BDD MODEL CHECKING

BINARY DECISION DIAGRAMS

Loïc Massin

University of Oslo
INF5140 / Spring 2017

Basic Model Checking Problem

System describe by states.
Basic approach : represent each state individually.
\rightarrow Problem, size of the state space increases exponentially.
\rightarrow State Space Explosion.

- Need too much memory;
- Need too much time.

One solution

Symbolic model checking :

-Idea: represent set of states by Boolean formula over Boolean variables.

$$
f: \mathrm{Bool}^{n} \rightarrow \mathrm{Bool}
$$

-Need efficient representation and manipulation for state sets and transition relation.
\rightarrow Use Binary Decision Diagrams

Binary Decision Trees

- Directed acyclic graphs.
- One or two Terminal nodes / Leaves: labelled with 0 or 1 ;
- Set of variables nodes u of out-degree two: -Non-Terminal nodes: each are labelled with a variable var(u);
-Branches / Children: low(v) / high(v), correspond to assignment of 0 or 1 for the variable in the node

Example of BDT

$$
a \wedge(\neg b \vee c)
$$

Dashed lines denote low-branches, solid lines high-branches

Problems

-Still exponential;
-Several BDT can verify the same formula.

BASICS BDD PROPERTIES

To move from BDT to BDD:
\rightarrow Merge terminal nodes;
Ordered BDD (OBDD):
\Rightarrow Define a variable ordering: on all paths from root to leafs, variables appear in same order, without repetitions (there exists a global ordering of variables).

Example of OBDD

$a \wedge(\neg b \vee c)$ with ordering $a<b<c$

Reduced Ordered BDD (1)

Uniqueness: no two distinct nodes v and w have the same variable name and low- and high- children.
\Rightarrow Merge isomorphic subgraphs;
Non-redundant tests: No variable node v has identical low- and high- children.
\Rightarrow Remove redundancy.

Merge isomorphic subgraphs

$a \wedge(\neg b \vee c)$

Remove redundancy

$a \wedge(\neg b \vee c)$

ROBDD (2)

Canonical (unique) representation of a Boolean formula for a particular variable order:
For every function $\mathrm{f}: \mathrm{Bool}^{\mathrm{n}} \rightarrow$ Bool and variable ordering $\mathrm{x}_{1}<\mathrm{x}_{2}<\cdots<\mathrm{x}_{\mathrm{n}}$, there exists exactly one ROBDD representing this function.
Equivalence checking in linear time, and satisfiability checking in constant time.

Most of time, we will refer to ROBDD simply as BDDs.

Sensitivity to Variable Ordering (1)

$(\mathrm{a} 1 \wedge \mathrm{~b} 1) \vee(\mathrm{a} 2 \wedge \mathrm{~b} 2) \vee(\mathrm{a} 3 \wedge \mathrm{~b} 3)$

Sensitivity to Variable Ordering (2)

- Two different variable ordering lead to tow different ROBDD.
- Crucial importance in practice, determine the efficiency of ROBDD-based model checking.
- Finding the best variable ordering is NP-hard. It exists several heuristics to approach the problem.

The ALGORITHM APPLY (1)

- If $B \phi$ and $B \psi$ are two OBDDs, the call apply(op, $B \phi$, $B \psi$) computes the OBBD of the formula ϕ op ψ.
-Operates recursively on the structure of the two OBDDs:
-We start at the root and follow parallel paths on the two OBDDs to the leaves;
-Once we arrive at the leaves, we apply the given boolean operation to the boolean constants 0 and 1 to form the result for that particular path.

The ALGORITHM APPLY (2)

$f(a, b)=b$
with $a>b$

The algorithm APPLY (2)

$f(a, b)=a \vee b$
with $a>b$

The algorithm APPLY (2)

$f(a, b)=a \vee b$
with $a>b$

The algorithm APPLY (2)

$f(a, b)=a \vee b$
with $a>b$

The algorithm APPLY (2)

$f(a, b)=a \vee b$
with $a>b$

The algorithm RESTRICT (1)

- If $B \phi$ is a OBDD, the call restrict($0, \mathbf{x}, \mathbf{B} \phi$) (respectively restrict($1, x, B \phi$)) the OBDD for $\phi[0 / x]$ (respectively $\phi[1 / \mathrm{x}]$).
- restrict(0, $\mathbf{x}, \mathrm{B} \phi)$
-For each node v labeled with x :
\Rightarrow Incoming edges are redirected to low(v);
\rightarrow Node v is removed.
- restrict(1, $x, B \phi)$
-As above but redirected to high(v).

The ALgorithm RESTRICT (1)

$B \phi$

restrict($0, a 3, B \phi)$

restrict(1, a3, B ϕ)

References

-Henrik Reif Andersen, An Introduction to Binary Decision Diagrams. The IT University of Copenhagen, Fall 1999

- Alessandro Artale, Formal Methods Lecture VI, Binary Decision Diagrams. http://www.inf.unibz.it/~artale/FM/slide7.pdf (visited on 05.17.2017)
- A. Pnueli, Symbolic Model Checking. http://www.cs.nyu.edu/courses/spring07/G22.3033002/lecture6 h4.pdf (visited on 05.17.2017)

