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Credits

Credits:

Many slides (all the figures with blue background and few
others) were taken from Holzmann’s slides on “Logical Model
Checking”, course given at Caltech
http://spinroot.com/spin/Doc/course/index.html

(http://spinroot.com/spin/Doc/course/index.html)
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Logic Model Checking: What is it about?



Logic Model Checking (1)

Model checking is a technique for verifying finite-state

concurrent systems
Theoretically speaking, model checking consists of the
following tasks:

1. Modeling the system
It may require the use of abstraction
Often using some kind of automaton

2. Specifying the properties the design must satisfy
It is impossible to determine all the properties the systems
should satisfy
Often using some kind of temporal logic

3. Verifying that the system satisfies its specification
In case of a negative result: error trace
An error trace may be product of a specification error
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Logic Model Checking (2)

The application of model checking at the design stage of a system
typically consists of the following steps:

1. Choose the properties (correctness requirements) critical to
the sytem you want to build (software, hardware, protocols)

2. Build a model of the system (will use for verification) guided
by the above correctness requirements

The model should be as small as possible (for efficiency)
It should, however, capture everything which is relevant to the
properties to be verified

3. Select the appropriate verification method based on the model
and the properties (LTL-, CTL⇤-based, probabilistic, timed,
weighted)

4. Refine the verification model and correctness requirements
until all correctness concerns are adequately satisfied
Main causes of combinatorial complexity in SPIN/Promela3

The number of and size of buffered channels
The number of asynchronous processes

3and in other model checkers.
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The Basic Method

There are different model checking techniques. We will use the
automata-theoretic approach which is implemented in the SPIN
model checker (tool). Theoretically:

System: L(S) (set of possible behaviors/traces/words of S)
Property: L(P) (the set of valid/desirable behaviors)
Prove that L(S) ✓ L(P) (everything possible is valid)

Proving language inclusion is complicated
Method

Let L(P) be the language ⌃! \ L(P) of words not accepted by
P

Prove L(S) \ L(P) = ;
There is no accepted word by S disallowed by P

This will be clear at the end of the talk, .... I hope
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The Basic Method

Graphically:

if  I is empty then  S satisfies   p
if  I is non-empty then  S can violate p

and  I will contain a counter-example that proves it

S

¬p

all possible
executions

all invalid
executions

I
executions that are
possible and invalid
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Scope of the method

Logic model checkers (LMC) are suitable for concurrent and
multi-threading finite state systems
Some of the errors LMC may catch:

Deadlocks (two or more competing processes are waiting for the
other to finish, and thus neither ever does)
Livelocks (two or more processes continually change their state in
response to changes in the other processes)
Starvation (a process is perpetually denied access to necessary
resources)
Priority and locking problems
Race conditions (attempting to perform two or more operations at
the same time, which must be done in the proper sequence in order
to be done correctly)
Resource allocation problems
Dead code (unreachable code)
Violation of certain system bounds
Logic problems: e.g, temporal relations
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A bit of history

The following diagram shows the evolution of the theoretical
foundations of LMC:

1950 200419751968 19891980 1995 20001936

C C++

1976-1979: first experiments
with reachability analyzers
(e.g., Jan Hajek: ‘Approver’)

1981: Ed Clarke and
Allen Emerson
introduce the term
‘model checking’
and the logic CTL*

1980: earliest predecessor
of Spin: ‘pan’ (Bell Labs)

1993: BDDs and the
SMV model checker
(Ken McMillan, CMU)

1989: Spin version 0
verification of class of

-regular properties

1995: partial order
reduction in Spin.
LTL conversion in Spin.
(Doron Peled)

Spin
SMV

the two most popular logic model checking systems today:
Spin: an explicit state LTL model checker

based on automata theoretic verification method
targeting software verification (asynchronous systems)

SMV: a symbolic CTL model checker
targeting hardware circuit verification (synchronous systems)

(there are hundreds of other model checkers – there are also
several variants of Spin)

1986: Pierre Wolper
and Moshe Vardi
define the automata
theoretic framework
for LTL model checking

