
INF5140 – Specification and Verification of
Parallel Systems

Spring 2017

Institutt for informatikk, Universitetet i Oslo

April 7, 2017

1 / 35

Sat-based & Bounded model checking

Model checking

S |=? ϕ

origin [Clarke and Emerson, 1982]1 &
[Queille and Sifakis, 1982]
S (model of the) system,
ϕ: formula in a suitable logic

LTL
CTL, CTL∗, modal µ-calculus
. . .

ultimately a fancy “graph exploration problem” (with big
graphs)

1the conference was 1981, the book was published 1982
3 / 35

Advantages of MC

no proofs, “push button”
diagnostic counterexamples
logics used for MC can express many concurrency problems

4 / 35

Main “disadvantage”

state space explosion problem (aka state explosion problem)
problem “solution” space grows exponential is the problem
“description” space

notably reachable state space exponential in the number of
processes

5 / 35

The 4 big breakthroughs combatting the SSEP

Apart from
advances in data structures,
software engineering,
tricks, optimizations, heuristics and
general advances in processing power/memory.

Clarke identifies the following

“big 4” breakthroughs
1. symbolic techniques (notably using BDDs)a

2. partial order reduction
3. bounded model checking
4. CEGAR, localisation reduction [Kurshan, 1993]

[Clarke et al., 2010] [Clarke et al., 2000]
aSee later presentations

6 / 35

SAT

(boolean) satisfiability
famous, prototypical NP-complete problem

7 / 35

SAT solver progress

highly competitive field
yearly “SAT-competition”2

taken from [Clarke, 2017]
2http://www.satcompetition.org/

8 / 35

http://www.satcompetition.org/

Bounded model checking

Origin: [Biere et al., 2009] (see also [Biere et al., 2003])

BMC starting point
Leverage sat-solving, a powerful a successful technique, to do
model checking

9 / 35

Cf.: Symbolic model checking and BDDs

See separate presentation
successful technique
used (most prominently for HW) in industrial uses of MC
Two ingredients of SMC

operating symbolically on representation of sets of states
use BDDs (= specific kind of graph representation of boolean
functions) to represent and operate on them

like SMC/BDD-based MC: BMC based on “boolean encodings”

10 / 35

Bad news: the MC problem/reachability is not a SAT
problem :-(

MC here:3

models are kind of transition systems/Kripke structures . . .
spec’s are “temporal logic” formulas

solving an MC problem
It all boils down to some form of fancy graph reachability

“reachability”, however:
a form of “fixpoint” calculation4

fixpoints are emphatically not part of boolean logic.5
3The term “model checking”, i.e., solving M |=? ϕ can be applied in

different settings as well. A boolean assignment can be seen as model of a
propositional formula, for instance. That is of course a SAT problem. But we
are interested transition systems satisfying a TL formula.

4see also the presentation about µ-calculus.
5They are not even part of first-order logic. Implicitly they are part in

temporal logics, though (eventually, until etc.)
11 / 35

Good news: bounded MC can be seen as SAT :-)

less ambitious goal
Can I find an error (conterexample) in the behavior of the system
considering up-to k steps from the initial states

price to pay: no more “verification”6

bug-hunting
simple core idea

6but MC is typically verification of a model/abstraction anyhow and/or
verification up until the MC runs out of time/memory.

12 / 35

LTL and “existential” LTL

remember: LTL (linear time temporal logic) and definition of

S |= ϕ

ϕ must hold for all paths of S
If S 6|= ϕ (error), then exists a paths π such that π 6|= ϕ

For explicitness’ sake
path quantifiersa

∀ϕ and ∃ϕ
aone single quantifier as prefix to an LTL formula.

assume NNF

13 / 35

Terminology: witnesses

counterexample for

S |= �p corresponding to S |= ∀�p

corresponds the question if there exists a witness7

♦¬p

Goal: find finite (fixed bound) prefixes as witness to an
existential model checking problem (LTL)
conceptually easy if original ∀ϕ is a safety prop.
complications due to loops

7in logics in general, a witness is a thing (here a path) that gives
(constructive) evidence to an existential formula

14 / 35

Paths with and without loops

No loop

• •Si • •Sk

only prefix with back loop can be witness for �p

(k , l)-loop

• •Sl • •Si •Sk

15 / 35

Loops

Given: TS/Kripke-structure. transition relation −→.

