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Chapter 1
Learning Targets of Chapter “Recall Runtime
Verification in More Depth”.

1. Recall the underlying principle of runtime verification.
2. Get to know to applications of runtime verification.
3. See different frameworks for runtime verification.
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Runtime Verification (Recall)

Verification technique that allow for checking
whether a run of a system under scrutiny
satisfies or violates a given correctness property.
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Run and Execution (Recall)

Run

I Run: possibly infinite sequence of the system’s states.
I Run formally: possibly infinite word or trace.

I Execution: finite prefix of a run.
I Execution formally: finite word or trace.
I RV is primarly used on executions.
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Run and Execution (Recall)

RunExecution

I Run: possibly infinite sequence of the system’s states.
I Run formally: possibly infinite word or trace.

I Execution: finite prefix of a run.
I Execution formally: finite word or trace.
I RV is primarly used on executions.
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Adding Monitors to a System (Recall)

I A monitor checks whether an execution meets a
correctness property.

I A monitor is a device that reads a finite trace and yields
a certain verdict.

C1

C2

C3

C4

M
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Adding Monitors to a System (Recall)

I A monitor checks whether an execution meets a
correctness property.

I A monitor is a device that reads a finite trace and yields
a certain verdict.
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Monitors can Check Relations of Values
(Recall)

I A monitor can use more than one input value.
I A monitor can check the relations of multiple values.

C

M
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RV and the Word Problem

A simple monitor outputs
I yes if the execution satisfies the correctness property,
I no if not.

I Let JϕK denote the set of valid executions given by
property ϕ.

I Then runtime verification answers the word problem
w ∈ JϕK.

I The word problem can be decided with lower complexity
compared to the subset problem.
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How Does a Good Monitor Look?
Impartiality and Anticipation

Definition (Impartiality)

Impartiality requires that a finite trace is not evaluated to
true or, respectively false, if there still exists a (possibly
infinite) continuation leading to another verdict.

Definition (Anticipation)

Anticipation requires that once every (possibly infinite)
continuation of a finite trace leads to the same verdict, then
the finite trace evaluates to this very same verdict.

A monitor for RV should adhere to both maxims!
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Runtime Reflection

Runtime reflection (RR) is an architecture pattern for the
development of reliable systems.

I A monitoring layer
is enriched with

I a diagnosis layer
and a subsequent

I mitigation layer.

Logging
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Runtime Reflection
Logging—Recording of System Events

The logging layer
I observes system events and
I provides them for the monitoring layer.

Realization

I Add code annotations within the system to build or
I use separated stand-alone loggers.
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Runtime Reflection
Monitoring—Fault Detection

The monitoring layer
I is implemented using runtime verification techniques,
I consists of a number of monitors,
I detects the presence of faults in the system and
I raises an alarm for the diagnosis layer in case of faults.
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Runtime Reflection
Diagnosis—Failure Identification

The diagnosis layer
I collects the verdicts of the monitors and
I deduces an explanation for the current system state

solely based upon the results of the monitors
and general information on the system.
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Runtime Reflection
Mitigation—Reconfiguration

The reconfiguration layer
I mitigates the failure, if possible,
I or else may store detailed diagnosis information

for off-line treatment.
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When to Use RV?

I The verification verdict is often referring to a model of
the real system. Runtime verification may then be used
to easily check the actual execution of the system.
Thus, runtime verification may act as a partner to
theorem proving and model checking.

I Often, some information is available only at runtime. In
such cases, runtime verification is an alternative to
theorem proving and model checking.

I The behavior of an application may depend heavily on
the environment of the target system. In this scenario,
runtime verification adds on formal correctness proofs
by model checking and theorem proving.

I In the case of systems where security is important, it is
useful also to monitor behavior or properties that have
been statically proved or tested.
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Monitoring Systems/Logging: Overview

monitoring systems
/logging

instru-
mentation

source
code

byte code

binary
code

logging APIs

trace tools

dedicated
tracing/-
monitoring
hardware
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Monitoring Systems/Logging: Overview

RV
frameworks

Eagle

J-LO

Larva

LogScope

LoLa

MACMOP

RulerR

Temporal
Rover

TraceContract

TraceMatches

jUnitRV
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Conclusion

1. Runtime verification deals with verification techniques
that allow checking whether an execution of a system
under scrutiny satisfies or violates a given correctness
property.

2. A Monitor checks whether an execution meets a
correctness property.

3. One of its main technical challenges is the synthesis of
efficient monitors from logical specifications.



Chapter 2
Specification Languages on Words

Course “Runtime Verification”
M. Leucker & V. Stolz
INF5140 / V17



Chapter 2
Learning Targets of Chapter “Specification Lan-
guages on Words”.

1. Understand that RV specifies shape of words.
2. Recall the idea of regular expressions and understand

their limitations for practical specifications.
3. Get an idea about temporal logics.
4. Understand the difference of regular expressions and

temporal logics.
5. Understand how to specify properties in LTL.
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Recap

We want to monitor the execution of a system.

We have already seen that
I A run of a system is a possibly infinite sequence of the

system’s states.
I An execution of a system is a finite prefix of a run.

Observations

I We describe the execution of a system in a discrete way.
I The system is in exactly one state at a time.
I In the next step the system is in the next state.
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Atomic Propositions

I An atomic proposition is an indivisible bit.
I We consider a fixed set of finitely many such bits.
I In every state every atomic proposition is either true or

false.
I In other words:

In every state of the execution some atomic
propositions hold.

Example

I Variable count is greater than 5.
I Memory for a variable data is allocated.
I Memory for data is free.
I The file handle logfile points to an opened file.
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States

I Let AP be a fixed finite non empty set of atomic
propositions.

I Σ = 2AP is the power set of these.
I A state can be seen as an element a ∈ Σ.
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Executions Are Like Linear Paths
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Languages over Alphabets

Let Σ be an alphabet and n ∈ N.
We then use the following notation:

Notation Meaning
Σ∗ set of all finite words over Σ
Σn all words in Σ∗ of length n
Σ≤n all words in Σ∗ of length at most n
Σ≥n all words in Σ∗ of length at least n
Σ+ = Σ≥1

Σω set of all infinite words over Σ
Σ∞ = Σ∗ ∪ Σω
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Executions Are Words

I A state can be seen as an element a ∈ Σ.
I Now a run is an infinite word w ∈ Σω

I and an execution a finite prefix w ∈ Σ∗.

Runtime verification is about checking if an execution is
correct, so we need to specify the set of correct executions
as a language L ⊆ Σ∗. Therefore a correctness property is a
language L.
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Regular Expressions: The Idea

I Use a bottom up construction to construct a complex
language by combining simpler languages together.

I Start with languages containing only one word of length
1.

I Use the common operations on languages to combine
these into complexer languages.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Runs Are Words
States of the System

Executions Are Words

Regular
Expressions
The Idea

Syntax and Semantics

Limitations

Linear Temporal
Logic (LTL)
Propositional Logic

Temporal Logic

Conclusion

2-13

Operations on Languages

Let L1 ⊆ Σ∗ and L2 ⊆ Σ∗ be two languages. We than have
intersection L1 ∩ L2 = {w ∈ Σ∗ | w ∈ L1 ∧ w ∈ L2}

union L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 ∨ w ∈ L2}
complement L = {w ∈ Σ∗ | w 6∈ L}
concatenation L1 ◦ L2 = {uv ∈ Σ∗ | u ∈ L1 ∧ v ∈ L2}
Kleene star L∗ = {u1u2 . . . un ∈ Σ∗ | ∀i : ui ∈ L}
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Regular Expressions

Regular expressions use only the operations union,
concatenation and Kleene star. These are enough to build all
regular languages.

I Every symbol a ∈ Σ is a regular expression.
I The empty word ε describes the empty word.
I Concatenation is expressed by concatenating regular

expressions.
I Union is expressed by the | operator combining two

regular expressions.
I Kleene star is expressed by the * operator at the end of

a regular expression.
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Examples

Examples
Let Σ = {0, 1} be the finite alphabet.