1986: Mazurkiewicz
paper on trace theory

1977: Amir Pnueli introduces
linear temporal logic for system
verification

LTL CTL

2001: support for
embedded C code in
Spin version 4.0

Spin 4.0

1968: two terms introduced:
software crisis
software engineering

1960: early work on
-automata theory,

e.g., by J.R. Buchi

2003: breadth-first
search mode added
in Spin version 4.1

Fortran
Algol

1975: Edsger Dijkstra’s paper
on Guarded Command Languages
1978: Tony Hoare’s paper on
Communicating Sequential Processes

1940-50: the first
computers are built

1955: early work on tense
logics (predecessors of LTL)

1936: first theory on
computability, e.g.,
Turing machines

key theoretical
developments

underlying Spin

pan
C
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On correctness (reminder)

A system is correct if it meets its design requirements.
There is no notion of “absolute” correctness: It is always w.r.t.
a given specification

Getting the properties (requirements) right is as important as
getting the model of the system right
Examples of correctness requirements

A system should not deadlock
No process should starve another
Fairness assumptions

E.g., an infinite often enabled process should be executed
infinitely often

Causal relations
E.g., each time a request is send, and acknowledgment must
be received (response property)
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On models and abstraction

The use of abstraction is needed for building models (systems
may be extremely big)

A model is always an abstraction of the reality

The choice of the model/abstractions depends on the
requirements to be checked
A good model keeps only relevant information

A trade-off must be found: too much detail may complicate
the model; too much abstraction may oversimplify the reality

Time and probability are usually abstracted away in LMC
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Building verification models

Statements about system design and system requirement must
be separated

One formalism for specifying behavior (system design)
Another formalism for specifying system requirements
(correctness properties)

The two types of statements define a verification model
A model checker can now

Check that the behavior specification (the design) is logically
consistent with the requirement specification (the desired
properties)
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Distributed Algorithms

Two asynchronous processes may easily get blocked when
competing for a shared resource

in real-life conflicts ultimately get resolved by human judgment.
computers, though, must be able to resolve it with fixed algorithms

after-you, no
after-you blocking

me-first, no
me-first blocking
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A Small Multi-threaded Program

int   x,  y,  r;
int  *p, *q, *z;
int **a;

thread_1(void)      /* initialize p, q, and r */
{

p = &x;
q = &y;
z = &r;

}
thread_2(void)      /* swap contents of x and y */
{

r = *p;
*p = *q;
*q = r;

}
thread_3(void)      /* access z via a and p */
{

a = &p;
*a = z;
**a = 12;

}

3 asynchronous threads

accessing shared data

3 statements each

how many test runs are needed to

check that no data corruption can occur?
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Thread Interleaving

• the number of possible thread 
interleavings is...

9!      6!      3!
----- · ----- · ---- = 1,680
6!.3!   3!.3!    3!

placing 3 sets of 3 tokens in 9 slots

• are all these executions okay?

• can we check them all?  should we 
check them all?

• in classic system testing, how many 
would normally be checked?

start

1

3

2

1,680 possible executions
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A Simpler Example

• consider two 2-state automata
– representing two asynchronous processes

• one can print an arbitrary number of  ‘0’ digits, or stop

• the other can print an arbitrary number of ‘1’ digits, or stop

how many different combined executions are there?
i.e., how many different binary numbers can be printed?

how would one test that this system does what we think it does?

print ‘0’ print ‘1’

stop stop
Q: how could a model

checker deal with possibly

infinite executions?
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Automata and Logic



Finite State Automata

Definition
A finite state automaton is a tuple (S , s0, L,F ,T ), where

S is finite set of states
s0 2 S is a distinguished initial state
L is a finite set of labels (symbols)
F ✓ S is the (possibly empty) set of final states
T ✓ S ⇥ L⇥ S is the transition relation, connecting states in S

We will, in general, follow Holzmann’s notation: A.S denotes the
state S of automaton A, A.T denotes the transition relation T of
A, and so on....
If understood from the context, we will avoid the use of A._
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Finite State Automata
Example

s0 s1

s2 s4

s3

αααα0000

αααα2222

αααα4444
αααα5555

αααα1111

αααα3333

A.S: { s0, s1, s2, s3, s4 }

A.L = { αααα0000, α, α, α, α1111, α, α, α, α2222, α, α, α, α3333, α, α, α, α4444, α, α, α, α5555 }

