
Computation Tree Logic (CTL)

Antonio González Burgueño

University of Oslo, Norway

May 26, 2017

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 1 / 29

Outline

1 Introducing CTL
Model of Comuputation

2 CTL Syntax.
CTL Examples
CTL Semantics
CTL Operators
Expressiveness of CTL and LTL

3 CTL Model Checking
Labeling Algorithm
Fairness

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 2 / 29

Introducing CTL

Outline

1 Introducing CTL
Model of Comuputation

2 CTL Syntax.
CTL Examples
CTL Semantics
CTL Operators
Expressiveness of CTL and LTL

3 CTL Model Checking
Labeling Algorithm
Fairness

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 3 / 29

Introducing CTL

LTL vs CTL

LTL

• Describes properties of individual executions.

• Semantics defined as a set of executions.

• LTL formulas ψ are evaluated on paths (path formulas).

CTL

• Describes properties of a computation tree.
• Formulas can reason about many executions at once.

• Semantics defined in terms of states.

• CTL formulas φ are evaluated on states (state formulas)

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 4 / 29

Introducing CTL

Model of Comuputation (I)
• Computation trees are derived from state transition graphs.
• The graph structure is unwound into an infinite tree rooted at the

initial state.

Unwind a Graph Into a Tree.
Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 5 / 29

Introducing CTL

Model of Comuputation (II)

Formally, a Kripke structure is a triple M = 〈S, R, L〉, where

• S is the set of states,

• R ⊆ S× S is the transition relation, and

• L : S→ P(AP) gives the set of atomic propositions true in each
state.

We assume that R is total

• ∀s ∈ S, ∃s′ ∈ S : (s, s′) ∈ R
A path in M is an infinite sequence π of states:

• π = s0, s1, ... such that for i ≥ 0, (si, si+1) ∈ R

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 6 / 29

CTL Syntax.

Outline

1 Introducing CTL
Model of Comuputation

2 CTL Syntax.
CTL Examples
CTL Semantics
CTL Operators
Expressiveness of CTL and LTL

3 CTL Model Checking
Labeling Algorithm
Fairness

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 7 / 29

CTL Syntax.

CTL Syntax.

• Combines temporal operators with quantification over runs.

• Operators have the following form:

CTL: Overview

CTL = Computation-Tree Logic

Combines temporal operators with quantification over runs

Operators have the following form:

Q T
X
F
G
U

E
A

next
finally
globally
until

there exists an execution
for all executions

(and possibly others)

6

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 8 / 29

CTL Syntax.

Visualization of semantics

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 9 / 29

CTL Syntax. CTL Examples

CTL Examples.

Let “P” mean “I like chocolate”.

• AG.P: “I will like chocolate from now on, no matter what happens”.

• EF.P: ”It is possible I may like chocolate some day, at least for one
day”.

• AF.EG.P: ”It is always possible (AF) that I will suddenly start liking
chocolate for the rest of time”.

• EG.AF.P: ”Depending on what happens next, it is possible (E) that
for the rest of time (G), there will always be some time in the future
(AF) when I will like chocolate.

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 10 / 29

CTL Syntax. CTL Semantics

CTL semantics

The Backus-Naur form form CTL formula is the following:

φ ::= > | ⊥ | p | ¬ φ | φ ∧ φ | φ ∨ φ | φ→ φ | AX φ | EX φ
AFφ | EFφ | AGφ | EGφ | A[φUφ] | E[φUφ]

Let φ be a CTL formula and s ∈ S. M, s |= φ, where φ is true in all the
initial states of the model, is defined as follows:

• M, s |= >
• M, s 6|= ⊥
• M, s |= p iff p ∈ L(s)
• M, s |= ¬ φ iff M, s 6|= φ

• M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

• M, s |= φ ∨ ψ iff M, s |= φ or M, s |= ψ

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 11 / 29

CTL Syntax. CTL Semantics

CTL semantics. Temporal Operators (I)