I (0|1)* specifies all words w ∈ Σ∗.
I 1*0* specifies all words w ∈ Σ∗ that do not contain

the string 01.
I ((0|1)1)* specifies all words w ∈ Σ∗ of even length

where every second letter is 1.
I ((0|1)1)*(0|1|ε) specifies all words w ∈ Σ∗ where

every second letter is 1.
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Syntax of Regular Expressions

Definition (Syntax of regular expressions)

Let x ∈ Σ be a symbol from a given alphabet. The syntax of
regular expressions is inductively defined by the following
grammar:

ϕ ::= ε | x | ϕϕ | (ϕ|ϕ) | (ϕ)*
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Semantics of Regular Expression
Definition (Semantics of Regular Expressions)

Let w, ui ∈ Σ∗ be words over the given alphabet, x ∈ Σ be
an element of the alphabet and R,R′ regular expressions.
Then the semantics of a regular expression is inductively
defined as relation |= of a non empty word and a regular
expression as follows.

ε |= ε

x |= x

w |= RR′ iff ∃u1, u2 : w = u1u2

and u1 |= R and u2 |= R′

w |= (R|R′) iff w |= R or w |= R′

w |= (R)* iff ∃u1, . . . , un : w = u1 . . . un

and ∀i ∈ {1, . . . , n} : ui |= R.
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Expressiveness of Regular Expressions

Regular expressions describe regular languages:
I Every language described by a regular expression is a

regular language.
Proof: Structural induction on the syntax of regular
expressions.

I Every regular language can be described using a regular
expression.
Proof: Standard translation of deterministic finite
automata into regular expressions.
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Limitations

Regular expressions sometimes look more like a swear word
in a comic book than a specification of anything.

^[^\)]+$

Crash!
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Specifying Correctness Properties

I Specifications must be easy to understand:
Specification must be correct—otherwise verification
makes no sense at all.

I We need kind of negation:
It is often easier to specify the behaviour we do not
want.
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Another Idea

I A state of a system is a set of atomic propositions that
hold in this state.

I An execution of a system is a finite sequence of such
states.

Let’s use operators of
I propositional logic to describe properties of one state.
I temporal logic to describe the relationship of states.
I propositional logic to combine this.
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A Simple Analogy
I A state is like a day.
I The initial state is like today.
I The next state is like tomorrow.

s0 s1 s2 . . . s21

today tomorrow
the day
after

tomorrow
. . . in

21 days

Remember

I A day is a state in the execution.
I A day is a letter in the word over Σ = 2AP.
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Propositional Logic

Using propositional logic without temporal operators we
describe only the first state (today).

Example
Consider AP = {p, q, r, s} and an initial state s0 of an
execution w in which p and r holds. We then have

s0 s1 s2 . . . s21

{p, r}

w |= true w 6|= false
w |= p w |= p∧ r∨ q
w |= ¬ q ∧¬ s w 6|= q.
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Formula: ϕ

The formula ϕ holds for an execution if ϕ holds in the first
state s0 of that execution.

s0 s1 s2 . . . s21

ϕ
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Next: Xϕ

The formula Xϕ holds in state si if ϕ holds in state si+1.
If there is no state si+1 then Xϕ never holds.

s0 s1 s2 . . . s21

ϕ
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Weak Next: Xϕ

The formula Xϕ holds in state si if ϕ holds in state si+1.
If there is no state si+1 then Xϕ always holds.

s0 s1 s2 . . . s21

ϕ
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Globally: Gϕ

The formula Gϕ holds in state si if ϕ holds in all states sj
for j ≥ i.

s0 s1 s2 . . . s21

ϕ ϕ ϕ ϕ ϕ



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Runs Are Words
States of the System

Executions Are Words

Regular
Expressions
The Idea

Syntax and Semantics

Limitations

Linear Temporal
Logic (LTL)
Propositional Logic

Temporal Logic

Conclusion

2-29

Finally: Fϕ

The formula Fϕ holds in state si if there is a state sj for
j ≥ i in which ϕ holds.

s0 s1 . . . s20 s21

ϕ
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Until: ϕUψ

The formula ϕUψ holds in state si if there is a state sj for
j ≥ i in which ψ holds and ϕ holds in all states sk for
i ≤ k < j.

s0 s1 . . . s20 s21

ϕ ϕ ϕ ψ

Notice that a state in which ϕ holds is not required in all
cases!
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Release: ϕRψ

The formula ϕRψ holds in state si if there is a state sj for
j ≥ i in which ϕ holds and ψ holds in all states sk for
i ≤ k ≤ j.
If there is no such state sj then the ϕRψ holds if ψ holds in
all states sk for k ≥ i.

s0 s1 . . . s20 s21

ψ ψ ψ ψ ∧ ϕ

or

s′0 s′1 . . . s′20 s′21

ψ ψ ψ ψ ψ
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Conclusion

1. The execution of a system is a word over the alphabet
Σ = 2AP where AP is the set of atomic propositions.

2. A correctness property is a language describing a set of
executions.

3. Regular expressions describe regular languages and
could be used to describe regular correctness properties.

4. Linear Temporal Logic (LTL) describes a subset of
regular languages but is much better suited to describe
correctness properties for runtime verification: Negation
and Conjunction of LTL allows often to express
correctness properties in a simple manner.
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Chapter 3
Learning Targets of Chapter “LTL on Finite
Words”.

1. Learn about LTL.
2. Understand the LTL syntax.
3. Understand the LTL semantics on finite words: FLTL.
4. See how RV can be implemented using FLTL and learn

about monitors for finite, terminated traces.
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Recall: Specify Correctness Properties

Observing Executions

Idea
Specify correctness
properties in Linear
Temporal Logic (LTL).

Commercial
Specify correctness
properties in Regular
Linear Temporal Logic
(RLTL).
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Syntax of LTL Formulae

Definition (Syntax of LTL Formulae)

Let p ∈ AP be an atomic proposition from a finite set of
atomic propositions AP. The set of LTL formulae is
inductively defined by the following grammar:

ϕ ::= true | p | ϕ∨ϕ | Xϕ | ϕUϕ | Fϕ |
false | ¬ p | ϕ∧ϕ | Xϕ | ϕRϕ | Gϕ |
¬ϕ
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Order of Operations

The operator precedence is needed to determine an
unambiguous derivation of an LTL formula if braces are left
out in nested expressions. The higher the rank of an
operator is the later it is derivated.

Braces only need to be added if an operator of lower or same
rank should be derivated later than the current one.

Example (operator precedence of arithmetic)

1. exponential operator: ••

2. multiplicative operators: ·, /
3. additive operators: +,−
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Order of Operations

Definition (operator precedence of LTL)

1. negation operator: ¬
2. unary temporal operators: X,X,G,F
3. binary temporal logic operators: U,R
4. conjunction operator: ∧
5. disjunction operator: ∨

Example
G ¬x ∨ ¬x U G y ∧ z
≡G (¬x)∨

((
(¬x) U (G y)

)
∧ z
)
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LTL for the Working Engineer?

Simple?
LTL is for theoreticians—but for practitioners?