A.F = { s4 }

A.T = {(s0,αααα0,s1), (s1, αααα1,s2), ...}

A: {S, s0, L, F, T}
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Finite State Automata
Example: An Interpretation

The above automaton may be interpreted as a Process Scheduler:

idle
start

execute

pre-empt

ready

run

waiting

blockunblock

end
stop

s0 s1

s2 s4

s3

αααα0000

αααα2222

αααα4444
αααα5555

αααα1111

αααα3333
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Determinism vs. non-determinism

Definition
A finite state automaton A = (S , s0, L,F ,T ) is deterministic iff

8s 8l , ((s, l , s 0) 2 A.T ^ (s, l , s 00) 2 A.T ) =) s

0 ⌘ s

00

I.e., the destination state of a transition is uniquely determined by
the source state and the transition label. An automaton is called
non-deterministic if it does not have this property

Examples:

The automaton corresponding to the process scheduler is
deterministic
Automaton from definition is non-deterministic
(think of distinction between relations and partial functions)
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Definition of a Run

Definition
A run of a finite state automaton A = (S , s0, L,F ,T ) is an ordered
and possibly infinite set of transitions (a sequence) from T

� = {(s0, l0, s1), (s1, l1, s2), . . .)}

such that
8i , i � 0 s.th. (si , li , si+1) 2 T

Each run corresponds to a state sequence in S and a word in L
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Definition of a Run
Example

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

A state sequence from a run:
{idle, ready , {execute,waiting}⇤}
The corresponding word in L: {start, run, {block , unblock}⇤}

Remarks:

A single state sequence may correspond to more than one word
For non-deterministic automata, the same word may
correspond to different state sequence
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Definition of Acceptance

Definition
An accepting run of a finite state automaton A = (S , s0, L,F ,T ) is
a finite run � in which the final transition (sn�1, ln�1, sn) has the
property that sn 2 A.F

Example:

state sequence of an accepting run:
{ idle, ready, execute, waiting, execute, end }

the corresponding word in L:
{start, run, block, unblock, stop }

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop
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Language Accepted by an Automaton

Definition
The language L(A) of automaton A = (S , s0, L,F ,T ) is the set of
words in A.L that correspond to the set of all the accepting runs of
A

Notice that there can be infinitely many words in the language of
even a small finite state automaton
Example:

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

{
start,
run,
{ { pre-empt, run } +

{ block, unblock } }*,
stop
}

a characterization of the
complete language of
automaton A (an infinite set of words):

the shortest word in the language:
{ start, run, stop }

a regular
expression
+: choose
*: repeat zero

or more times

Figure: X
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Reasoning about Runs

sample property:

“if first p becomes true
and then later q becomes true,
then r can no longer become true”

interpretation:

p

q

!r

r

!p

!q

error

correctness claim:
it is an error if in a run we
see first p then q and then r

this property is easily expressed with
the standard definition of acceptance

reaching this state
constitutes a complete
match of the pattern
that specifies the
correctness violation
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Reasoning about Infinite Runs

a classic liveness property:

“if p then eventually q”

this property can only be violated by an infinite run…
the standard notion of acceptance applies only to finite runs...

Problem: we cannot express this with the standard
definition of acceptance: we cannot express
that a run may not remain in the error state
infinitely long...

p
!q

!p

error

attempted interpretation:

q

We need, thus, to extend the notion of run, acceptance, ...
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Büchi Acceptance

An infinite run is often called an !-run (“omega run”)
An acceptance property for !-runs are called !-acceptance
and can be defined in different ways

The so-called Büchi, Müller, Rabin, Streett, etc, acceptance
conditions
We adopt here the one introduced by Büchi [?] [?]