• M, s |= AXφ iff ∀s′ s.t sRts′, M, s′ |= φ

• M, s |= EXφ iff ∃s′ s.t sRts′ and M, s′ |= φ

• M, s |= AGφ iff ∀π = (s, s2, s3, s4, ...) s.t. siRtsi+1 and for all i, it is
the case that M, si |= φ

• M, s |= EGφ iff ∃π = (s, s2, s3, s4, ...) s.t. siRtsi+1 and for all i, it is
the case that M, si |= φ

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 12 / 29

CTL Syntax. CTL Semantics

CTL semantics. Temporal Operators (II)

• M, s |= AFφ iff ∀π = (s, s2, s3, s4, ...) s.t. siRtsi+1, there is a state si
s.t M, si |= φ

• M, s |= EFφ iff ∃π = (s, s2, s3, s4, ...) s.t. siRtsi+1, and there is a
state si s.t M, si |= φ

• M, s |= A[φUψ] iff ∀π = (s, s2, s3, s4, ...) s.t. siRtsi+1, there is a
state sj s.t M, si |= φ and M, sj |= ψ for all i < j

• M, s |= E[φUψ] iff ∃π = (s, s2, s3, s4, ...) s.t. siRtsi+1, there is a
state sj s.t M, si |= φ and M, sj |= ψ for all i < j

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 13 / 29

CTL Syntax. CTL Operators

Basic Set of CTL Operators

There are eight basic CTL operators:

• AX and EX,

• AG and EG,

• AF and EF, and

• AU and EU.

That can be expressed in terms of the operators EX, EG and EU

• AX f = ¬ EX(¬ f),

• AG f = ¬ EF(¬ f),

• AF f = ¬ EG(¬ f),

• EF f = E [true U f]

• A [f U g] = ¬ E[¬ g U ¬ f ∧ ¬ g] ∧ ¬ EG¬ g

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 14 / 29

CTL Syntax. Expressiveness of CTL and LTL

Expressiveness of CTL and LTL(I)

Any CTL formula φ using:

• A operator can be expressed in LTL; e.g. AGφCTL ≡ GφLTL and
AXφCTL ≡ XφLTL

• E operator cannot be expressed in LTL; e.g. EX p 6≡ X p.

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 15 / 29

CTL Syntax. Expressiveness of CTL and LTL

Expressiveness of CTL and LTL(II)

• GF p⇒ GF q
• (GF p ≡ AGAF p) and (GFq ≡ AGAF q)
• (GF p⇒ GF q) 6≡ (AGAF p⇒ AGAF q)

• The CTL is trivially satisfied, because AGAF p is not satisfied.
• LTL is not satisfied, because the path cycling through s0 forever

satisfies GF p but not GF q.
• The LTL formula is an implication about paths, but the two parts of

the CTL formula determine subsets of states independently.

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 16 / 29

CTL Model Checking

Outline

1 Introducing CTL
Model of Comuputation

2 CTL Syntax.
CTL Examples
CTL Semantics
CTL Operators
Expressiveness of CTL and LTL

3 CTL Model Checking
Labeling Algorithm
Fairness

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 17 / 29

CTL Model Checking

CTL Model Checking

• Assumptions:
• Finite number of processes, each having a finite number of

finite-valued variables.
• Finite length of CTL formula

• Problem: Determine whether φ is true in a finite structure M.

• Algorithm overview:

1 Convert φ in terms of AF, EU, EX, ∧, ∨, ⊥.
2 Label the states of M with the subformulas of φ that are satisfied

there.
3 If starting state s0 is labeled with φ, then φ holds on M; i.e.,

(s0 ∈ {s|M, s |= φ})⇒ (M |= φ)

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 18 / 29

CTL Model Checking Labeling Algorithm

Labeling Algorithm(I)

• Suppose ψ is a subformula of φ and states satisfying all the
immediate subformulas of ψ have already been labeled.

• We want to determine which states to label with ψ.

• If ψ is:
• ⊥: Then no states are labeled with ⊥
• p: label s with p if p ∈ L(s).
• ψ1 ∧ ψ2: label s with ψ1 ∧ ψ2 if s is already labeled both with ψ1 and

with ψ2.
• ¬ψ1: label s with ¬ψ1 if s is not already labeled with ψ1.
• EX ψ1: label any state with EX ψ1 if one of its successors is labeled

with ψ1.

