
Computation Tree Logic (CTL)

Antonio González Burgueño
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Introducing CTL

LTL vs CTL

LTL

• Describes properties of individual executions.

• Semantics defined as a set of executions.

• LTL formulas ψ are evaluated on paths (path formulas).

CTL

• Describes properties of a computation tree.
• Formulas can reason about many executions at once.

• Semantics defined in terms of states.

• CTL formulas φ are evaluated on states (state formulas)
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Introducing CTL

Model of Comuputation (I)
• Computation trees are derived from state transition graphs.
• The graph structure is unwound into an infinite tree rooted at the

initial state.

Unwind a Graph Into a Tree.
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Introducing CTL

Model of Comuputation (II)

Formally, a Kripke structure is a triple M = 〈S, R, L〉, where

• S is the set of states,

• R ⊆ S× S is the transition relation, and

• L : S→ P(AP) gives the set of atomic propositions true in each
state.

We assume that R is total

• ∀s ∈ S, ∃s′ ∈ S : (s, s′) ∈ R
A path in M is an infinite sequence π of states:

• π = s0, s1, ... such that for i ≥ 0, (si, si+1) ∈ R
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Antonio González Burgueño (UIO) Computation Tree Logic (CTL) May 26, 2017 7 / 29



CTL Syntax.

CTL Syntax.

• Combines temporal operators with quantification over runs.

• Operators have the following form:

CTL: Overview

CTL = Computation-Tree Logic

Combines temporal operators with quantification over runs

Operators have the following form:

Q T
X
F
G
U

E
A

next
finally
globally
until

there exists an execution
for all executions

(and possibly others)

6
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CTL Syntax.

Visualization of semantics
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CTL Syntax. CTL Examples

CTL Examples.

Let “P” mean “I like chocolate”.

• AG.P: “I will like chocolate from now on, no matter what happens”.

• EF.P: ”It is possible I may like chocolate some day, at least for one
day”.

• AF.EG.P: ”It is always possible (AF) that I will suddenly start liking
chocolate for the rest of time”.

• EG.AF.P: ”Depending on what happens next, it is possible (E) that
for the rest of time (G), there will always be some time in the future
(AF) when I will like chocolate.
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CTL Syntax. CTL Semantics

CTL semantics

The Backus-Naur form form CTL formula is the following:

φ ::= > | ⊥ | p | ¬ φ | φ ∧ φ | φ ∨ φ | φ→ φ | AX φ | EX φ
AFφ | EFφ | AGφ | EGφ | A[φUφ] | E[φUφ]

Let φ be a CTL formula and s ∈ S. M, s |= φ, where φ is true in all the
initial states of the model, is defined as follows:

• M, s |= >
• M, s 6|= ⊥
• M, s |= p iff p ∈ L(s)
• M, s |= ¬ φ iff M, s 6|= φ

• M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

• M, s |= φ ∨ ψ iff M, s |= φ or M, s |= ψ
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CTL Syntax. CTL Semantics

CTL semantics. Temporal Operators (I)

• M, s |= AXφ iff ∀s′ s.t sRts′, M, s′ |= φ

• M, s |= EXφ iff ∃s′ s.t sRts′ and M, s′ |= φ

• M, s |= AGφ iff ∀π = (s, s2, s3, s4, ...) s.t. siRtsi+1 and for all i, it is
the case that M, si |= φ

• M, s |= EGφ iff ∃π = (s, s2, s3, s4, ...) s.t. siRtsi+1 and for all i, it is
the case that M, si |= φ
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CTL Syntax. CTL Semantics

CTL semantics. Temporal Operators (II)

• M, s |= AFφ iff ∀π = (s, s2, s3, s4, ...) s.t. siRtsi+1, there is a state si
s.t M, si |= φ

• M, s |= EFφ iff ∃π = (s, s2, s3, s4, ...) s.t. siRtsi+1, and there is a
state si s.t M, si |= φ

• M, s |= A[φUψ] iff ∀π = (s, s2, s3, s4, ...) s.t. siRtsi+1, there is a
state sj s.t M, si |= φ and M, sj |= ψ for all i < j

• M, s |= E[φUψ] iff ∃π = (s, s2, s3, s4, ...) s.t. siRtsi+1, there is a
state sj s.t M, si |= φ and M, sj |= ψ for all i < j
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CTL Syntax. CTL Operators

Basic Set of CTL Operators

There are eight basic CTL operators:

• AX and EX,

• AG and EG,

• AF and EF, and

• AU and EU.