SALT
Structured Assertion Language for Temporal Logic
⇒ Syntactic Sugar for LTL
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www.isp.uni-luebeck.de/salt

www.isp.uni-luebeck.de/salt
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Parts of Words

In the formal definition of LTL semantics we denote parts of
a word as follows:

Let w = a1a2 . . . an ∈ Σn be a finite word over the alphabet
Σ = 2AP and let i ∈ N with 1 ≤ i ≤ n be a position in this
word. Then

I |w| := n is the length of the word,
I wi = ai is the i-th letter of the word and
I wi = aiai+1 . . . an is the subword starting with letter i.
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FLTL Semantics

Definition (FLTL Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

w |= true
w |= p iff p ∈ w1

w |= ¬ p iff p 6∈ w1

w |= ¬ϕ iff w 6|= ϕ

w |= ϕ∨ψ iff w |= ϕ or w |= ψ

w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
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FLTL Semantics

Definition (FLTL Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

w |= Xϕ iff |w| > 1
and, for |w| > 1, w2 |= ϕ

w |= Xϕ iff |w| = 1
or, for |w| > 1, w2 |= ϕ
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Definition (FLTL Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

w |= ϕUψ iff ∃i, 1 ≤ i ≤ |w| : (wi |= ψ

and ∀k, 1 ≤ k < i : wk |= ϕ)
w |= ϕRψ iff ∃i, 1 ≤ i ≤ |w| : (wi |= ϕ

and ∀k, 1 ≤ k ≤ i : wk |= ψ)
or ∀i, 1 ≤ i ≤ |w| : wi |= ψ
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FLTL Semantics

Definition (FLTL Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

w |= Fϕ iff ∃i, 1 ≤ i ≤ |w| : wi |= ϕ

w |= Gϕ iff ∀i, 1 ≤ i ≤ |w| : wi |= ϕ
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Finally and Globally Examples

Examples (Finally and Globally)

Consider words over the alphabet Σ = 2AP with
AP = {p, q}.

I {p}∅{q}∅ |= F q.

I {q}{q}{p, q}{q}{q} |= G q.

I ∅{p}{p, q}∅{q}∅{q} |= G F q.
I {p}∅{q}{p}{p, q}{p, q}{q} |= F G q.

I G Fϕ can be read as: For every state (globally) there
will be a state in the future (finally) in that ϕ holds.

I F Gϕ can be read as: There will be a state in the
future (finally) that ϕ holds in every state (globally).
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Practical Examples
In the following examples we consider these scopes:
everytime: all states
before ψ: all states before the first state in which ψ holds

(if there is such a state)
after ψ: all states after and including the first state in

which ψ holds
(if there is such a state)

Example (Absence)

The formula ϕ does not hold
everytime: G¬ϕ
before ψ: (Fψ)→(¬ϕUψ)
after ψ: G(ψ→(G¬ϕ))
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everytime: all states
before ψ: all states before the first state in which ψ holds

(if there is such a state)
after ψ: all states after and including the first state in

which ψ holds
(if there is such a state)

Example (Existence)

The formula ϕ holds in the future
everytime: Fϕ
before ψ: G¬ψ ∨¬ψU(ϕ∧¬ψ)
after ψ: G¬ψ ∨F(ψ ∧Fϕ)
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Practical Examples
In the following examples we consider these scopes:
everytime: all states
before ψ: all states before the first state in which ψ holds

(if there is such a state)
after ψ: all states after and including the first state in

which ψ holds
(if there is such a state)

Example (Universality)

The formula ϕ holds
everytime: Gϕ

before ψ: (Fψ)→(ϕUψ)
after ψ: G(ψ→Gϕ)
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Equivalences

Definition (Equivalence of Formulae)

Let Σ = 2AP and ϕ and ψ be LTL formulae over AP. ϕ and
ψ are equivalent, denoted by ϕ ≡ ψ, iff

∀w ∈ Σ+ : w |= ϕ⇔ w |= ψ.

Globally and finally can easily be expressed using until and
release:

Fϕ ≡ true Uϕ

Gϕ ≡ false Rϕ
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De Morgan Rules

The negation can always be moved in front of the atomic
propositions using the dual operators:

De Morgan Rules of Propositional Logic

¬(ϕ∨ψ) ≡ ¬ϕ∧¬ψ
¬(ϕ∧ψ) ≡ ¬ϕ∨¬ψ
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De Morgan Rules

The negation can always be moved in front of the atomic
propositions using the dual operators:

De Morgan Rules of Temporal Logic

¬(ϕUψ) ≡ ¬ϕR¬ψ
¬(ϕRψ) ≡ ¬ϕU¬ψ
¬(Gϕ) ≡ F¬ϕ
¬(Fϕ) ≡ G¬ϕ
¬(Xϕ) ≡ X¬ϕ
¬(Xϕ) ≡ X¬ϕ
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Fixed Point Equations

The following fixed point equations can be used to step-wise
unwind until and release:

ϕUψ ≡ ψ ∨(ϕ∧X(ϕUψ))
ϕRψ ≡ ψ ∧(ϕ∨X(ϕRψ))

Consequently such fix point equations for globally and finally
are special cases of the above ones:

Gϕ ≡ ϕ∧X(Gϕ)
Fϕ ≡ ϕ∨X(Fϕ)
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Negation Normal Form (NNF)

Definition (Negation Normal Form (NNF))

An LTL formula ϕ is in Negation Normal Form (NNF) iff ¬
only occurs in front of atomic propositions p ∈ AP.

Lemma
For every LTL formula there exists an equivalent formula in
NNF.

Proof.
Recursively apply De Morgan rules of propositional logic and
De Morgan rules of temporal logic.
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Definition (Negation Normal Form (NNF))

An LTL formula ϕ is in Negation Normal Form (NNF) iff ¬
only occurs in front of atomic propositions p ∈ AP.

Lemma
For every LTL formula there exists an equivalent formula in
NNF.

Proof.
Recursively apply De Morgan rules of propositional logic and
De Morgan rules of temporal logic.
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The Idea

Build up a function that
I takes an LTL formula ϕ in NNF and a word w ∈ Σ+,
I performs recursion on the structure of ϕ
I returns true iff w |= ϕ.
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First Ideas

Let p ∈ AP be an atomic proposition and w ∈ Σ+ a word.

We then can evaluate
I true and false.
I ϕ∨ψ by evaluating ϕ, evaluating ψ

and computing ϕ∨ψ.
I p by checking if p ∈ w1.
I ¬ p by checking if p 6∈ w1.
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Further Ideas

What about next?
We can check if w |= Xϕ holds by omitting

I the first letter of w and
I the next operator

and checking if w2 |= ϕ holds.

What about until and release?
Use the already presented fixpoint equations and the above
ideas to evaluate conjunction, disjunction and next.

ϕUψ ≡ ψ ∨(ϕ∧X(ϕUψ))
ϕRψ ≡ ψ ∧(ϕ∨X(ϕRψ))
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evlFLTL

Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic
proposition, w ∈ Σ+ a finite non-empty word, ϕ and ψ LTL
formulae and B2 = {>,⊥}.

We then define the function evlFLTL : Σ+ × LTL→ B2
inductively as follows:

evlFLTL(w, true) = >
evlFLTL(w, false) = ⊥

evlFLTL(w,ϕ∨ψ) = evlFLTL(w,ϕ) ∨ evlFLTL(w,ψ)
evlFLTL(w,ϕ∧ψ) = evlFLTL(w,ϕ) ∧ evlFLTL(w,ψ)

evlFLTL(w, p) = (p ∈ w1)
evlFLTL(w,¬ p) = (p 6∈ w1)
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evlFLTL

Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic
proposition, w ∈ Σ+ a finite non-empty word, ϕ and ψ LTL
formulae and B2 = {>,⊥}.

We then define the function evlFLTL : Σ+ × LTL→ B2
inductively as follows:

evlFLTL(w,ϕUψ) = evlFLTL(w,ψ ∨(ϕ∧X(ϕUψ)))
evlFLTL(w,ϕRψ) = evlFLTL(w,ψ ∧(ϕ∨X(ϕRψ)))

evlFLTL(w,Fϕ) = evlFLTL(w,ϕ∨X Fϕ)
evlFLTL(w,Gϕ) = evlFLTL(w,ϕ∧X Gϕ)
evlFLTL(w,Xϕ) = (|w| > 1) ∧ evlFLTL(w2, ϕ)
evlFLTL(w,Xϕ) = (|w| = 1) ∨ evlFLTL(w2, ϕ)
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Conclusion

1. The LTL operations negation, disjunction, until and
next are enough to gain the full expressiveness of LTL.

2. If you add the dual operators every LTL formula has a
negation normal form (NNF).

3. The fix point equations can be used to step-wise
unwind until and release using next and weak next.

4. evlFLTL is as inductively defined function that answers
the question if a given finite non-empty word models a
correctness property given as an LTL formula in NNF
and can easily be implemented recursively.
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Chapter 4
Learning Targets of Chapter “Impartial Runtime
Verification”.