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 19 / 29

CTL Model Checking Labeling Algorithm

Labeling Algorithm(II)

AF ψ1

• If any state s is labeled with ψ1, label it with AF ψ1.

• Repeat: label any state with AF ψ1 if all successor states are labeled
with AF ψ1, until there is no change.

For example:

Labeling Algorithm (Cont’d)

• AF ψ1:
- If any state s is labeled with ψ1, label it with AF ψ1.
- Repeat: label any state with AF ψ1 if all successor states are labeled with

AF ψ1, until there is no change.

Ex: ✓
✒

✏
✑✓

✒
✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✟✟✟✟✟✯

✲

❍❍❍❍❍❥

✟✟✟✟✟✯

✲

❍❍❍❍❍❥

❅❅
""

AFψ1

AFψ1

AFψ1

AFψ1 AFψ1

AFψ1

AFψ1

41

Labeling Algorithm

Suppose ψ is a subformula of f and states satisfying all the immediate
subformulas of ψ have already been labeled. We want to determine which states
to label with ψ. If ψ is:

•⊥: then no states are labeled with ⊥.
• p (prop. formula): label s with p if p ∈ I(s).
• ψ1∧ψ2: label s with ψ1∧ψ2 if s is already labeled both with ψ1 and with ψ2.
• ¬ψ1: label s with ¬ψ1 if s is not already labeled with ψ1.
• EX ψ1: label any state with EX ψ1 if one of its successors is labeled with ψ1.

40

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 20 / 29

CTL Model Checking Labeling Algorithm

Labeling Algorithm(III)

E[ψ1 U ψ2]

• If any state s is labeled with ψ2, label it with E[ψ1 U ψ2].

• Repeat: label any state with E[ψ1 U ψ2] if it is labeled with ψ1 and
at least one of its successors is labeled with E[ψ1 U ψ2], until there is
no change.

For example:

Handling EGψ1 directly

• EG ψ1:
- Label all the states with EG ψ1.
- If any state s is not labeled with ψ1, delete the label EG ψ1.
- Repeat: delete the label EG ψ1 from any state if none of its successors is

labeled with EG ψ1; until there is no change.

43

Labeling Algorithm (Cont’d)

• E [ψ1 U ψ2]:
- If any state s is labeled with ψ2, label it with E[ψ1 U ψ2].
- Repeat: label any state with E[ψ1 U ψ2] if it is labeled with ψ1 and at least one

of its successors is labeled with E[ψ1 U ψ2], until there is no change.

Ex: ✓
✒

✏
✑✓

✒
✏
✑✓

✒
✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✟✟✟✟✟✯

✲

❍❍❍❍❍❥

✟✟✟✟✟✯

✲

❍❍❍❍❍❥

❅❅
""

ψ1
ψ1

E [ψ1 U ψ2] E [ψ1 U ψ2]

E [ψ1 U ψ2]

Output states labeled with f .

Complexity: O(| f |×S× (S+ |R|)) (linear in the size of the formula and
quadratic in the size of the model).

42

Output states labeled with f . Complexity: O(|f | × S× (S + |R|)) (linear
in the size of the formula and quadratic in the size of the model).

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 21 / 29

CTL Model Checking Fairness

Fairness (I)

• Often liveness properties (something good eventually happens)
cannot be proven without certain assumptions, i.e., fairness.

• Fairness: something happens infinitely often or repeatedly.
• Executions are fair if a system enters a state infinitely often, and
• Takes every possible transition from that state.

• Example: Liveness condition at the Dining Philosophers Problem.
• Any philosopher who tries to eat, eventually does.

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 22 / 29

CTL Model Checking Fairness

Fairness (II)

Weak/strong fairness can be expressed in LTL

• Weak fairness: if an event is continuously enabled, it will occur
infinitely often

• LTL: GF (¬ enabled ∨ occurs)

• Strong fairness: if a event is infinitely often enabled it will occur
infinitely often

• LTL: GF enabled ⇒ GF occurs

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 23 / 29

CTL Model Checking Fairness

Fairness (III)

• In LTL holds M |=fair ψ if and only if M |= (fair → ψ).