Definition
An accepting !-run of finite state automaton A = (S , s0, L,F ,T ) is
an infinite run � such that

9i � 0, (si�1, li�1, si ) 2 � s.th. si 2 A.F ^ si 2 �!

i.e., at least one state in A.F is visited infinitely often.
Automata with the above acceptance condition are called Büchi
automata
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Büchi Automata
Example

an accepting ω-run for this automaton: 
{ idle, ready, {execute, ready}* }

the corresponding ω-word:
{start, run, { pre-empt, run}* }

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

the ω-language of an automaton is
the set of all ω-words accepted
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Generalized Büchi Automata

Definition
A generalized Büchi automaton is an automaton
A = (S , s0, L,F ,T ), where F ✓ 2S (F = {f1, . . . , fn} and fi ✓ S).
A run � of A is accepting if

for each fi 2 F , inf (�) \ fi 6= ;.

A generalized Büchi Automaton differs from a Büchi
Automaton by allowing multiple accepting sets instead of only
one
Generalized Büchi automata are not more expressive than
usual Büchi automata
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The Stutter Extension Rule

It would be convenient to include the acceptance for finite runs
as a special case of acceptance for infinite runs - For that we
need:

Let " be a predefined nil symbol
The label set of the automaton is extended to L [ {"}
To determine !-acceptance, a finite run is (thought to be)
extended into an equivalent infinite run by stuttering the final
state on "

Definition
The stutter extension of a finite run � with final state sn, is the
!-run

� (sn, ", sn)
!
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The Stutter Extension Rule
Example

run:  { idle, ready, execute,
waiting, execute, [end,]* }

word: {start, run, block,

unblock, stop, εεεε* }

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

εεεε

we can now use one single

acceptance rule to reason about

the liveness p
roperties of

both finite and infinite runs
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Satisfaction (semantics)

Definition
We define the notion that an LTL formula ' is true (false) relative
to a path �, written � |= ' (� 6|= ') as follows.

� |= ' iff �0 ||= ' when ' 2 L
� |= ¬' iff � 6|= '

� |= ' _  iff � |= ' or � |=  

� |= ⇤' iff �k |= ' for all k � 0

� |= ⌃' iff �k |= ' for some k � 0

� |= �' iff �1 |= '

(cont.)
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Satisfaction (semantics) (2)

Definition
(cont.)

� |= 'U iff �k |=  for some k � 0, and

�i |= ' for every i such that 0  i < k

� |= 'R iff for every j � 0,

if �i 6|= ' for every i < j then �j |=  

� |= 'W iff � |= 'U or � |= ⇤'
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From Kripke Structures to Büchi Automata

LTL formulas can be interpreted on sets of infinite runs of
Kripke structures

We recall the definition (slightly different from previous lecture)

Definition
A Kripke structure M is a four-tuple (W ,R ,W0,V ) where

W is a finite non-empty set of states (worlds)
R ✓ W ⇥W is a total accessibility relation between states
(transition relation)
W0 ✓ W is the set of starting states
V : W �! 2AP is a map labeling each state with a set of
propositional variables

A path in M is an infinite sequence � = w0,w1,w2, . . . of worlds
such that for every i � 0, wiRwi+1. One can think of a path as an
infinite branch in a tree corresponding to the unwind of the Kripke
structure.
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From Kripke Structures to Büchi Automata
Obtaining the automaton

An !-regular automaton A = (S , s0, L,F ,T ) can be obtained
from a Kripke structure M = (W ,R ,W0,V ) as follows

S = W [ {i}
s0 = {i}
L = 2AP

F = W [ {i}
For s, s 0 2 S s.th. (s, l , s 0) 2 T iff (s, s 0) 2 R ^ l = V (s 0)

(i , l , s) 2 T iff s 2 W0 ^ l = V (s)
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From Kripke Structures to Büchi Automata
Example

A Kripke structure (whose only infinite run is a model to ⇤q and
⇤⌃p, for instance):

//
s0

{p, q}
++

s1
{q}kk

The corresponding Büchi Automaton:

//
i

{p,q}
//

s0

{q}
++

s1

{p,q}
kk

Figure: Büchi-Automaton
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From Logic to Automata