1. Understand the idea of impartiality and why we want to
use impartial evaluation of LTL formulae.

2. Learn the basics of truth domains and lattices.
3. Understand the four-valued LTL semantics on finite

words: FLTL4.
4. See how impartial RV can be implemented using FLTL4

and learn about automata based monitors for finite,
non-completed traces.
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Words Aren’t Terminated—
They Are Growing

I In the last chapters we considered
finite terminated words.

I A monitor for RV does not get a formula
and a finite terminated word.

I A monitor for RV gets a formula
and one letter after another.

I With every new system state
the monitor gets one more letter.
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Examples of Evaluating Growing Words
Consider

I the alphabet Σ = 2AP where AP = {p, q},
I the properties ϕ = G p and ϕ′ = F p and
I words w and w′ growing with every new state.

Lets watch monitors for RV at work:
w = {p, q}

{p} {q} {p}

w |= ϕ

w |= ϕ

w 6|= ϕ

w 6|= ϕ

w′ = {q} {q} {p, q} {p}

w′ 6|= ϕ′

w′ 6|= ϕ′

w′ |= ϕ′

w′ |= ϕ′



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Truth Domains
Motivation

Definition

Four-Valued LTL
Semantics:
FLTL4
Definition

Monitor Function

Mealy Machines
Determinstic Mealy
Machines

Alternating Mealy
Machines

Automata Based RV

Conclusion

4-6

Examples of Evaluating Growing Words
Consider

I the alphabet Σ = 2AP where AP = {p, q},
I the properties ϕ = G p and ϕ′ = F p and
I words w and w′ growing with every new state.

Lets watch monitors for RV at work:
w = {p, q} {p}

{q} {p}

w |= ϕ

w |= ϕ

w 6|= ϕ

w 6|= ϕ

w′ = {q} {q} {p, q} {p}

w′ 6|= ϕ′

w′ 6|= ϕ′

w′ |= ϕ′

w′ |= ϕ′



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Truth Domains
Motivation

Definition

Four-Valued LTL
Semantics:
FLTL4
Definition

Monitor Function

Mealy Machines
Determinstic Mealy
Machines

Alternating Mealy
Machines

Automata Based RV

Conclusion

4-6

Examples of Evaluating Growing Words
Consider

I the alphabet Σ = 2AP where AP = {p, q},
I the properties ϕ = G p and ϕ′ = F p and
I words w and w′ growing with every new state.

Lets watch monitors for RV at work:
w = {p, q} {p} {q}

{p}

w |= ϕ

w |= ϕ

w 6|= ϕ

w 6|= ϕ

w′ = {q} {q} {p, q} {p}

w′ 6|= ϕ′

w′ 6|= ϕ′

w′ |= ϕ′

w′ |= ϕ′



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Truth Domains
Motivation

Definition

Four-Valued LTL
Semantics:
FLTL4
Definition

Monitor Function

Mealy Machines
Determinstic Mealy
Machines

Alternating Mealy
Machines

Automata Based RV

Conclusion

4-6

Examples of Evaluating Growing Words
Consider

I the alphabet Σ = 2AP where AP = {p, q},
I the properties ϕ = G p and ϕ′ = F p and
I words w and w′ growing with every new state.

Lets watch monitors for RV at work:
w = {p, q} {p} {q} {p}

w |= ϕ

w |= ϕ

w 6|= ϕ

w 6|= ϕ

w′ = {q} {q} {p, q} {p}

w′ 6|= ϕ′

w′ 6|= ϕ′

w′ |= ϕ′

w′ |= ϕ′



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Truth Domains
Motivation

Definition

Four-Valued LTL
Semantics:
FLTL4
Definition

Monitor Function

Mealy Machines
Determinstic Mealy
Machines

Alternating Mealy
Machines

Automata Based RV

Conclusion

4-6

Examples of Evaluating Growing Words
Consider

I the alphabet Σ = 2AP where AP = {p, q},
I the properties ϕ = G p and ϕ′ = F p and
I words w and w′ growing with every new state.

Lets watch monitors for RV at work:
w = {p, q} {p} {q} {p}

w |= ϕ

w |= ϕ

w 6|= ϕ

w 6|= ϕ

w′ = {q}

{q} {p, q} {p}

w′ 6|= ϕ′

w′ 6|= ϕ′

w′ |= ϕ′

w′ |= ϕ′



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Truth Domains
Motivation

Definition

Four-Valued LTL
Semantics:
FLTL4
Definition

Monitor Function

Mealy Machines
Determinstic Mealy
Machines

Alternating Mealy
Machines

Automata Based RV

Conclusion

4-6

Examples of Evaluating Growing Words
Consider

I the alphabet Σ = 2AP where AP = {p, q},
I the properties ϕ = G p and ϕ′ = F p and
I words w and w′ growing with every new state.

Lets watch monitors for RV at work:
w = {p, q} {p} {q} {p}

w |= ϕ

w |= ϕ

w 6|= ϕ

w 6|= ϕ

w′ = {q} {q}

{p, q} {p}

w′ 6|= ϕ′

w′ 6|= ϕ′

w′ |= ϕ′

w′ |= ϕ′



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Truth Domains
Motivation

Definition

Four-Valued LTL
Semantics:
FLTL4
Definition

Monitor Function

Mealy Machines
Determinstic Mealy
Machines

Alternating Mealy
Machines

Automata Based RV

Conclusion

4-6

Examples of Evaluating Growing Words
Consider

I the alphabet Σ = 2AP where AP = {p, q},
I the properties ϕ = G p and ϕ′ = F p and
I words w and w′ growing with every new state.

Lets watch monitors for RV at work:
w = {p, q} {p} {q} {p}

w |= ϕ

w |= ϕ

w 6|= ϕ

w 6|= ϕ

w′ = {q} {q} {p, q}

{p}

w′ 6|= ϕ′

w′ 6|= ϕ′

w′ |= ϕ′

w′ |= ϕ′



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Truth Domains
Motivation

Definition

Four-Valued LTL
Semantics:
FLTL4
Definition

Monitor Function

Mealy Machines
Determinstic Mealy
Machines

Alternating Mealy
Machines

Automata Based RV

Conclusion

4-6

Examples of Evaluating Growing Words
Consider

I the alphabet Σ = 2AP where AP = {p, q},
I the properties ϕ = G p and ϕ′ = F p and
I words w and w′ growing with every new state.

Lets watch monitors for RV at work:
w = {p, q} {p} {q} {p}

w |= ϕ

w |= ϕ

w 6|= ϕ

w 6|= ϕ

w′ = {q} {q} {p, q} {p}

w′ 6|= ϕ′

w′ 6|= ϕ′

w′ |= ϕ′

w′ |= ϕ′



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Truth Domains
Motivation

Definition

Four-Valued LTL
Semantics:
FLTL4
Definition

Monitor Function

Mealy Machines
Determinstic Mealy
Machines

Alternating Mealy
Machines

Automata Based RV

Conclusion

4-7

Impartiality

Be Impartial!

I go for a final verdict (> or ⊥) only if you really know
I be a rational being: stick to your word

Definition (Impartiality)

Impartiality requires that a finite trace is not evaluated to
true or, respectively false, if there still exists an (possibly
infinite) continuation leading to another verdict.
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Semantic Function

Definition (Semantic Function)

The semantic function

semk : Σ+ × LTL→ Bk

maps a word w ∈ Σ+ and a an LTL formula ϕ to a logic
value b ∈ Bk.

