦(terminated ∧ ψ)

Then

¬PC (ψ) ∼ PC (¬ψ)
¬TC (ψ) ∼ TC (¬ψ)

73 / 85

Obligation

Definition (Obligation)
A simple obligation formula is of the form

�ϕ ∨ ♦ψ

for first-order formula ϕ and ψ.
An equivalent form is

♦χ→ ♦ψ

which states that some state satisfies χ only if some state
satisfies ψ.

74 / 85

Obligation (2)

Proposition
Every safety and liveness formula is also an obligation formula.

Proof: This is because of the following equivalences.

�ϕ ∼ �ϕ ∨ ♦⊥
♦ϕ ∼ �⊥ ∨ ♦ϕ

and the facts that |= ¬�⊥ and |= ¬♦⊥.

75 / 85

Recurrence

Definition (Recurrence)
A recurrence formula is of the form

�♦ϕ

for some first-order formula ϕ.
It states that infinitely many positions in the computation
satisfies ϕ.

Observation
A response formula, of the form �(ϕ→ ♦ψ), is equivalent to a
recurrence formula, of the form �♦χ, if we allow χ to be a
past-formula.

�(ϕ→ ♦ψ) ∼ �♦(¬ϕ)W−1ψ

76 / 85

Recurrence

Proposition
Weak fairnessa can be specified as the following recurrence formula.

�♦(enabled(τ)→ taken(τ))

aweak and strong fairness will be “recurrent” (sorry for the pun) themes. For
instance they will show up again in the TLA presentation.

Observation
An equivalent form is

�(�enabled(τ)→ ♦taken(τ)),

which looks more like the first-order formula we saw last time.

77 / 85

Persistence

Definition (Persistence)
A persistence formula is of the form

♦�ϕ

for some first-order formula ϕ.
It states that all but finitely many positions satisfy ϕa

Persistence formulae are used to describe the eventual
stabilization of some state property.

aIn other words: only finitely (“but”) many position satisfy ¬ϕ. So at some
point onwards, it’s always ϕ.

78 / 85

Recurrence and Persistence

Observation
Recurrence and persistence are duals.

¬(�♦ϕ) ∼ (♦�¬ϕ)
¬(♦�ϕ) ∼ (�♦¬ϕ)

79 / 85

Reactivity

Definition (Reactivity)
A simple reactivity formula is of the form

�♦ϕ ∨ ♦�ψ

for first-order formula ϕ and ψ.
A very general class of formulae are conjunctions of reactivity
formulae.
An equivalent form is

�♦χ→ �♦ψ,

which states that if the computation contains infinitely many
χ-positions, it must also contain infinitely many ψ-positions.

80 / 85

Reactivity

Proposition
Strong fairness can be specified as the following reactivity formula.

�♦enabled(τ)→ �♦taken(τ)

81 / 85

GCD Example

Below is a computation σ of our recurring GCD program.
a and b are fixed: σ |= �(a .

= 21 ∧ b
.
= 49).

at(l) denotes the formulae (π
.
= {l}).

terminated denotes the formula at(l8).

P-computation
States are of the form 〈π, x , y , g〉.

σ : 〈l1, 21, 49, 0〉 → 〈lb2 , 21, 49, 0〉 → 〈l6, 21, 49, 0〉 →
〈l1, 21, 28, 0〉 → 〈lb2 , 21, 28, 0〉 → 〈l6, 21, 28, 0〉 →
〈l1, 21, 7, 0〉 → 〈la2 , 21, 7, 0〉 → 〈l4, 21, 7, 0〉 →
〈l1, 14, 7, 0〉 → 〈la2 , 14, 7, 0〉 → 〈l4, 14, 7, 0〉 →
〈l1, 7, 7, 0〉 → 〈l7, 7, 7, 0〉 → 〈l8, 7, 7, 7〉 → · · ·

82 / 85

GCD Example

Does the following properties hold for σ? And why?
1. �terminated (safety)
2. at(l1)→ terminated
3. at(l8)→ terminated
4. at(l7)→ ♦terminated (conditional liveness)
5. ♦at(l7)→ ♦terminated (obligation)
6. �(gcd(x , y) .= gcd(a, b)) (safety)
7. ♦terminated (liveness)
8. ♦�(y .

= gcd(a, b)) (persistence)
9. �♦terminated (recurrence)

83 / 85

Exercises

Exercises
1. Show that the following formulae are (not) LTL-valid.

1.1 �ϕ↔ ��ϕ
1.2 ♦ϕ↔ ♦♦ϕ
1.3 ¬�ϕ→ �¬�ϕ
1.4 �(�ϕ→ ψ)→ �(�ψ → ϕ)
1.5 �(�ϕ→ ψ) ∨�(�ψ → ϕ)
1.6 �♦�ϕ→ ♦�ϕ
1.7 �♦ϕ↔ �♦�♦ϕ

2. A modality is a sequence of ¬, � and ♦, including the empty
sequence ε. Two modalities σ and τ are equivalent if
σϕ↔ τϕ is valid.
2.1 Which are the non-equivalent modalities in LTL, and
2.2 what are their relationship (ie. implication-wise)?

84 / 85

References I

[Blackburn et al., 2001] Blackburn, P., de Rijke, M., and Venema, Y. (2001).
Modal Logic.
Cambridge University Press.

[Harel et al., 2000] Harel, D., Kozen, D., and Tiuryn, J. (2000).
Dynamic Logic.
Foundations of Computing. MIT Press.

[Manna and Pnueli, 1992] Manna, Z. and Pnueli, A. (1992).
The temporal logic of reactive and concurrent systems—Specification.
Springer Verlag, New York.

85 / 85

	Logics
	First-order logic
	Syntax
	Semantics
	Proof System

	Modal logics
	Introduction
	Semantics
	Axiomatic System

	Lecture 4: (Hoare Logic and) Temporal Logics
	Linear-Time Temporal Logic (LTL)
	Introduction
	Syntax
	Semantics
	The Past
	Examples
	Nested waiting-for
	Formalization
	Duals
	Classification
	Properties
	Safety and Liveness
	Recurrence and Persistence
	Reactivity
	GCD Example

	Exercises

