Computation Tree Logic (CTL)

Antonio González Burgueño

University of Oslo, Norway

May 26, 2017

Outline

 Introducing CTL Model of Comuputation

2 CTL Syntax.

CTL Examples CTL Semantics CTL Operators Expressiveness of CTL and LTL

3 CTL Model Checking Labeling Algorithm Fairness

Antonio González Burgueño (UIO)

Outline

Introducing CTL Model of Comuputation

2 CTL Syntax.

CTL Examples CTL Semantics CTL Operators Expressiveness of CTL and LTL

CTL Model Checking Labeling Algorithm Fairness

LTL vs CTL

LTL

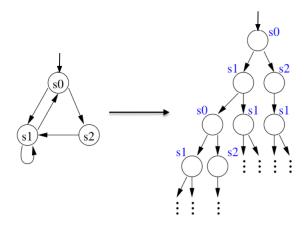
- Describes properties of individual executions.
- Semantics defined as a set of executions.
- LTL formulas ψ are evaluated on paths (path formulas).

CTL

- Describes properties of a computation tree.
 - Formulas can reason about many executions at once.
- Semantics defined in terms of states.
- CTL formulas ϕ are evaluated on states (state formulas)

Model of Comuputation (I)

- Computation trees are derived from state transition graphs.
- The graph structure is unwound into an infinite tree rooted at the initial state.



Unwind a Graph Into a Tree.

Model of Comuputation (II)

Formally, a *Kripke structure* is a triple $M = \langle S, R, L \rangle$, where

- S is the set of states,
- $R \subseteq S \times S$ is the transition relation, and
- $L: S \to \mathcal{P}(AP)$ gives the set of atomic propositions true in each state.

We assume that R is total

• $\forall s \in S, \exists s' \in S : (s,s') \in R$

A path in M is an infinite sequence π of states:

• $\pi = s_0, s_1, \dots$ such that for $i \ge 0$, $(s_i, s_{i+1}) \in R$

Outline

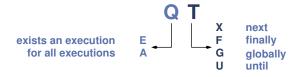
Introducing CTL Model of Comuputation

CTL Syntax. CTL Examples CTL Semantics CTL Operators Expressiveness of CTL and LTL

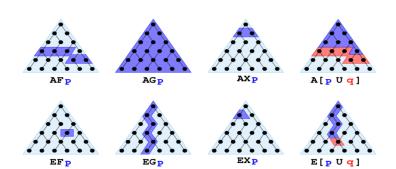
3 CTL Model Checking Labeling Algorithm Fairness

CTL Syntax.

- Combines temporal operators with quantification over runs.
- Operators have the following form:



Visualization of semantics



CTL Examples.

Let "P" mean "I like chocolate".

- AG.P: "I will like chocolate from now on, no matter what happens".
- EF.P: "It is possible I may like chocolate some day, at least for one day".
- **AF.EG**.P: "It is always possible (AF) that I will suddenly start liking chocolate for the rest of time".
- EG.AF.P: "Depending on what happens next, it is possible (E) that for the rest of time (G), there will always be some time in the future (AF) when I will like chocolate.

CTL semantics

The Backus-Naur form form CTL formula is the following:

$$\phi ::= \quad \top \mid \perp \mid p \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \to \phi \mid AX\phi \mid EX\phi$$
$$AF\phi \mid EF\phi \mid AG\phi \mid EG\phi \mid A[\phi \mathbf{U}\phi] \mid E[\phi \mathbf{U}\phi]$$

Let ϕ be a CTL formula and $s \in S$. $M, s \models \phi$, where ϕ is true in all the initial states of the model, is defined as follows:

- $M, s \models \top$
- $M, s \not\models \bot$
- $M, s \models p \text{ iff } p \in L(s)$
- $M, s \models \neg \phi$ iff $M, s \not\models \phi$
- $M,s\models\phi\wedge\psi$ iff $M,s\models\phi$ and $M,s\models\psi$
- $M,s \models \phi \lor \psi$ iff $M,s \models \phi$ or $M,s \models \psi$