We use Jw |= ϕKk = b instead of semk(w,ϕ) = b.
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Semantic Function for FLTL

I We defined the FLTL semantics as relation w |= ϕ
between a word w ∈ Σ+ and an LTL formula ϕ.

I This can be interpreted as semantic function

sem2 : Σ+ × LTL→ B2,

sem2(w,ϕ) = Jw |= ϕK2 :=
{
> if w |= ϕ

⊥ else.
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Impartiality

Definition (Impartial Semantics)

Let Σ = 2AP be an alphabet, w ∈ Σ+ a word and ϕ an LTL
formula. A semantic function is called impartial iff for all
u ∈ Σ∗

Jw |= ϕK = > implies Jwu |= ϕK = >
Jw |= ϕK = ⊥ implies Jwu |= ϕK = ⊥.

Target
Create monitors which only answer > or ⊥ if the result
keeps stable for a growing word.
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We Need Multiple Values

FLTL semantics are not impartial:

w = {a}, ϕ = G a and wu = {a}{b}

is a counterexample for

Jw |= ϕK = > implies Jwu |= ϕK = >.

Impartiality implies multiple values
Every two-valued logic is not impartial.

I Impartiality forbids switching from > to ⊥ and vice
versa.

I Therefore we need more logic values than > and ⊥.
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Lattice

Definition (Lattice)

A lattice is a partially ordered set (L,v) where for each
x, y ∈ L, there exists
1. a unique greatest lower bound (glb), which is called the

meet of x and y, and is denoted with x u y, and
2. a unique least upper bound (lub), which is called the

join of x and y, and is denoted with x t y.

If the ordering relation v is obvious
we denote the lattice with the set L.
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Finite Lattice

Definition (Finite Lattice)

A lattice (L,v) is called finite iff L is finite.

Every non-empty finite lattice has two well-defined unique
elements:

I A least element, called bottom, denoted with ⊥ and
I a greatest element, called top, denoted with >.
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Hasse diagram

I Hasse diagrams are used
to represent a finite
partially ordered set.

I Each element of the set
is represented as a vertex
in the plane.

I For all x, y ∈ L where
x v y but no z ∈ L
exists where x v z v y a
line that goes upward
from x to y is drawn.

Example
Hasse diagram for
B2 = {⊥,>}
with ⊥ v >:

>

⊥
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Example Lattices

>

⊥

B2: >

(>,⊥) (⊥,>)

⊥

B2×2:

>

(>,>,⊥) (>,⊥,>) (⊥,>,>)

(>,⊥,⊥) (⊥,>,⊥) (⊥,⊥,>)

⊥

B2×2×2:



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Truth Domains
Motivation

Definition

Four-Valued LTL
Semantics:
FLTL4
Definition

Monitor Function

Mealy Machines
Determinstic Mealy
Machines

Alternating Mealy
Machines

Automata Based RV

Conclusion

4-16

Example Lattices II

>

⊥

B2: >

?

⊥

B3: >

>p

⊥p

⊥

B4:
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Distributive Lattices

Definition (Distributive Lattices)

A lattice (L,v) is called a distributive lattice iff we have for
all elements x, y, z ∈ L

x u (y t z) = (x u y) t (x u z) and
x t (y u z) = (x t y) u (x t z).
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De Morgan Lattice

Definition (De Morgan Lattice)

A distributive lattice (L,v) is called a De Morgan lattice iff
every element x ∈ L has a unique dual element x, such that

x = x and x v y implies y v x.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Truth Domains
Motivation

Definition

Four-Valued LTL
Semantics:
FLTL4
Definition

Monitor Function

Mealy Machines
Determinstic Mealy
Machines

Alternating Mealy
Machines

Automata Based RV

Conclusion

4-19

Boolean Lattice

Definition (Boolean Lattice)

A De Morgan lattice is called Boolean lattice iff for every
element x and its dual element x we have

x t x = > and x u x = ⊥.

Every Boolean lattice has 2n elements for some n ∈ N.
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Truth Domain

Definition (Truth Domain)

A Truth Domain is a finite De Morgan Lattice.

Examples (Truth Domains)

The following lattices are all Truth Domains:
I B2 = {>,⊥} with ⊥ v > and
> = ⊥ and ⊥ = >.

I B3 = {>, ?,⊥} with ⊥ v ? v > and
> = ⊥, ? = ? and ⊥ = >.

I B4 = {>,>p,⊥p,⊥} with ⊥ v ⊥p v >p v > and
> = ⊥, >p = ⊥p, ⊥p = >p and ⊥ = >.
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Examples of Impartial LTL Semantics

I We want to create impartial four-valued semantics for
LTL on finite, non-completed words

I using the truth domain (B4,v).

Examples (FLTL vs. FLTL4)

The indices 2 and 4 denote FLTL resp. FLTL4.

J∅ |= X aK2 = ⊥ J∅ |= X aK4 = ⊥p

J∅∅ |= X aK2 = ⊥ J∅∅ |= X aK4 = ⊥
J∅{a} |= X aK2 = > J∅{a} |= X aK4 = >

J∅ |= X aK2 = > J∅ |= X aK4 = >p

J∅∅ |= X aK2 = ⊥ J∅∅ |= X aK4 = ⊥
J∅{a} |= X aK2 = > J∅{a} |= X aK4 = >
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How To Create Impartial LTL Semantics?

At the end of the word
I X evaluates to ⊥p instead of ⊥ and
I X evaluates to >p instead of >.

Idea of •p: Semantics if the word ends here.

Fulfilling the introduced equivalences and fix point equations
we get at the end of the word:

I U evaluates to ⊥p instead of ⊥,
I R evaluates to >p instead of >,
I F evaluates to ⊥p instead of ⊥ and
I G evaluates to >p instead of >.

Idea of •p: Semantics if the word ends here or
goes on like this forever.
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Properties of (B4,v)

I (B4,v) is no Boolean Lattice.
I Some equivalences in FLTL do not hold in FLTL4.

For any LTL formula ϕ using FLTL semantics we have

ϕ∨¬ϕ ≡2 true and ϕ∧¬ϕ ≡2 false .

Examples (FLTL vs. FLTL4)

For any w ∈ Σ+ and a ∈ Σ we have

Jw |= G a∨¬G aK2 = > Jw |= G a∨¬G aK4 = >p

Jw |= F a∧¬F aK2 = ⊥ Jw |= F a∧¬F aK4 = ⊥p



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Truth Domains
Motivation

Definition

Four-Valued LTL
Semantics:
FLTL4
Definition

Monitor Function

Mealy Machines
Determinstic Mealy
Machines

Alternating Mealy
Machines

Automata Based RV

Conclusion

4-25

FLTL4 Semantics

Definition (FLTL4 Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

Jw |= trueK4 = >
Jw |= falseK4 = ⊥

Jw |= pK4 =
{
> if p ∈ w1

⊥ if p 6∈ w1

Jw |= ¬ pK4 =
{
> if p 6∈ w1

⊥ if p ∈ w1
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FLTL4 Semantics

Definition (FLTL4 Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

Jw |= ¬ϕK4 = Jw |= ϕK4

Jw |= ϕ∨ψK4 = Jw |= ϕK4 t Jw |= ψK4

Jw |= ϕ ∧ ψK4 = Jw |= ϕK4 u Jw |= ψK4



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Truth Domains
Motivation

Definition

Four-Valued LTL
Semantics:
FLTL4
Definition

Monitor Function

Mealy Machines
Determinstic Mealy
Machines

Alternating Mealy
Machines

Automata Based RV

Conclusion

4-25

FLTL4 Semantics

Definition (FLTL4 Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

Jw |= XϕK4 =
{

Jw2 |= ϕK4 if |w| > 1
⊥p else

Jw |= XϕK4 =
{

Jw2 |= ϕK4 if |w| > 1
>p else
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FLTL4 Semantics

Definition (FLTL4 Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

Jw |= ϕUψK4

=

 ⊔
1≤i≤|w|

Jwi |= ψK4 u
l

1≤j<i
Jwj |= ϕK4


t

⊥p u l

1≤i≤|w|
Jwi |= ϕK4


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Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

Jw |= ϕRψK4

=

 ⊔
1≤i≤|w|

Jwi |= ϕK4 u
l

1≤j≤i
Jwj |= ψK4


t

>p u l

1≤i≤|w|
Jwi |= ψK4


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FLTL4 Semantics

Definition (FLTL4 Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

Jw |= FϕK4 = ⊥p t
⊔

1≤i≤|w|
Jwi |= ϕK4

Jw |= GϕK4 = >p u
l

1≤i≤|w|
Jwi |= ϕK4
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Equivalences

Definition (Equivalence of Formulae)

Let Σ = 2AP and ϕ and ψ be LTL formulae over AP. ϕ and
ψ are equivalent, denoted by ϕ ≡ ψ, iff

∀w ∈ Σ+ : Jw |= ϕK = Jw |= ψK.

