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Petri Nets

Petri Nets :

I mathematically founded formalism

I concurrency

I synchronization

I modeling distributed systems

I Invented by C.A.Petri

They are consisting of:

I places

I transitions

I arcs

I tokens

I initial marking
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Petri Nets - Mutual Exclusion
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Colored Petri nets

High-level Petri nets
The extension of Petri nets (called place/transition nets) with
abstract data types.

Colored Petri nets

COLORSET (TYPE )
Guard

EXPR

COLORS(TYPE VALUES)
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Example: Dining Philosophers
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CPN Model
Five Chinese philosophers are sitting around a circular table. In the middle of
the table there is a delicious dish of rice, and between each pair of philosophers
there is a single chopstick. Each philosopher alternates between thinking and
eating. To eat, the philosopher needs two chopsticks, and he is only allowed to
use the two which are situated next to him (on his left and right side). The
sharing of chopsticks prevents two neighbours from eating at the same time.

Rice
Dish

ph1

ph5

ph4 ph3

ph2

cs1 cs2

cs4

cs3cs5

The philosopher system is modelled by the CP-net shown below. The PH
colour set represents the philosophers, while the CS colour set represents the
chopsticks. The function Chopsticks maps each philosopher into the two
chopsticks next to him.

Eat
PH

    Take 
Chopstick

Think

PH

PH.all()

p

p

Chopsticks(p)

Chopsticks(p)

p

p

Put Down
Chopstick

   Unused
Chopsticks

CS

CS.all()

val n = 5;
color PH = index ph with 1..n;
color CS = index cs with 1..n;
var p: PH;
fun Chopsticks(ph(i)) =

1`cs(i)++1`cs(if i=n then 1 else i+1);
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State Space

State Space
A directed graph having a node for each reachable marking and an
arc for each occurring binding element.

There is one to one correspondence between the paths in the state
space and the occurrence sequences (where all steps consisting of
a single binding element)

The strongly-connected-component graph (SCC graph) is the
graph derived from the state space where each node is a SCC of
the state space.

SCC graph

I is an acyclic graph

I fewer nodes than the ss mean that there exist infinite
occurrence sequences

I more efficient since often much smaller than the ss
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An occurrence graph for the dining philosophers is shown below. The current
version of CPN Tools does not include facilities for drawing O-graphs. Each
node represents a reachable marking, while each arc represents the occurrence
of a binding element – leading from the marking of the source node to the
marking of the destination node. To improve readability, we have only shown
the contents of some of the markings and some of the binding elements. It
should be noted that all arcs are double arcs (i.e., represents two individual
arcs).

1
5:5

2
3:3

3
3:3

4
3:3

5
3:3

6
3:3

7
2:2

8
2:2

9
2:2

Unused: 1`cs(1) 
Think: 1`ph(1)+ 1`ph(3)+ 1`ph(5) 
Eat: 1`ph(2)+ 1`ph(4) 

10
2:2

Unused: 1`cs(3) 
Think: 1`ph(2)+ 1`ph(3)+ 1`ph(5) 
Eat: 1`ph(1)+ 1`ph(4) 

11
2:2

Unused: 1`cs(5) 
Think: 1`ph(2)+ 1`ph(4)+ 1`ph(5) 
Eat: 1`ph(1)+ 1`ph(3) 

Put: {p=ph(2)}

Take: {p=ph(4)}Take: {p=ph(1)}

Put: {p=ph(3)}

The standard report looks as shown below. To improve the readability of the
multi-set bounds we have substituted PH for 1`ph(1)+ 1`ph(2)+ 1`ph(3)+
1`ph(4) + 1`ph(5) and CS for 1`cs(1)+ 1`cs(2) + 1`cs(3) + 1`cs(4) + 1`cs(5).
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Behavioral Properties

Boundedness properties
How many and which tokes a place may hold when all reachable
markings are considered.

Home Properties
A home marking is a marking that can be reached from any
reachable marking

I All the markings in a (single) terminal SCC are home
markings



Petri Nets and Model
Checking

Natasa Gkolfi

Behavioral Properties

Liveness Properties
A dead marking is a marking in which no binding elements are
enabled.
Similarly dead transition.
A transition is live if, starting from any reachable marking, we can
always find an occurrence sequence containing it.

Fairness Properties
How often transitions occur in infinite occurrence sequences.
A transition is impartial if it occurs infinitely often in all infinite
occurrence sequences.

I Removal of this transition implies no infinite occurrence
sequences!
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Example: Dining Philosophers

13

The following function returns all the arcs where transition Take occurs on the
first instance of page System with the variable p bound to a specified
philosopher:

fun TakeChopsticks (p:PH) : Arc list
= PredAllArcs(fn a =>

case ArcToBE a
of Bind.System'Take (1,{p=p’}) => p=p'
| _ => false)

For the dining philosophers system the O-graph grows relatively slow – when
we increase the number of philosophers:

|PH| Nodes Arcs
2 3 4
3 4 6
4 7 16
5 11 30
6 18 60
7 29 112
8 47 208
9 76 378

10 123 680
15 1,364 11,310
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State Space Reduction Methods
I Sweep-Line method

A progress measure is a function that maps each marking into a
progress value.
For a given marking, the progress value of any successor marking
must be greater or equal to its progress value.

I Symmetry method

Equivalence classes used for symmetric markings and symmetric
binding elements.

I the ss can be significantly reduced
I can check all behavioral properties that are invariant under

symmetry
I computing canonical representations of markings and binding

elements is computationally expensive

I Equivalence method

A generalization of the symmetry method. Here, no requirement
that the equivalence relations should be induced by symmetries.



Petri Nets and Model
Checking

Natasa Gkolfi

State Space Reduction Methods
I Sweep-Line method

A progress measure is a function that maps each marking into a
progress value.
For a given marking, the progress value of any successor marking
must be greater or equal to its progress value.

I Symmetry method

Equivalence classes used for symmetric markings and symmetric
binding elements.

I the ss can be significantly reduced
I can check all behavioral properties that are invariant under

symmetry
I computing canonical representations of markings and binding

elements is computationally expensive

I Equivalence method

A generalization of the symmetry method. Here, no requirement
that the equivalence relations should be induced by symmetries.



Petri Nets and Model
Checking

Natasa Gkolfi

State Space Reduction Methods
I Sweep-Line method

A progress measure is a function that maps each marking into a
progress value.
For a given marking, the progress value of any successor marking
must be greater or equal to its progress value.

I Symmetry method

Equivalence classes used for symmetric markings and symmetric
binding elements.

I the ss can be significantly reduced
I can check all behavioral properties that are invariant under

symmetry
I computing canonical representations of markings and binding

elements is computationally expensive

I Equivalence method

A generalization of the symmetry method. Here, no requirement
that the equivalence relations should be induced by symmetries.



Petri Nets and Model
Checking

Natasa Gkolfi

Thank you!