That can be expressed in terms of the operators EX, EG and EU

• AX f = ¬ EX(¬ f ),

• AG f = ¬ EF(¬ f ),

• AF f = ¬ EG(¬ f ),

• EF f = E [ true U f ]

• A [ f U g ] = ¬ E[¬ g U ¬ f ∧ ¬ g ] ∧ ¬ EG¬ g
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CTL Syntax. Expressiveness of CTL and LTL

Expressiveness of CTL and LTL(I)

Any CTL formula φ using:

• A operator can be expressed in LTL; e.g. AGφCTL ≡ GφLTL and
AXφCTL ≡ XφLTL

• E operator cannot be expressed in LTL; e.g. EX p 6≡ X p.
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CTL Syntax. Expressiveness of CTL and LTL

Expressiveness of CTL and LTL(II)

• GF p⇒ GF q
• (GF p ≡ AGAF p) and (GFq ≡ AGAF q)
• (GF p⇒ GF q) 6≡ (AGAF p⇒ AGAF q)

• The CTL is trivially satisfied, because AGAF p is not satisfied.
• LTL is not satisfied, because the path cycling through s0 forever

satisfies GF p but not GF q.
• The LTL formula is an implication about paths, but the two parts of

the CTL formula determine subsets of states independently.
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CTL Model Checking

CTL Model Checking

• Assumptions:
• Finite number of processes, each having a finite number of

finite-valued variables.
• Finite length of CTL formula

• Problem: Determine whether φ is true in a finite structure M.

• Algorithm overview:

1 Convert φ in terms of AF, EU, EX, ∧, ∨, ⊥.
2 Label the states of M with the subformulas of φ that are satisfied

there.
3 If starting state s0 is labeled with φ, then φ holds on M; i.e.,

(s0 ∈ {s|M, s |= φ})⇒ (M |= φ)
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CTL Model Checking Labeling Algorithm

Labeling Algorithm(I)

• Suppose ψ is a subformula of φ and states satisfying all the
immediate subformulas of ψ have already been labeled.

• We want to determine which states to label with ψ.

• If ψ is:
• ⊥: Then no states are labeled with ⊥
• p: label s with p if p ∈ L(s).
• ψ1 ∧ ψ2: label s with ψ1 ∧ ψ2 if s is already labeled both with ψ1 and

with ψ2.
• ¬ψ1: label s with ¬ψ1 if s is not already labeled with ψ1.
• EX ψ1: label any state with EX ψ1 if one of its successors is labeled

with ψ1.
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CTL Model Checking Labeling Algorithm

Labeling Algorithm(II)

AF ψ1

• If any state s is labeled with ψ1, label it with AF ψ1.

• Repeat: label any state with AF ψ1 if all successor states are labeled
with AF ψ1, until there is no change.

For example:

Labeling Algorithm (Cont’d)

• AF ψ1:
- If any state s is labeled with ψ1, label it with AF ψ1.
- Repeat: label any state with AF ψ1 if all successor states are labeled with

AF ψ1, until there is no change.

Ex: ✓
✒

✏
✑✓

✒
✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✟✟✟✟✟✯

✲

❍❍❍❍❍❥

✟✟✟✟✟✯

✲

❍❍❍❍❍❥

❅❅
""

AFψ1

AFψ1

AFψ1

AFψ1 AFψ1

AFψ1

AFψ1

41

Labeling Algorithm

Suppose ψ is a subformula of f and states satisfying all the immediate
subformulas of ψ have already been labeled. We want to determine which states
to label with ψ. If ψ is:

•⊥: then no states are labeled with ⊥.
• p (prop. formula): label s with p if p ∈ I(s).
• ψ1∧ψ2: label s with ψ1∧ψ2 if s is already labeled both with ψ1 and with ψ2.
• ¬ψ1: label s with ¬ψ1 if s is not already labeled with ψ1.
• EX ψ1: label any state with EX ψ1 if one of its successors is labeled with ψ1.

40
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CTL Model Checking Labeling Algorithm

Labeling Algorithm(III)

E[ψ1 U ψ2]

• If any state s is labeled with ψ2, label it with E[ψ1 U ψ2].

• Repeat: label any state with E[ψ1 U ψ2] if it is labeled with ψ1 and
at least one of its successors is labeled with E[ψ1 U ψ2], until there is
no change.

For example:

Handling EGψ1 directly

• EG ψ1:
- Label all the states with EG ψ1.
- If any state s is not labeled with ψ1, delete the label EG ψ1.
- Repeat: delete the label EG ψ1 from any state if none of its successors is

labeled with EG ψ1; until there is no change.