The equivalences desribed in the previous chapter are still
valid using the semantic function of FLTL4.
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Monitor Function

Left-to-right!
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The Idea

Build up a monitor function for evaluating each subsequent
letter of non-completed words.

Such a function
I takes an LTL formula ϕ in NNF and a letter a ∈ Σ,
I performs (not recursive) formula rewriting (progression)

and
I returns Ja |= ϕK4 and a new LTL formula ϕ′ that the

next letter has to fulfill.
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The Idea of Progression
I Compute only the semantics of the first letter and let

someone else do the rest.
I Rewrite the LTL formula to keep track of what is done

and what still needs to be checked.
I Thanks to the impartial semantics we don’t need to

know the whole word to compute a valid semantics.

Examples
Let w ∈ Σ+ be a word and a ∈ Σ a letter.

I We can compute Jw |= X aK4 by doing nothing and
letting someone else check Jw2 |= aK4.

I We can compute Jw |= aK4 by checking a ∈ w1.
Then the LTL formula is over. This is denoted by true
or false as new formula.
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Further Ideas

We know how to evaluate
I atomic propositions,
I positive operators of propositional logic (∧,∨) and
I next-formulas.

That’s it thanks to
I equivalences for G and F,
I De Morgan rules of propositional and temporal logic for

negation (¬) and
I and fixed point equations for U and R.
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evlFLTL4

Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic
proposition, a ∈ Σ a letter, and ϕ and ψ LTL formulae.

We then define the function
evlFLTL4 : Σ× LTL→ B4 × LTL inductively as follows:

evlFLTL4(a, true) = (>, true)
evlFLTL4(a, false) = (⊥, false)

evlFLTL4(a, p) =
{

(>, true) if p ∈ a
(⊥, false) else

evlFLTL4(a,¬ p) =
{

(⊥, false) if p ∈ a
(>, true) else
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evlFLTL4

Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic
proposition, a ∈ Σ a letter, and ϕ and ψ LTL formulae.

We then define the function
evlFLTL4 : Σ× LTL→ B4 × LTL inductively as follows:

evlFLTL4(a, ϕ∨ψ) = (vϕ t vψ, ϕ′ ∨ψ′), where
(vϕ, ϕ′) = evlFLTL4(a, ϕ) and
(vψ, ψ′) = evlFLTL4(a, ψ)

evlFLTL4(a, ϕ∧ψ) = (vϕ u vψ, ϕ′ ∧ψ′), where
(vϕ, ϕ′) = evlFLTL4(a, ϕ) and
(vψ, ψ′) = evlFLTL4(a, ψ)
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evlFLTL4

Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic
proposition, a ∈ Σ a letter, and ϕ and ψ LTL formulae.

We then define the function
evlFLTL4 : Σ× LTL→ B4 × LTL inductively as follows:

evlFLTL4(a,Xϕ) = (⊥p, ϕ)
evlFLTL4(a,Xϕ) = (>p, ϕ)

evlFLTL4(a, ϕUψ) = evlFLTL4(a, ψ ∨(ϕ∧X(ϕUψ)))
evlFLTL4(a, ϕRψ) = evlFLTL4(a, ψ ∧(ϕ∨X(ϕRψ)))

evlFLTL4(a,Fϕ) = evlFLTL4(a, ϕ∨X Fϕ)
evlFLTL4(a,Gϕ) = evlFLTL4(a, ϕ∧X Gϕ)
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Examples

Example (Impartial Evaluation of Globally)

Consider w = {a}{a}∅. First letter:

evlFLTL4({a},G a) = evlFLTL4({a}, a∧X G a)
= (v1 u v2, ϕ1 ∧ϕ2)
= (> u>p, true∧G a)
= (>p,G a)

where (v1, ϕ1) = evlFLTL4({a}, a) = (>, true)
(v2, ϕ2) = evlFLTL4({a},X G a) = (>p,G a).

Next letters:
I evlFLTL4({a},G a) = (>p,G a)
I evlFLTL4(∅,G a) = (⊥, false)
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Examples

Example (Impartial Evaluation of Finally)

Consider w = ∅∅{a}. First letter:

evlFLTL4(∅,F a) = evlFLTL4(∅, a∨X F a)
= (v1 t v2, ϕ1 ∨ϕ2)
= (⊥ t⊥p, false∨F a)
= (⊥p,F a)

where (v1, ϕ1) = evlFLTL4(∅, a) = (⊥, false)
(v2, ϕ2) = evlFLTL4(∅,X F a) = (⊥p,F a).

Next letters:
I evlFLTL4(∅,F a) = (⊥p,F a)
I evlFLTL4({a},F a) = (>, true)
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Monitoring LTL on finite but expanding
words

Automata-theoretic approach

I Synthesize automaton
I Monitoring = stepping through automaton
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Finite-state Machines With Output

Moore Machines and Mealy Machines
I consists of states and transitions.
I read input and write output.
I change current state depending on input.

Moore Machines
I output depends only on

current state.
I generate first output in

initial state.

Mealy Machines
I output depends on

current state and input.
I generate no output

without input.
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Moore Machine

q0
⊥p

q1
⊥

q2
>

{p}

∅ {q}, {p, q}

∅, {p}, {q}, {p, q} ∅, {p}, {q}, {p, q}

Input

{p}{p, q}∅

Output

⊥p⊥p>>{}
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Moore Machine
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Moore Machine

q0
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q1
⊥

q2
>

{p}

∅ {q}, {p, q}

∅, {p}, {q}, {p, q} ∅, {p}, {q}, {p, q}

Input
{p}

{p, q}∅
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Moore Machine
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Moore Machine
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Mealy Machine

q0

q1 q2

{p}/⊥p

∅/⊥ {q}, {p, q}/>

∅, {p}, {q}, {p, q}/⊥ ∅, {p}, {q}, {p, q}/>

Input

{p}{p, q}∅

Output

⊥p>>{}
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Mealy Machine
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Mealy Machine
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Translation

Translating Moore into Mealy Machine

I Keep states.
I Label transitions with output of target state.

Translating Mealy into Moore Machine

I Add some extra states for those with multiple incoming
transitions labeled with different output.

I Label state with output from its incoming transitions.
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From evlFLTL4 To Mealy Machine

I evlFLTL4 gets a letter and a formula and
outputs a logic value and a new formula.