Definition
Assume l ≤ k . A path π is a (k , l)-loop if πk −→ πl and

π = u · vω

with
u = π0 . . . πl−1 and v = πl . . . πk

A path π is a k-loop if there exists an l with 0 ≤ l ≤ k s.t. π is a
(k , l)-loop

remember: paths π are (infinite) sequences of “states”
(worlds)8

loops here is about those states (not “edges” of the picture)

8Earlier we also used σ as symbol
16 / 35

Bounded semantics

remember the “normal” semantics of LTL from before, relating
formulas and paths
[[ϕ]] or π |= ϕ

now: the new “looping paths” (k-loops) as basis for bounded
semantics, i.e., basis for BMC
note: “finite” prefixes (loops) can give information for infinite
paths, thus serve as witnesses
boundes semantics for path

with loop: “unchanged”
without loop: be aware of the cut-off and be pessimistic

17 / 35

Bounded semantics: for loops

Definition
Let π be a k-loop. A formula ϕ is valid along π with bound k ,
written

π |=k ϕ ,

iff π |= ϕ.

18 / 35

Bounded semantics: without loops

Definition
Let π be a path which is not a k-loop. Then an LTL formula ϕ is
valid along π with bound k , written

π |=k ϕ ,

iff π |=0
k ϕ, given below.

earlier π |= ϕ, corresponding here to |=0

k is treated as “cut-off”:
what comes afterward: unknown
if in doubt: “false”, i.e., the path is not valid/does not satisfy
the formula in the bounded manner

for ©: don’t “look” beyond k
for �: be pessimistic
for ♦: positive answer at least possible within the bound

19 / 35

Bounded semantics: without loops (|=i
k)

π |=i
k p iff p ∈ L(πi)

π |=i
k ¬p iff p /∈ L(πi)

π |=i
k ϕ1 ∧ ϕ2 iff π |=i

k ϕ1 and π |=i
k ϕ2

π |=i
k ϕ1 ∨ ϕ2 iff π |=i

k ϕ1 or π |=i
k ϕ2

π |=i
k �ϕ is always false

π |=i
k ♦ϕ iff ∃j .i ≤ j ≤ k . π |=j

k ϕ

π |=i
k ©ϕ iff i < k and π |=i+1

k ϕ

π |=i
k ϕ1Uϕ2 iff ∃j , i ≤ j ≤ k .π |=j

k ϕ2 and ∀n, i ≤ n < j .π |=n
k ϕ1

π |=i
k ϕ1Rϕ2 iff ∃j , i ≤ j ≤ k .π |=j

k ϕ1 and ∀n, i ≤ n < j .π |=n
k ϕ2

20 / 35

Bounded → unbounded semantics

Note, the connection is done for existential LTL (formulas of
the form ∃ϕ, not like ∀ϕ)
unbounded semantics as limit of the bounded ones (for
all/arbitrary bounds k)

Lemma (Easy direction (per path))

π |=k ϕ implies π |= ϕ

Lemma (For TSs/KSs)

S |= ∃ϕ implies S |=k ∃ϕ for some k ≥ 0

Theorem

S |= ∃ϕ iff S |=k ∃ϕ for some k ≥ 0
21 / 35

BMC via SAT

so far:
definition of the bounded MC problem
we convinced ourself: BMC approximates MC (at least for
existential path formulas)

Now: reduce to sat-solving

Goal
[[S , ϕ]]k is satisfiable iff π is a witness for ϕ

sat-problems: formula with (propositional variables)

encoding given in 3 parts. given k

1. valid initial path for S and
2. satisfaction of formula if

there’s a loop or
there’s no loop

22 / 35

Kripke-structure/transition system

In the modal logics chapter, mild variation in terminology and
choice of symbols. [Baier and Katoen, 2008] called (basically) the
same things transition systems avoiding the word Kripke structure

Definition (Kripke structure)

A Kripke structure is a tuple (S , I ,−→, L) where S is the set of
states,I ⊆ S the set of initial states, −→ ⊆ S × S the transition
relation, and L : S → 2AP the labelling function.

transition relation: a predicate:9 −→ : S2 → Bool
initial states: a predicate I : S → Bool

9[Biere et al., 2003] write T (s1, s2) for our infix relational notation
s1 −→ s2, where T is the transition relation predicate.