For any LTL formula  there exists a Büchi automaton that
accepts precisely those runs for which the formula  is satisfied
Example: The formula ⌃⇤p corresponds to the following
nondeterministic Büchi automaton:

p s1 ptrue s0

Figure: From LTL to automata

We will see the algorithm next lecture... For the moment, believe
me that it is indeed the case 178 / 229
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Omega-regular Properties

• something not expressible in pure LTL:
– (p) can hold after an even number of execution steps, but 
never holds after an odd number of steps

– [] X (p) certainly does not capture it:

– p && [](p -> X!p) && [](!p -> Xp) does not capture it either 
(because now p must always hold after all even steps):

– ∃∃∃∃t, t && [] (t -> X !t) && [](!t -> Xt) && [](!t -> !p)

this formula expresses it correctly

true

p

(ltl2ba -f)

p

!p

true

!p

Figure: !-regular properties
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Expressiveness

same box means ‘equally expressive’
single arrow means ‘more expressive than’
no arrow means ‘expressiveness is not comparable’

-tree automata

∃∃∃∃ LTL

-word automata

Büchi automata
(never claims)

CTL*

CTL LTL

LTL without X

modal µ-calculus

Figure: Expressiveness
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Implications in Model Checking

At the beginning we said that the automata-based model
checking method was based on the following check:

L(S) \ L(P) = ;

where S is a model of the system and P of the property
So, the following Büchi automata’s decidable properties are
important for model checking

Language emptiness: are there any accepting runs?
Language intersection: are there any runs accepted by two or
more automata?
Language complementation

How does it work?
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Implications for Model Checking

In theory:

The system is represented as a Büchi automaton A

The automaton corresponds to the asynchronous product of
automata A1, . . . ,An (representing the asynchronous
processes)

A =
nY

i=1

Ai

The property is originally given as an LTL formula  
The property  is translated into a Büchi automaton B

4

We perform the following check:

L(A) \ L(B) = ;

But... complementing a Büchi automaton is difficult!

4Alternatively, the property can be given directly as a Büchi automaton
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Implications in Model Checking

In practice (e.g., in SPIN) we want to avoid automata
complementation:

Assume A as before
The negation of the property  is automatically translated into
a Büchi automaton B (since L(B) ⌘ L(B))
By making the synchronous product of A and B (B ⌦ A) we
can check whether the system satisfies the property

L(A) \ L(B) = ;

If the intersection is empty, the property  holds for A
Otherwise, use an accepted word of the nonempty intersection
as a counterexample
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Asynchronous Product

Definition
The asynchronous product

Q
of a finite set of finite automata

A1, . . .An is a new finite state automaton A = (S , s0, L,T ,F )
where:

A.S is the Cartesian product A1.S ⇥ A2.S ⇥ . . .⇥ An.S

A.s0 is the n-tuple (A1.s0,A2.s0, . . . ,An.s0)

A.L is the union set A1.L [ A2.L [ . . . [ An.L

A.T is the set of tuples ((x1, . . . , xn), l , (y1, . . . , yn)) such that
9i , 1  i  n, (xi , l , yi ) 2 Ai .T and
8j , 1  j  n, j 6= i =) (xj ⌘ yj)

A.F contains those states from A.S that satisfy
8(A1.s,A2.s, . . . ,An.s) 2 A.F , 9i , 1  i  n,Ai .s 2 Ai .F

188 / 229



Asynchronous Product
Example

Assume two non-terminating asynchronous processes A1 and
A2:

A1 tests whether the value of a variable x is odd, in which case
updates it to 3 ⇤ x + 1
A2 tests whether the value of a variable x is even, in which
case updates it to x/2

Let  the following property: ⇤⌃(x � 4)
The negation of the formula is:

⌃⇤(x < 4)

Question: Given an initial value for x , does the property hold?
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Asynchronous Product
Example