I Use formula as state of the Mealy Machine.
I Use letter as input and logic value as output.
I Next state (new formula) depends on

state (formula) and input (letter).
I Output depends on state (formula) and input (letter).
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Determinstic Mealy Machine

Definition (Deterministic Mealy Machine)

A (deterministic) Mealy machine is a tupel
M = (Σ, Q, q0,Γ, δ) where

I Σ is the input alphabet,
I Q is a finite set of states,
I q0 ∈ Q is the initial state,
I Γ is the output alphabet and
I δ : Q× Σ→ Γ×Q is the transition function
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Run of a Deterministic Mealy Machine

Definition (Run of a Deterministic Mealy Machine)

A run of a (deterministic) Mealy machine
M = (Σ, Q, q0,Γ, δ) on a finite word w ∈ Σn with outputs
oi ∈ Γ is a sequence

t0
(w1,o1)→ t1

(w2,o2)→ . . .
(wn−1,on−1)→ tn−1

(wn,on)→ tn

such that
I t0 = q0 and
I (ti, oi) = δ(ti−1, wi)

The output of the run is on.
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Machine Types

Deterministic in one state at a time
transition function provides one state

Nondeterministic in one state at a time
transition function provides set of states

Universal in many states simultaneously
transition function provides set of states

Alternating in many states simultaneously
transition function provides positive Boolean
combination of states

FLTL4 Monitoring Needs Alternating Mealy Machines
We need all positive Boolean combinations
of subformulae with finitely many states.
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Alternating Mealy Machine

q0 ∧

q1false

∅, {q}/>p

{p}, {p, q}/⊥p

{q}, {p, q}/>p

∅, {p}/⊥

Input

∅{p}{q}∅{q}

Output

>p⊥p>p⊥⊥{}
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Alternating Mealy Machine
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Alternating Mealy Machine
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Alternating Mealy Machine
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Positive Boolean Combination (PBC)
Definition (Positive Boolean Combination (PBC))

Given a set Q we define the set of all positive Boolean
combinations (PBC) over Q, denoted by B+(Q), inductively
as follows:

I {true, false} ⊆ B+(Q),
I Q ⊆ B+(Q) and
I ∀α, β ∈ B+(Q) : α ∨ β, α ∧ β ∈ B+(Q).

Examples
Consider AP = {a, b, c}

I a ∈ B+(AP), {a} 6∈ B+(AP),
I a ∧ b ∨ a ∧ c ∈ B+(AP),
I true ∈ B+(AP) and false ∈ B+(AP).



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Truth Domains
Motivation

Definition

Four-Valued LTL
Semantics:
FLTL4
Definition

Monitor Function

Mealy Machines
Determinstic Mealy
Machines

Alternating Mealy
Machines

Automata Based RV

Conclusion

4-45

Alternating Mealy Machine (AMM)

Definition (Alternating Mealy Machine (AMM))

A alternating Mealy machine (AMM) is a tupel
M = (Σ, Q, q0,Γ, δ) where

I Σ is the input alphabet,
I Q is a finite set of states,
I q0 ∈ Q is the initial state and
I Γ is a finite, distributive lattice, the output lattice,
I δ : Q× Σ→ B+(Γ×Q) is the transition function

Convention
Understand δ : Q× Σ→ B+(Γ×Q) as a function
δ : Q× Σ→ Γ×B+(Q)
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I Q is a finite set of states,
I q0 ∈ Q is the initial state and
I Γ is a finite, distributive lattice, the output lattice,
I δ : Q× Σ→ B+(Γ×Q) is the transition function
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Understand δ : Q× Σ→ B+(Γ×Q) as a function
δ : Q× Σ→ Γ×B+(Q)
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Extended Transition Function

Definition (Extended Transition Function)

Let δ : Q×Σ→ Γ×B+(Q) be the transition function of an
alternating mealy machine. Then the extended transition
function δ̂ : B+(Q)× Σ→ Γ×B+(Q) is inductively defined
as follows

I δ̂(q, a) = δ(q, a),
I δ̂(true, a) = (>, true), δ̂(false, a) = (⊥, false),
I δ̂(q1 ∨ q2, a) = (o1 t o2, q

′
1 ∨ q′2) and

I δ̂(q1 ∧ q2, a) = (o1 u o2, q
′
1 ∧ q′2),

where (o1, q
′
1) = δ̂(q1, a) and (o2, q

′
2) = δ̂(q2, a).
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Run of an Alternating Mealy Machine

Definition (Run of an Alternating Mealy Machine)

A run of an alternating Mealy machineM = (Σ, Q, q0,Γ, δ)
on a finite word w ∈ Σn with outputs oi ∈ Γ is a sequence

t0
(w1,o1)→ t1

(w2,o2)→ . . .
(wn−1,on−1)→ tn−1

(wn,on)→ tn

such that

t0 = q0 and (ti, oi) = δ̂(ti−1, wi),

where δ̂ is the extended transition function ofM.
The output of the run is on.
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Equivalence of PBCs

Definition (Model Relation for PBCs)

Let Q be a set. A subset S ⊆ Q is a model of a positive
Boolean combination α ∈ B+(Q), denoted by S |= α, iff α
evaluates to true in propositional logic interpreting all p ∈ S
as true and all p ∈ Q\S as false.

Definition (Equivalence of PBCs)

Let Q be a set and α ∈ B+(Q) and β ∈ B+(Q) be positive
Boolean combinations over Q. α and β are equivalent,
denoted by α ≡ β, iff

∀S ⊆ Q : S |= α⇔ S |= β.
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Equivalence Classes of PBCs

Definition (Equivalence Classes of PBCs)

Let Q be a set. The equivalence class [α] of a positive
Boolean combination α ∈ B+(Q) over Q is defined as
follows

[α] = {β ∈ B+(Q) | α ≡ β}.

The set of all equivalence classes of positive Boolean
combinations over Q is denoted by the following quotient set

B+(Q)/≡ = {[α] | α ∈ B+(Q)}.
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Translating AMM to MM

I Use B+(Q) instead of Q as states.
I The extended transition function δ̂ then can be used as

transition function of a MM.
I Problem: B+(Q) is infinite.
I There are infinitely many positive Boolean combinations

over any set with at least two elements.
I Solution: Use B+(Q)/≡ instead of B+(Q).
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Equivalence of Output and Next State

Lemma
Let δ̂ be the extended transition function of an AMM
M = (Σ, Q, q0,Γ, δ), a ∈ Σ, o, p ∈ Γ and
α, β, α′, β′ ∈ B+(Q) such that

α ≡ β,
(o, α′) = δ̂(α, a) and
(p, β′) = δ̂(β, a).

Then

o = p and (∗)
α′ ≡ β′.

The proof of (∗) requires the output lattice to be
distributive.
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Representatives of [q]

I We can now use B+(Q)/≡ instead of Q as states.
I We still need a well defined representative for [α] for
α ∈ B+(Q).

I In other words: Given α ∈ Q, howto find [α]?
I Solution: Use disjunctive normal form of α.
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Disjunctive Normal Form (DNF)

Definition (Disjunctive Normal Form (DNF))

A positive Boolean combination α ∈ B+(Q) over a set Q is
in disjunctive normal form (DNF) iff

α =
n∨
i=1

m∧
j=1

qi,j

for qi,j ∈ Q. A disjunctive normal form α ∈ B+(Q) is called
minimal if there is no disjunctive normal form β ∈ B+(Q)
s. t. α ≡ β and β contains less operators.

Lemma
For every positive Boolean combination α ∈ B+(Q) there
exists a positive Boolean combination β such that α ≡ β
and β is in minimal DNF.

Proof uses distributivity of propositional logic.
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B+(Q)/≡ is finite

I Let Q be the set of states of an AMM.
I Then Q is finite.
I Then there are at most 2|Q| many different α for

α =
n∨
i=1

qi and n different qi ∈ Q.

I Then there are at most 22|Q| many different β for

β =
n∨
i=1

m∧
j=1

qi,j minimal and qi,j ∈ Q.

I Then there are at most 22|Q| many different [β] for
β ∈ B+(Q).
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Example: Alternating Mealy Machine

q0 ∧

q1false

∅, {q}/>p

{p}, {p, q}/⊥p

{q}, {p, q}/>p

∅, {p}/⊥
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Example: Translated Mealy Machine

q0 q0 ∧ q1

qfalse

∅, {q}/>p

{p}, {p, q}/>p

{q}/>p

{p, q}/⊥p

∅, {p}/⊥

∅, {p}, {q}, {p, q}/⊥
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Translating AMM to Non-Deterministic or
Universal MM

Analogous we can use sets of (not equivalent) disjunctions
or conjunctions of Q as states instead of B+(Q)/≡.