23 / 35

1st component: Translating S

remember transition system/Kripke stuctures
states si . Consider si as variables
transition relation: as predicate T (sk , sl), we write still infix
sk −→ sl

unfolding of the transition relation

[[S]]k , I (s0) ∧
k−1∧
i=0

si −→ si+1 (1)

states in KS: propositional variables sk
beware of the role of index/subscript in equation (1)

24 / 35

Loop condition

Remember the def. of (k , l)-loop

• •Sl • •Si •Sk

simple abbreviation

lLk , sk −→ sl

loop condition holds10 iff there is a back loop from a state sk
back to a previous state sl (which can be sk)

Definition (Loop condition)

Lk ,
k∨

l=0
lLk

10resp. it will hold when applied to a path consisting of a sequence of states
si , which are considered as propositional variables, as said. the word “back”
makes sense only if one interprets the variables to be “in a sequence”.

25 / 35

Successor in a loop

a rather unsurprising definition: define “successor”

succ(i) of i in a (k , l)-loop as
succ(i) = i + 1 for i < k

succ(i) = l for k

26 / 35

2nd component: translating formula with a loop

propositional part: boring

l [[p]]
i
k , p(si)

l [[¬p]]ik , ¬p(si)
l [[ϕ1 ∧ ϕ2]]

i
k , l [[ϕ1]]

i
k ∧ l [[ϕ2]]

i
k

l [[ϕ1 ∨ ϕ2]]
i
k , l [[ϕ1]]

i
k ∨ l [[ϕ2]]

i
k

27 / 35

Cont’d

Actually straightforward
loop → no cut-off → “standard semantics”
remember unrolling of fixpoints11

temporal part: a bit more interesting

l [[�ϕ]]ik , l [[ϕ]]
i
k ∧ l [[�ϕ]]

succ(i)
k

l [[♦ϕ]]ik , l [[ϕ]]
i
k ∨ l [[♦ϕ]]

succ(i)
k

l [[©ϕ]]ik , l [[ϕ]]
succ(i)
k

l [[ϕ1Uϕ2]]
i
k , l [[ϕ1]]

i
k ∨ l [[ϕ1Uϕ2]]

succ(i)
k

l [[ϕ1Rϕ2]]
i
k , l [[ϕ2]]

i
k ∧ l [[ϕ1Rϕ2]]

succ(i)
k

11Cf. also the presentation about the µ-calculus. Also in the construction of
the Büchi-automaton from an LTL formula, that unrolling played a role (for U).

28 / 35

Translation without a loop

same principles
“index” l not needed
instead of the more complex succ(i): simply i + 1.
otherwise: the definition stays “the same”)

29 / 35

3rd component: translating formula without a loop

Inductive case ∀i ≤ k :

propositional part: boring again

[[p]]ik , p(si)

[[¬p]]ik , ¬p(si)
[[ϕ1 ∧ ϕ2]]

i
k , [[ϕ1]]

i
k ∧ [[ϕ2]]

i
k

[[ϕ1 ∨ ϕ2]]
i
k , [[ϕ1]]

i
k ∨ [[ϕ2]]

i
k

30 / 35

Loop-case (cont’d)

Inductive case ∀i ≤ k :

temporal part: a bit more interesting

[[�ϕ]]ik , [[ϕ]]ik ∧ [[�ϕ]]i+1
k

[[♦ϕ]]ik , [[ϕ]]ik ∨ [[♦ϕ]]i+1
k

[[©ϕ]]ik , [[ϕ]]i+1
k

[[ϕ1Uϕ2]]
i
k , [[ϕ1]]

i
k ∨ [[ϕ1Uϕ2]]

i+1
k

[[ϕ1Rϕ2]]
i
k , [[ϕ2]]

i
k ∧ [[ϕ1Rϕ2]]

i+1
k

base case: [[ϕ]]k+1
k , false

31 / 35

Putting it together

[[S , ϕ]]k , [[S]]k∧
((¬Lk ∧ [[ϕ]]0k)

∨ (
∨k

i=0(¬lLk ∧ l [[ϕ]]
0
k))

(2)

Theorem

[[S , ϕ]]ksatisfiable iff S |=k ∃ϕ .