Remark
In Promela semantics an expression statement has to evaluate to
non-zero to be executable. So to test whether a variable x is odd
we write !(x%2), and (x%2) for checking whether x is even.
Given x=4, !(4%2) evaluates to !(0) or written more clearly as
!(false) which is (true).
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Asynchronous Product
Example

s0

s1

(x%2)

x=3x+1

A1

s0

s1

!(x%2)

x=x/2

A2

s0

s1

true

x<4

x<4

B

s0,s0

s1,s0

s0,s1

s1,s1

(x%2)

x=3x+1

(x%2)

x=3x+1

x=x/2

x=x/2

!(x%2)

!(x%2)

ΠΠΠΠ

an unreachable state
under Promela interpretation
of statement (label) semantics

int x

note that variable x
also holds state information
we have to take Promela semantics
into account to determine which
states are really reachable

⊗

we can also “expand” the automaton
into a pure automaton, without variables

Figure: Asynchronous product
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Asynchronous Product
Example

s0,s0

s1,s0

s0,s1

s1,s1

(x%2)

x=3x+1

(x%2)

x=3x+1

x=x/2

x=x/2

!(x%2)

!(x%2)

s0,s0
4

s0,s1
4

s0,s0
2

s0,s1
2

s1,s0
1

s0,s0
1

!(x%2)

x=x/2

!(x%2)

x=x/2

(x%2)

x=3x+1

“pure” finite state asynchronous
product automaton
for initial value x = 4
(the value of x is now part of
the state of the automaton)

Figure: Asynchronous product
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Asynchronous Product

Remarks
Not all the states in A.S are necessary reachable from A.s0

Their reachability depends on the semantics given to the labels
in A.L (the interpretation of the labels depends on Promela
semantics as we’ll see in a future lecture)

The transitions in the product automaton are the transitions
from the component automata arranged such that only one of
the components automata can execute at a time

This gives an interleaving semantics of the processes
Promela has also rendez-vous synchronization (A special global
variable has to be set)

Some transitions may synchronize by sending and receiving a
message

For hardware verification, the asynchronous product is defined
differently: each of the components with enabled transitions is
making a transition (simultaneously)
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Synchronous Product

Definition
The synchronous product ⌦ of a finite set of two finite automata P

and B is a new finite state automaton A = (S , s0, L,T ,F ) where:
A.S is the Cartesian product P 0.S ⇥ B .S where P

0 is the
stutter closure of P

A self-loop labeled with " is attached to every state in P

without outgoing transitions in P .T )

A.s0 is the pair (P .s0,B .s0)
A.L is the set of pairs (l1, l2) such that l1 2 P

0.L and l2 2 B .L

A.T is the set of pairs (t1, t2) such that t1 2 P

0.T and
t2 2 B .T

A.F is the set of pairs (s1, s2) such that s1 2 P

0.F or s2 2 B .F
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Synchronous Product
Example

the example: B ⊗ Π Ai

s0

s1

true

x<4

x<4

B

all paths with
accept states
dead-end here;
not stutter possible

are there any
accepting cycles?

if not, then the
property <>[](x<4)
cannot be satisfied
and its negation holds

!<>[](x<4)
[]![](x<4)
[]<>!(x<4)
[]<>(x>=4)

⊗⊗⊗⊗

s0,s0,
4,s0

s0,s1
4,s0

s0,s0
2,s0

s0,s1
2,s0

s1,s0
1,s0

s0,s0
1,s0

!(x%2)

x=x/2

!(x%2)

x=x/2

(x%2)

x=3x+1
x=x/2

(x%2)

s1,s0
1,s1

s0,s0
1,s1

s0,s1
2,s1

s0,s0
4,s1s0,s0

4
s0,s1
4

s0,s0
2

s0,s1
2

s1,s0
1

s0,s0
1

!(x%2)

x=x/2

!(x%2)

x=x/2

(x%2)

x=3x+1

i=1

2

Figure: Synchronous product
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Synchronous Product

Remarks
We require the stutter-closure of P since P is a finite state
automaton (the asynchronous product of the processes
automata) and B is a standard Büchi automaton obtained
form a LTL formula
Not all the states in A.S or A.F are necessary reachable from
A.s0
The main difference between asynchronous and synchronous
products are on the definitions of L and T – In a synchronous
product:

The transitions correspond to joint transitions of the
component automata
The labels are pairs: the combination of the two labels of the
original transitions in the component automata