CTL semantics. Temporal Operators (I)

- $M, s \models \mathsf{AX}\phi$ iff $\forall s' \ s.t \ sR_t s', M, s' \models \phi$
- $M, s \models \mathsf{EX}\phi$ iff $\exists s' \ s.t \ sR_ts'$ and $M, s' \models \phi$
- $M, s \models \mathsf{AG}\phi$ iff $\forall \pi = (s, s_2, s_3, s_4, ...)$ s.t. $s_i R_t s_{i+1}$ and for all i, it is the case that $M, s_i \models \phi$
- $M, s \models \mathsf{EG}\phi$ iff $\exists \pi = (s, s_2, s_3, s_4, ...)$ s.t. $s_i R_t s_{i+1}$ and for all i, it is the case that $M, s_i \models \phi$

CTL semantics. Temporal Operators (II)

- $M, s \models \mathsf{AF}\phi$ iff $\forall \pi = (s, s_2, s_3, s_4, ...)$ s.t. $s_i R_i s_{i+1}$, there is a state s_i s.t $M, s_i \models \phi$
- $M, s \models \mathsf{EF}\phi$ iff $\exists \pi = (s, s_2, s_3, s_4, ...)$ s.t. $s_i R_t s_{i+1}$, and there is a state s_i s.t $M, s_i \models \phi$
- $M, s \models A[\phi \mathbf{U}\psi]$ iff $\forall \pi = (s, s_2, s_3, s_4, ...)$ s.t. $s_i R_t s_{i+1}$, there is a state s_j s.t $M, s_i \models \phi$ and $M, s_j \models \psi$ for all i < j
- $M, s \models E[\phi \mathbf{U}\psi]$ iff $\exists \pi = (s, s_2, s_3, s_4, ...)$ s.t. $s_i R_t s_{i+1}$, there is a state s_j s.t $M, s_i \models \phi$ and $M, s_j \models \psi$ for all i < j

Basic Set of CTL Operators

There are eight basic CTL operators:

- AX and EX,
- AG and EG,
- AF and EF, and
- AU and EU.

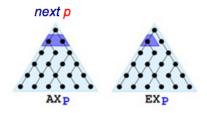
That can be expressed in terms of the operators $\textbf{EX},\,\textbf{EG}$ and EU

- **AX** $f = \neg \mathbf{EX}(\neg f)$,
- AG $f = \neg EF(\neg f)$,
- **AF** $f = \neg \mathbf{EG}(\neg f)$,
- $\mathbf{EF} f = \mathbf{E} [true \mathbf{U} f]$
- $\mathbf{A} [f \mathbf{U} g] = \neg \mathbf{E} [\neg g \mathbf{U} \neg f \land \neg g] \land \neg \mathbf{E} \mathbf{G} \neg g$

Expressiveness of CTL and LTL(I)

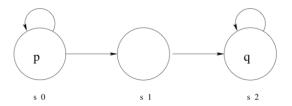
Any CTL formula ϕ using:

- A operator can be expressed in LTL; e.g. $AG\phi_{CTL} \equiv G\phi_{LTL}$ and $AX\phi_{CTL} \equiv X\phi_{LTL}$
- E operator cannot be expressed in LTL; e.g. $\mathbf{E} \mathbf{X} p \neq \mathbf{X} p$.



Expressiveness of CTL and LTL(II)

- **GF** $p \Rightarrow$ **GF** q
 - $(\mathbf{GF} p \equiv \mathbf{AGAF} p)$ and $(\mathbf{GF} q \equiv \mathbf{AGAF} q)$
 - $(\mathbf{GF} p \Rightarrow \mathbf{GF} q) \neq (\mathbf{AGAF} p \Rightarrow \mathbf{AGAF} q)$



- The CTL is trivially satisfied, because AGAF p is not satisfied.
- LTL is not satisfied, because the path cycling through s₀ forever satisfies GF p but not GF q.
- The LTL formula is an implication about paths, but the two parts of the CTL formula determine subsets of states independently.