• Formulas of the form ∀(fair→ ψ) and ∃(fair∧ ψ) needed.

• CTL problem:
• Boolean combinations of path formulas are not allowed in CTL
• Example: strong fairness constraints �♦b→ �♦c ≡ ♦�¬b∨♦�c

cannot be expressed in CTL because persistence properties cannot be
represented.

• Solution: change the semantics of CTL by ignoring unfair paths.

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 24 / 29

CTL Model Checking Fairness

Semantics of fair CTL

CTL fairness assumption fair, relation |=fair is defined by:

s |=fair a iff a ∈ Label(s)
s |=fair ¬φ iff ¬(s |=fair φ)
s |=fair φ ∨ ψ iff (s |=fair φ) ∨ (s |=fair ψ)
s |=fair ∃ϕ iff π |=fair ϕ for some fair path π that starts in s
s |=fair ∀ϕ iff π |=fair ϕ for all fair paths π that start in s
π |=fair ©φ iff π[1] |=fair φ

π |=fair φ
⋃

ψ iff ∃j. j ≥ 0, π[j] |=fair ψ ∧ ∀k, 0 ≤ k < j, π[k] |=fair φ

where π is a fair path iff π |=LTL fair for CTL fairness assumption fair.

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 25 / 29

CTL Model Checking Fairness

CTL with fairness constraints

• Fair path: a path in the model along which each fairness condition
holds infinitely often.

• Fair states: states reachable along fair paths

• Let C = ψ1, ψ2, ..., ψn be a set of n fairness constraints.
• Sets of states (constraint) that must occur infinitely often along a

computation path to be considered.
• Restrict the path quantifiers (E and A) to fair paths.
• EFψ holds at state s only if there exists a fair path from s along

which φ holds.
• AGψ holds at s if ψ holds in all states reachable from s along fair

paths.

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 26 / 29

CTL Model Checking Fairness

Algorithm for fairness in CTL

An algorithm for fairness in CTL is as follows:

1 Restrict the graph to states satisfying φ; of the resulting graph, we
want to know from which states there is a fair path.

2 Find the maximal strongly connected components (SCC) of the
restricted graph;

3 Remove a SCC if, for some ψi, it does not contain a state satisfying
ψi. The resulting SCCs are the fair SCCs. Any state of the restricted
graph that can reach one has a fair path from it.

4 Use backwards breadth-first searching to find the states on the
restricted graph that can reach a fair SCC.

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 27 / 29

CTL Model Checking Fairness

Fairness in CTL. Example
M 6|= ∀a(a→ ∀♦b).

• C = {(�♦s2 → �♦a), (�♦s2 → �♦b)}.
• Both loops should be visited fairly.

• M |=fair ∀a(a→ ∀♦b).

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 28 / 29

CTL Model Checking Fairness

References

E. M. Clarke, E. A. Emerson and A. P. Sistla. Automatic Verification
of Finite-State Concurrent Systems Using Temporal Logic
Specifications. ACM Transactions on Programming Languages and
Systems, April, 1986

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems:
Safety, 1995.

Model Checking. Edmund M Clarke, jr., Orna Grumberg, and Doron
Peled, MIT Press, 1999

Michael Huth and Mark Ryan Logic in Computer Science: Modelling
and Reasoning about Systems. The MIT Press, 1999.

Logic in Computer Science: Modelling and Reasoning about Systems
Michael Huth, Mark Ryan Cambridge University Press 2004.
http://www.cs.bham.ac.uk/research/lics/

Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking, MIT Press 2008.

Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 29 / 29

	Introducing CTL
	Model of Comuputation

	CTL Syntax.
	CTL Examples
	CTL Semantics
	CTL Operators
	Expressiveness of CTL and LTL

	CTL Model Checking
	Labeling Algorithm
	Fairness