In general P ⌦ B 6⌘ B ⌦ P , but given that in SPIN B is
particular kind of automaton (labels are state properties, not
actions), we have then P ⌦ B ⌘ B ⌦ P
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Model Checking Algorithm



Strongly-connected components

Definition
A subset S 0 ✓ S in a directed graph is strongly-connected if there is
a path between any pair of nodes in S

0, passing only through nodes
in S

0.
A strongly-connected component (SCC) is a maximal set of such
nodes, i.e. it is not possible to add any node to that set and still
maintain strong connectivity
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Strongly-connected Components
Example

s0
++
s1kk //

��

s2

✏✏
s3 //

s4 //

]]

s5

Figure: Strongly connected component

Strongly-connected subsets:

S = {s0, s1}, S

0 = {s1, s3, s4}, S

00 = {s0, s1, s3, s4}

Strongly-connected components:

Only S

00 = {s0, s1, s3, s4}
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Checking Emptiness

Let � be an accepting run of a Büchi automaton
A = (S , s0, L,T ,F )

Since S is finite, there is some suffix �0 of � s.t. every state on
�0 is reachable from any other state on �0

I.e., the states on �0 are contained in a SCC of the graph of A
This component is reachable from an initial state and contains
an accepting state

Thus, checking non-emptiness of L(A) is equivalent to finding
a SCC in the graph of A that is reachable from an initial state
and contains an accepting state

There are different algorithms for finding SCC. E.g.:
Tarjan’s version of the depth-first search (DFS) algorithm
SPIN nested depth-first search algorithm

If the language L(A) is non-empty, then there is a
counterexample which can be represented in a finite way

It is ultimately periodic, i.e., it is of the form �1�!
2 , where �1

and �2 are finite sequences
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Model Checking Algorithm

Let A be the automaton specifying the system and B the
automaton corresponding to the negation of the property  

1. Construct the intersection automaton C = A \ B

2. Apply an algorithm to find SCCs reachable from the initial
states of C

3. If none of the SCCs found contains an accepting state
The model A satisfies the property/specification  

4. Otherwise,
4.1 Take one strongly-connected component SC of C
4.2 Construct a path �1 from an initial state of C to some

accepting state s of SC

4.3 Construct a cycle from s and back to itself (such cycle exists
since SC is a strongly-connected component)

4.4 Let �2 be such cycle, excluding its first state s

4.5 Announce that �1�!
2 is a counterexample that is accepted by

A, but it is not allowed by the property/specification  
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Final Remarks



Kripke Structures and Büchi Automata

Observation
In Peled’s book “Software Reliability Methods” [Peled, 2001]
the definition of a Büchi automaton is very similar to our
Kripke structure, with the addition of acceptance states

There is a labeling of the states associating to each state a set
of subsets of propositions (instead of having the propositions
as transition labels)

We have chosen to define Büchi Automata in the way we did
since this definition is compatible with the implementation of
SPIN

It was taken from Holzmann’s book “The SPIN Model
Checker” [?]
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Automata Products

Observation
We have defined synchronous and asynchronous automata
products with the aim of using SPIN (based on Holzmann’s
book)

The definition of asynchronous product is intended to capture
the idea of (software) asynchronous processes running
concurrently
The synchronous product is defined between an automaton
specifying the concurrent asynchronous processes and an
automaton obtained from an LTL formula (or obtained from a
Promela never claim)
The purpose for adding the stutter closure (in the definition of
the synchronous product) is to make it possible to verify both
properties of finite and infinite sequences with the same
algorithm

I.e., you might find different definitions in the literature!
In particular, in Peled’s book the automata product is defined
differently, since the definition of Büchi automata is different
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Further Reading

The first two parts of this lecture were mainly based on Chap.
6 of Holzmann’s book “The SPIN Model Checker”

Automata products: Appendix A

The 3rd part was taken from Peled’s book

For next lecture (10./17.03.2017): Read Chap. 6 of Peled’s
book, mainly section 6.8 on translating LTL into Automata

We will see how to apply the algorithm to an example
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