Outline

 Introducing CTL Model of Comuputation

OCTL Syntax. CTL Examples CTL Semantics CTL Operators Expressiveness of CTL and LTL

3 CTL Model Checking Labeling Algorithm Fairness

CTL Model Checking

- Assumptions:
 - Finite number of processes, each having a finite number of finite-valued variables.
 - Finite length of CTL formula
- Problem: Determine whether ϕ is true in a finite structure M.
- Algorithm overview:
 - **1** Convert ϕ in terms of **AF**, **EU**, **EX**, \land , \lor , \bot .
 - **2** Label the states of M with the subformulas of ϕ that are satisfied there.
 - **3** If starting state s_0 is labeled with ϕ , then ϕ holds on M; i.e., $(s_0 \in \{s | M, s \models \phi\}) \Rightarrow (M \models \phi)$

Labeling Algorithm(I)

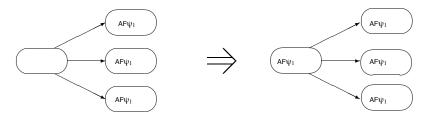
- Suppose ψ is a subformula of φ and states satisfying all the immediate subformulas of ψ have already been labeled.
- We want to determine which states to label with ψ .
- If ψ is:
 - \perp : Then no states are labeled with \perp
 - p: label s with p if $p \in L(s)$.
 - $\psi_1 \wedge \psi_2$: label s with $\psi_1 \wedge \psi_2$ if s is already labeled both with ψ_1 and with ψ_2 .
 - $\neg \psi_1$: label s with $\neg \psi_1$ if s is not already labeled with ψ_1 .
 - **EX** ψ_1 : label any state with **EX** ψ_1 if one of its successors is labeled with ψ_1 .

Labeling Algorithm(II)

AF ψ_1

- If any state s is labeled with ψ_1 , label it with **AF** ψ_1 .
- Repeat: label any state with **AF** ψ_1 if all successor states are labeled with **AF** ψ_1 , until there is no change.

For example:

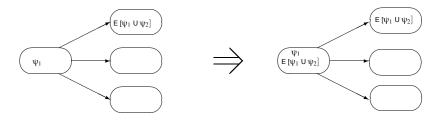


Labeling Algorithm(III)

 $\mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2]$

- If any state s is labeled with ψ_2 , label it with $\mathbf{E}[\psi_1 \mathbf{U} \psi_2]$.
- Repeat: label any state with $\mathbf{E}[\psi_1 \mathbf{U} \psi_2]$ if it is labeled with ψ_1 and at least one of its successors is labeled with $\mathbf{E}[\psi_1 \mathbf{U} \psi_2]$, until there is no change.

For example:



Output states labeled with f. Complexity: $O(|f| \times S \times (S + |R|))$ (linear in the size of the formula and quadratic in the size of the model).

Fairness (I)

- Often liveness properties (something good eventually happens) cannot be proven without certain assumptions, i.e., fairness.
- Fairness: something happens infinitely often or repeatedly.
 - Executions are fair if a system enters a state infinitely often, and
 - Takes every possible transition from that state.
- Example: Liveness condition at the Dining Philosophers Problem.
 - Any philosopher who tries to eat, eventually does.

Fairness (II)

Weak/strong fairness can be expressed in LTL

- Weak fairness: if an event is continuously enabled, it will occur infinitely often
 - LTL: **GF** (\neg enabled \lor occurs)
- Strong fairness: if a event is infinitely often enabled it will occur infinitely often
 - LTL: **GF** enabled \Rightarrow GF occurs

Fairness (III)

- In LTL holds $M \models_{fair} \psi$ if and only if $M \models (fair \rightarrow \psi)$.
- Formulas of the form $\forall (fair \rightarrow \psi)$ and $\exists (fair \land \psi)$ needed.
- CTL problem:
 - · Boolean combinations of path formulas are not allowed in CTL
 - Example: strong fairness constraints $\Box \Diamond b \rightarrow \Box \Diamond c \equiv \Diamond \Box \neg b \lor \Diamond \Box c$ cannot be expressed in CTL because persistence properties cannot be represented.
- Solution: change the semantics of CTL by ignoring unfair paths.