32 / 35

Further info

The technical slides here recap parts of the journal article
[Biere et al., 2003] by the inventors of BMC
BMC for software [Kroening et al., 2004]
Survey [Prasad et al., 2005]

33 / 35

References I

[Baier and Katoen, 2008] Baier, C. and Katoen, J.-P. (2008).
Principles of Model Checking.
MIT Press.

[Biere et al., 2009] Biere, A., Cimatti, A., Clarke, E. M., Fujita, M., and Zhu, Y. (2009).
Symbolic model checking using SAT procedures instead of BDDs.
In Proceedings of DAC’09: Design Automation Conference, pages 317–320. ACM.

[Biere et al., 2003] Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., and Zhu, Y. (2003).
Bounded model checking.
Advances in Computers, 58.

[Clarke et al., 2000] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. (2000).
Counterexample-guided abstraction refinement.
In Emerson, E. A. and Sistla, A. P., editors, Proceedings of the 12th International Conference on
Computer-Aided Verification (CAV ’00), volume 1855 of Lecture Notes in Computer Science, pages
154–169. Springer Verlag.

[Clarke et al., 2010] Clarke, E. C., Kurshan, R. P., and Veith, H. (2010).
The localization reduction and counter-examble guided abstraction refinement.
In Manna, Z. and Peled, D., editors, Pnueli Festschrift, volume 6200 of Lecture Notes in Computer
Science, pages 61–71. Springer Verlag.

[Clarke, 2008] Clarke, E. M. (2008).
Model checking – my 27-year quest to overcome the state explosion problem.
In Cervesato, I., Veith, H., and Voronkov, A., editors, Logic for Programming, Artificial Intelligence,
and Reasoning: 15th International Conference, LPAR 2008, Doha, Qatar, November 22-27, 2008.
Proceedings, Lecture Notes in Artificial Intelligence, pages 182–182. Springer Verlag.

34 / 35

References II

[Clarke, 2017] Clarke, E. M. (2017).
SAT-based bounded and unbounded model checking.
Available electronically on the net.
Data of publication unknown.

[Clarke and Emerson, 1982] Clarke, E. M. and Emerson, E. A. (1982).
Design and synthesis of synchronisation skeletons using branching time temporal logic specifications.
In Kozen, D., editor, Proceedings of the Workshop on Logic of Programs 1981, volume 131 of
Lecture Notes in Computer Science, pages 244–263. Springer Verlag.

[Kroening et al., 2004] Kroening, D., Lerda, F., and Clarke, E. (2004).
Bounded model checking for software.
In Jensen, K. and Podelski, A., editors, Proceedings of TACAS 2004, volume 2988 of Lecture Notes
in Computer Science. Springer Verlag.

[Kurshan, 1993] Kurshan, R. P. (1993).
Automata Theoretic Verification of Coordinating Processes.
Princeton University Press.

[Prasad et al., 2005] Prasad, M. R., Biere, A., and Gupta, A. (2005).
A survey of recent advances in sat-based formal verification.
International Journal on Software Tools for Technology Transfer, 7(2):156–173.

[Queille and Sifakis, 1982] Queille, J. P. and Sifakis, J. (1982).
Specification and verification of concurrent systems in CESAR.
In Dezani-Ciancaglini, M. and Montanari, U., editors, Proceedings of the 5th International
Symposium on Programming 1981, volume 137 of Lecture Notes in Computer Science, pages
337–351. Springer Verlag.

35 / 35

	Sat-based & Bounded model checking
	Introduction
	SAT solving and SMT
	Reducing bounded model checking to SAT