43

Labeling Algorithm (Cont’d)

• E [ψ1 U ψ2]:
- If any state s is labeled with ψ2, label it with E[ψ1 U ψ2].
- Repeat: label any state with E[ψ1 U ψ2] if it is labeled with ψ1 and at least one

of its successors is labeled with E[ψ1 U ψ2], until there is no change.

Ex: ✓
✒

✏
✑✓

✒
✏
✑✓

✒
✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✟✟✟✟✟✯

✲

❍❍❍❍❍❥

✟✟✟✟✟✯

✲

❍❍❍❍❍❥

❅❅
""

ψ1
ψ1

E [ψ1 U ψ2] E [ψ1 U ψ2]

E [ψ1 U ψ2]

Output states labeled with f .

Complexity: O(| f |×S× (S+ |R|)) (linear in the size of the formula and
quadratic in the size of the model).

42

Output states labeled with f . Complexity: O(|f | × S× (S + |R|)) (linear
in the size of the formula and quadratic in the size of the model).
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CTL Model Checking Fairness

Fairness (I)

• Often liveness properties (something good eventually happens)
cannot be proven without certain assumptions, i.e., fairness.

• Fairness: something happens infinitely often or repeatedly.
• Executions are fair if a system enters a state infinitely often, and
• Takes every possible transition from that state.

• Example: Liveness condition at the Dining Philosophers Problem.
• Any philosopher who tries to eat, eventually does.
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CTL Model Checking Fairness

Fairness (II)

Weak/strong fairness can be expressed in LTL

• Weak fairness: if an event is continuously enabled, it will occur
infinitely often

• LTL: GF (¬ enabled ∨ occurs)

• Strong fairness: if a event is infinitely often enabled it will occur
infinitely often

• LTL: GF enabled ⇒ GF occurs
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CTL Model Checking Fairness

Fairness (III)

• In LTL holds M |=fair ψ if and only if M |= (fair → ψ).

• Formulas of the form ∀(fair→ ψ) and ∃(fair∧ ψ) needed.

• CTL problem:
• Boolean combinations of path formulas are not allowed in CTL
• Example: strong fairness constraints �♦b→ �♦c ≡ ♦�¬b∨♦�c

cannot be expressed in CTL because persistence properties cannot be
represented.

• Solution: change the semantics of CTL by ignoring unfair paths.
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CTL Model Checking Fairness

Semantics of fair CTL

CTL fairness assumption fair, relation |=fair is defined by:

s |=fair a iff a ∈ Label(s)
s |=fair ¬φ iff ¬(s |=fair φ)
s |=fair φ ∨ ψ iff (s |=fair φ) ∨ (s |=fair ψ)
s |=fair ∃ϕ iff π |=fair ϕ for some fair path π that starts in s
s |=fair ∀ϕ iff π |=fair ϕ for all fair paths π that start in s
π |=fair ©φ iff π[1] |=fair φ

π |=fair φ
⋃

ψ iff ∃j. j ≥ 0, π[j] |=fair ψ ∧ ∀k, 0 ≤ k < j, π[k] |=fair φ

where π is a fair path iff π |=LTL fair for CTL fairness assumption fair.
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CTL Model Checking Fairness

CTL with fairness constraints

• Fair path: a path in the model along which each fairness condition
holds infinitely often.

• Fair states: states reachable along fair paths

• Let C = ψ1, ψ2, ..., ψn be a set of n fairness constraints.
• Sets of states (constraint) that must occur infinitely often along a

computation path to be considered.
• Restrict the path quantifiers (E and A) to fair paths.
• EFψ holds at state s only if there exists a fair path from s along

which φ holds.
• AGψ holds at s if ψ holds in all states reachable from s along fair

paths.
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CTL Model Checking Fairness

Algorithm for fairness in CTL

An algorithm for fairness in CTL is as follows:

1 Restrict the graph to states satisfying φ; of the resulting graph, we
want to know from which states there is a fair path.

2 Find the maximal strongly connected components (SCC) of the
restricted graph;

3 Remove a SCC if, for some ψi, it does not contain a state satisfying
ψi. The resulting SCCs are the fair SCCs. Any state of the restricted
graph that can reach one has a fair path from it.

4 Use backwards breadth-first searching to find the states on the
restricted graph that can reach a fair SCC.
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CTL Model Checking Fairness

Fairness in CTL. Example
M 6|= ∀a(a→ ∀♦b).

• C = {(�♦s2 → �♦a), (�♦s2 → �♦b)}.
• Both loops should be visited fairly.

• M |=fair ∀a(a→ ∀♦b).
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CTL Model Checking Fairness
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