
BDD MODEL CHECKING
B I N A R Y D E C I S I O N D I A G R A M S

1

Loïc Massin

University of Oslo

INF5140 / Spring 2017

BASIC MODEL CHECKING PROBLEM

System describe by states.

Basic approach : represent each state individually.

Problem, size of the state space increases

exponentially.

State Space Explosion.

Need too much memory;

Need too much time.

2

ONE SOLUTION

Symbolic model checking :

Idea: represent set of states by Boolean formula over

Boolean variables.

 f : Booln → Bool

Need efficient representation and manipulation for

state sets and transition relation.

 Use Binary Decision Diagrams

3

BINARY DECISION TREES

Directed acyclic graphs.

One or two Terminal nodes / Leaves: labelled with

0 or 1;

Set of variables nodes u of out-degree two:

Non-Terminal nodes: each are labelled with a

variable var(u);

Branches / Children: low(v) / high(v), correspond to

assignment of 0 or 1 for the variable in the node

4

EXAMPLE OF BDT
a

b b

c c c c

0 0 0 0 1 1 0 1

a ∧ (¬b ∨ c)

Dashed lines denote low-branches, solid lines high-branches

5

PROBLEMS

Still exponential;

Several BDT can verify the same formula.

a

b b

c c c c

0 0 0 0 1 1 0 1

a

c b

c c b b

0 0 0 0 1 0 1 1

a ∧ (¬b ∨ c)

6

BASICS BDD PROPERTIES

To move from BDT to BDD:

Merge terminal nodes;

Ordered BDD (OBDD):

Define a variable ordering: on all paths from root to

leafs, variables appear in same order, without

repetitions (there exists a global ordering of

variables).

7

EXAMPLE OF OBDD
a

b b

c c c c

0 0 0 0 1 1 0 1

a ∧ (¬b ∨ c) with ordering a < b < c

8

REDUCED ORDERED BDD (1)

Uniqueness: no two distinct nodes v and w have the

same variable name and low- and high- children.

 Merge isomorphic subgraphs;

Non-redundant tests: No variable node v has identical

low- and high- children.

 Remove redundancy.

9

MERGE ISOMORPHIC SUBGRAPHS

a

b b

c c c c

0 0 0 0 1 1 0 1

a ∧ (¬b ∨ c)

10

REMOVE REDUNDANCY
a

b

c

0 0 0 0 1 1 0 1

a ∧ (¬b ∨ c)

11

ROBDD (2)

Canonical (unique) representation of a Boolean

formula for a particular variable order:

For every function f : Booln → Bool and variable ordering

x1 < x2 < · · · < xn, there exists exactly one ROBDD

representing this function.

Equivalence checking in linear time, and satisfiability

checking in constant time.

Most of time, we will refer to ROBDD simply as BDDs.

12

SENSITIVITY TO VARIABLE ORDERING (1)
a1

b1

a2

b2

a3

1

b3

0

a1

a2 a2

a3 a3 a3 a3

b1 b1 b1 b1

b2 b2

b3

1 0
(a1 ∧ b1) ∨ (a2 ∧ b2) ∨ (a3 ∧ b3)

13

Two different variable ordering lead to tow different

ROBDD.

Crucial importance in practice, determine the

efficiency of ROBDD-based model checking.

Finding the best variable ordering is NP-hard. It

exists several heuristics to approach the problem.

14

SENSITIVITY TO VARIABLE ORDERING (2)

THE ALGORITHM APPLY (1)

If Bf and By are two OBDDs, the call apply(op, Bf,

By) computes the OBBD of the formula f op y.

Operates recursively on the structure of the two

OBDDs:

We start at the root and follow parallel paths on the

two OBDDs to the leaves;

Once we arrive at the leaves, we apply the given

boolean operation to the boolean constants 0 and 1

to form the result for that particular path.

15

THE ALGORITHM APPLY (2)

16

a
a

b b b

0 1 0 1

f(a,b) = a

with a>b

f(a,b) = b

with a>b

THE ALGORITHM APPLY (2)

17

a

b

0 1

f(a,b) = a ∨ b

with a>b

a

b b

0 1

a

b

0

THE ALGORITHM APPLY (2)

18

a

b

0 1

f(a,b) = a ∨ b

with a>b

a

b b

0 1

a

b

0 1

THE ALGORITHM APPLY (2)

19

a

b

0 1

f(a,b) = a ∨ b

with a>b

a

b b

0 1

a

b

0 1

b

THE ALGORITHM APPLY (2)

20

a

b

0 1

f(a,b) = a ∨ b

with a>b

a

b b

0 1

a

b

0 1

b

THE ALGORITHM RESTRICT (1)

If Bf is a OBDD, the call restrict(0, x, Bf)

(respectively restrict(1, x, Bf)) the OBDD for f[0/x]

(respectively f[1/x]).

restrict(0, x, Bf)

For each node v labeled with x:

Incoming edges are redirected to low(v);

Node v is removed.

restrict(1, x, Bf)

As above but redirected to high(v).

21

THE ALGORITHM RESTRICT (1)
a1

b1

a2

b2

a3

1

b3

0

Bf

22

a1

b1

a2

b2

1 0

restrict(0, a3, Bf)

a1

b1

a2

b2

1

b3

0

restrict(1, a3, Bf)

REFERENCES

Henrik Reif Andersen, An Introduction to Binary

Decision Diagrams. The IT University of

Copenhagen, Fall 1999

Alessandro Artale, Formal Methods Lecture VI,

Binary Decision Diagrams.

http://www.inf.unibz.it/~artale/FM/slide7.pdf

(visited on 05.17.2017)

A. Pnueli, Symbolic Model Checking.

http://www.cs.nyu.edu/courses/spring07/G22.3033-

002/lecture6_h4.pdf (visited on 05.17.2017)

23

http://www.inf.unibz.it/~artale/FM/slide7.pdf
http://www.inf.unibz.it/~artale/FM/slide7.pdf
http://www.cs.nyu.edu/courses/spring07/G22.3033-002/lecture6_h4.pdf
http://www.cs.nyu.edu/courses/spring07/G22.3033-002/lecture6_h4.pdf
http://www.cs.nyu.edu/courses/spring07/G22.3033-002/lecture6_h4.pdf
http://www.cs.nyu.edu/courses/spring07/G22.3033-002/lecture6_h4.pdf