Semantics of fair CTL

CTL fairness assumption *fair*, relation \models_{fair} is defined by:

$$\begin{split} s &\models_{fair} a & iff \quad a \in Label(s) \\ s &\models_{fair} \neg \phi & iff \quad \neg(s \models_{fair} \phi) \\ s &\models_{fair} \phi \lor \psi & iff \quad (s \models_{fair} \phi) \lor (s \models_{fair} \psi) \\ s &\models_{fair} \exists \varphi & iff \quad \pi \models_{fair} \varphi \text{ for some fair path } \pi \text{ that starts in } s \\ s &\models_{fair} \forall \varphi & iff \quad \pi \models_{fair} \varphi \text{ for all fair paths } \pi \text{ that start in } s \\ \pi &\models_{fair} \bigcirc \phi & iff \quad \pi[1] \models_{fair} \phi \\ \pi &\models_{fair} \phi \cup \psi & iff \quad \exists j. j \ge 0, \pi[j] \models_{fair} \psi \land \forall k, 0 \le k < j, \pi[k] \models_{fair} \phi \end{split}$$

where π is a fair path *iff* $\pi \models_{LTL} fair$ for CTL fairness assumption *fair*.

CTL with fairness constraints

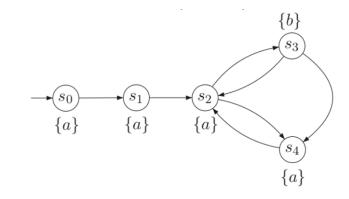
- Fair path: a path in the model along which each fairness condition holds infinitely often.
- Fair states: states reachable along fair paths
- Let $C = \psi_1, \psi_2, ..., \psi_n$ be a set of *n* fairness constraints.
 - Sets of states (constraint) that must occur infinitely often along a computation path to be considered.
 - Restrict the path quantifiers (E and A) to fair paths.
 - **EF** ψ holds at state *s* only if there exists a fair path from *s* along which ϕ holds.
 - $\mathbf{AG}\psi$ holds at s if ψ holds in all states reachable from s along fair paths.

Algorithm for fairness in CTL

An algorithm for fairness in CTL is as follows:

- **1** Restrict the graph to states satisfying ϕ ; of the resulting graph, we want to know from which states there is a fair path.
- Find the maximal strongly connected components (SCC) of the restricted graph;
- 8 Remove a SCC if, for some ψ_i, it does not contain a state satisfying ψ_i. The resulting SCCs are the fair SCCs. Any state of the restricted graph that can reach one has a fair path from it.
- ④ Use backwards breadth-first searching to find the states on the restricted graph that can reach a fair SCC.

Fairness in CTL. Example $M \not\models \forall a(a \rightarrow \forall \Diamond b).$



- $C = \{ (\Box \Diamond s_2 \to \Box \Diamond a), (\Box \Diamond s_2 \to \Box \Diamond b) \}.$
- Both loops should be visited fairly.

•
$$M \models_{fair} \forall a(a \rightarrow \forall \Diamond b).$$

References

- E. M. Clarke, E. A. Emerson and A. P. Sistla. Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on Programming Languages and Systems, April, 1986
- Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety, 1995.
- Model Checking. Edmund M Clarke, jr., Orna Grumberg, and Doron Peled, MIT Press, 1999
- Michael Huth and Mark Ryan Logic in Computer Science: Modelling and Reasoning about Systems. The MIT Press, 1999.
- Logic in Computer Science: Modelling and Reasoning about Systems Michael Huth, Mark Ryan Cambridge University Press 2004. http://www.cs.bham.ac.uk/research/lics/
- Christel Baier and Joost-Pieter Katoen. Principles of Model Checking, MIT Press 2008.