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BASIC MODEL CHECKING PROBLEM 

System describe by states. 

Basic approach : represent each state individually. 

Problem, size of the state space increases 

exponentially. 

State Space Explosion. 

Need too much memory; 

Need too much time. 
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ONE SOLUTION 

Symbolic model checking : 

Idea: represent set of states by Boolean formula over 

Boolean variables. 

 f : Booln → Bool 

Need efficient representation and manipulation for 

state sets and transition relation. 

 Use Binary Decision Diagrams 
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BINARY DECISION TREES 

Directed acyclic graphs. 

One or two Terminal nodes / Leaves: labelled with 

0 or 1; 

Set of variables nodes u of out-degree two: 

Non-Terminal nodes: each are labelled with a 

variable var(u); 

Branches / Children: low(v) / high(v), correspond to 

assignment of 0 or 1 for the variable in the node 
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EXAMPLE OF BDT 
a 

b b 

c c c c 

0 0 0 0 1 1 0 1 

a ∧ (¬b ∨ c)  

Dashed lines denote low-branches, solid lines high-branches 
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PROBLEMS 

Still exponential; 

Several BDT can verify the same formula. 

a 

b b 

c c c c 

0 0 0 0 1 1 0 1 

a 

c b 

c c b b 

0 0 0 0 1 0 1 1 

a ∧ (¬b ∨ c)  
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BASICS BDD PROPERTIES 

To move from BDT to BDD: 

Merge terminal nodes; 

Ordered BDD (OBDD): 

Define a variable ordering: on all paths from root to 

leafs, variables appear in same order, without 

repetitions (there exists a global ordering of 

variables). 
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EXAMPLE OF OBDD 
a 

b b 

c c c c 

0 0 0 0 1 1 0 1 

a ∧ (¬b ∨ c)  with ordering a < b < c 
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REDUCED ORDERED BDD (1) 

Uniqueness: no two distinct nodes v and w have the 

same variable name and low- and high- children. 

 Merge isomorphic subgraphs; 

Non-redundant tests: No variable node v has identical 

low- and high- children. 

 Remove redundancy. 
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MERGE ISOMORPHIC SUBGRAPHS 

a 

b b 

c c c c 

0 0 0 0 1 1 0 1 

a ∧ (¬b ∨ c)  
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REMOVE REDUNDANCY 
a 

b 

c 

0 0 0 0 1 1 0 1 

a ∧ (¬b ∨ c)  
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ROBDD (2) 

Canonical (unique) representation of a Boolean 

formula for a particular variable order: 

For every function f : Booln → Bool and variable ordering 

x1 < x2 < · · · < xn, there exists exactly one ROBDD 

representing this function. 

Equivalence checking in linear time, and satisfiability 

checking in constant time. 

 

Most of time, we will refer to ROBDD simply as BDDs. 
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SENSITIVITY TO VARIABLE ORDERING (1) 
a1 

b1 

a2 

b2 

a3 

1 

b3 

0 

a1 

a2 a2 

a3 a3 a3 a3 

b1 b1 b1 b1 

b2 b2 

b3 

1 0 
(a1 ∧ b1) ∨ (a2 ∧ b2) ∨ (a3 ∧ b3) 
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Two different variable ordering lead to tow different 

ROBDD. 

Crucial importance in practice, determine the 

efficiency of ROBDD-based model checking. 

Finding the best variable ordering is NP-hard. It 

exists several heuristics to approach the problem. 
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SENSITIVITY TO VARIABLE ORDERING (2) 



THE ALGORITHM APPLY (1) 

If Bf and By are two OBDDs, the call apply(op, Bf, 

By) computes the OBBD of the formula f op y. 

Operates recursively on the structure of the two 

OBDDs: 

We start at the root and follow parallel paths on the 

two OBDDs to the leaves; 

Once we arrive at the leaves, we apply the given 

boolean operation to the boolean constants 0 and 1 

to form the result for that particular path. 
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THE ALGORITHM APPLY (2) 
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a 
a 

b b b 

0 1 0 1 

f(a,b) = a 

with a>b 

f(a,b) = b 

with a>b 



THE ALGORITHM APPLY (2) 
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a 

b 

0 1 

f(a,b) = a ∨ b 

with a>b 

a 

b b 

0 1 

a 

b 

0 



THE ALGORITHM APPLY (2) 
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a 

b 

0 1 

f(a,b) = a ∨ b 

with a>b 

a 

b b 

0 1 

a 

b 

0 1 



THE ALGORITHM APPLY (2) 
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a 

b 

0 1 

f(a,b) = a ∨ b 

with a>b 

a 

b b 

0 1 

a 

b 

0 1 

b 



THE ALGORITHM APPLY (2) 
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a 

b 

0 1 

f(a,b) = a ∨ b 

with a>b 

a 

b b 

0 1 

a 

b 

0 1 

b 



THE ALGORITHM RESTRICT (1) 

If Bf is a OBDD, the call restrict(0, x, Bf) 

(respectively restrict(1, x, Bf)) the OBDD for f[0/x] 

(respectively f[1/x]). 

restrict(0, x, Bf)  

For each node v labeled with x: 

Incoming edges are redirected to low(v); 

Node v is removed. 

restrict(1, x, Bf)  

As above but redirected to high(v). 

 

21 



THE ALGORITHM RESTRICT (1) 
a1 

b1 

a2 

b2 

a3 

1 

b3 

0 

Bf 
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a1 

b1 

a2 

b2 

1 0 

restrict(0, a3, Bf) 

a1 

b1 

a2 

b2 

1 

b3 

0 

restrict(1, a3, Bf) 
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