I alternating → non-deterministic: translate t ∈ B+(Q)
into equivalent minimal disjunctive normal form and use
monomials as new states.

I alternating → universal: translate t ∈ B+(Q) into
equivalent minimal conjunctive normal form and use
clauses as new states.

I alternating → deterministic: translate t ∈ B+(Q) into
equivalent minimal conjunctive or disjunctive normal
form and use normal forms as new states.
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Automata Based RV

We monitor an LTL formula ϕ by evaluating its current
subformula ψ w.r.t. the current letter a.

The monitor function evlFLTL4, which
I takes an LTL formula ψ in NNF and a letter a ∈ Σ and
I returns Ja |= ψK4 and a new LTL formula ψ′,

can be interpreted as transition function of an AMM where
I the states are subformulae of ϕ,
I the initial state is ϕ,
I the current state is ψ,
I we read the letter a,
I we output Ja |= ψK4 and
I the next state is the new formula ψ′.
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Transition function of an AMM

Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic
proposition, a ∈ Σ a letter, ϕ,ψ1, ψ2 LTL formulae in NNF
and Q the set of all subformulae of ϕ.

We then define the transition function
δa4 : Q× Σ→ B+(B4 ×Q) of the monitor AMM
Mϕ = (Σ, Q, ϕ,B4, δ

a
4) inductively as follows:

δa4(true, a) = (>, true)
δa4(false, a) = (⊥, false)

δa4(p, a) =
{

(>, true) if p ∈ a
(⊥, false) else

δa4(¬ p, a) =
{

(>, true) if p 6∈ a
(⊥, false) else
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Transition function of an AMM

Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic
proposition, a ∈ Σ a letter, ϕ,ψ1, ψ2 LTL formulae in NNF
and Q the set of all subformulae of ϕ.

We then define the transition function
δa4 : Q× Σ→ B+(B4 ×Q) of the monitor AMM
Mϕ = (Σ, Q, ϕ,B4, δ

a
4) inductively as follows:

δa4(ψ1 ∨ψ2, a) = δa4(ψ1, a) ∨ δa4(ψ2, a)
δa4(ψ1 ∧ψ2, a) = δa4(ψ1, a) ∧ δa4(ψ2, a)
δa4(Xψ1, a) = (⊥p, ψ1)
δa4(Xψ1, a) = (>p, ψ1)
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Transition function of an AMM

Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic
proposition, a ∈ Σ a letter, ϕ,ψ1, ψ2 LTL formulae in NNF
and Q the set of all subformulae of ϕ.

We then define the transition function
δa4 : Q× Σ→ B+(B4 ×Q) of the monitor AMM
Mϕ = (Σ, Q, ϕ,B4, δ

a
4) inductively as follows:

δa4(ψ1 Uψ2, a) = δa4(ψ2 ∨(ψ1 ∧X(ψ1 Uψ2)), a)
δa4(ψ1 Rψ2, a) = δa4(ψ2 ∧(ψ1 ∨X(ψ1 Rψ2)), a)

δa4(Fψ1, a) = δa4(ψ1 ∨(X(Fψ1)), a)
δa4(Gψ1, a) = δa4(ψ1 ∧(X(Gψ1)), a)
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Example

Graph of the monitorMϕ of the formula ϕ = G(p→X G q):

G(¬ p∨X G q) ∧

G qfalse

∅, {q}/>p
{p}, {p, q}/⊥p

{q}, {p, q}/>p
∅, {p}/⊥
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Generating Deterministic Monitors
In practical implementations one may omit the AMM and
generate the MM directly out of the LTL formula.

I Define a function smplfy : LTL→ LTL that transforms
LTL formulae into a unique normal form.

I Use all simplified positive Boolean combinations of
subformulae of ϕ as states forMϕ.

I Define δ4 : Q× Σ→ B4 ×Q inductively as follows:

δ4(ψ1 ∨ψ2, a) = (vψ1 t vψ2 , smplfy(ψ′1 ∨ψ′2)), where
(vψ1 , ψ

′
1) = δ4(ψ1, a) and

(vψ2 , ψ
′
2) = δ4(ψ2, a)

δ4(ψ1 ∧ψ2, a) = (vψ1 u vψ2 , smplfy(ψ′1 ∧ψ′2)), where
(vψ1 , ψ

′
1) = δ4(ψ1, a) and

(vψ2 , ψ
′
2) = δ4(ψ2, a)

δ4(ψ1, a) = δa4(ψ1, a) for any other formula ψ1.
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Automata-theoretic Approach

Further Topics

I Alternating vs. non-deterministic vs. deterministic
machines.

I Complexity of the translations.
I Size vs. power.
I State sequence for an input word.
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Conclusion

1. Every two-valued logic is not impartial. Impartiality
implies multiple values.

2. We use the distributive De Morgan lattice
B4 = {⊥,⊥p,>p,>} in the impartial FLTL4 semantics.

3. At the end of the word X evaluates to ⊥p and X
evaluates to >p.

4. evlFLTL4 performs formula rewriting (progression) for
an LTL formula and one letter.

5. evlFLTL4 can be used to describe the transition
function of an alternating mealy machine using the
subformulae as states.

6. Such an alternating mealy machine can be translated
into a deterministic mealy machine using the fact that
equivalent positive combinations of states leads to the
same next states and output.
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Chapter 5
Learning Targets of Chapter “Anticipatory LTL
Semantics”.

1. Understand that LTL semantics can be defined over
infinite words as well.

2. Understand the difference of LTL over finite and infinite
words.

3. Recall anticipation and understand why impartiality is
not enough to build good monitors.

4. Get used to the three-valued sematics for LTL.
5. Understand the concept of safety and co-safety

properties and get an idea of monitorable properties.
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Need of LTL on Infinite Words in RV?

Impartiality Say > or ⊥ only if you are sure.
Anticipation Say > or ⊥ once you can be sure.

We want do define impartial LTL semantics:
I Say > if every infinite continuation evaluates to >.
I Say ⊥ if every infinite continuation evaluates to ⊥.
I Otherwise say ?.

We Need LTL on Infinite Words

I Impartial LTL semantics will be based on infinite
continuations.

I Properties of infinite continuations cannot be expressed
using LTL on finite words.
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Infinite Words
I An infinite word w is an infinite sequence over the

alphabet Σ = 2AP.
I w can be interpreted as function w : N\{0} → Σ.
I w can be interpreted as concatenation of many finite

and one infinite words.

Examples (Infinite Words)

Consider the alphabet Σ = 2AP with AP = {p, q}.
I {p}ω denotes the infinite word where every letter is {p}

and can be interpreted as w(i) = {p} for all i ≥ 1.
I ∅({q}{p})ω can be interpreted as

w(i) =


∅ if i = 1
{q} if i ≡ 0 mod 2
{p} else
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Finally and Globally Examples

Examples (Finally and Globally)

Consider infinite words over the alphabet Σ = 2AP with
AP = {p, q}.

I {p}∅{q}∅ω |= F q.

I {q}{q}({p, q}{q})ω |= G q.

I (∅{p}{p, q}∅)ω |= G F q.
I {p}∅{q}{p}({p, q}{q})ω |= F G q.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

LTL on Infinite
Words
Semantics

Equivalences and Examples

Anticipatory LTL
Semantics: LTL3
Anticipation

Definition

Examples

Monitorable
Properties
(Co-)Safety

Examples

Monitorability

Conclusion

5-7

Finally and Globally Examples

Examples (Finally and Globally)

Consider infinite words over the alphabet Σ = 2AP with
AP = {p, q}.

I {p}∅{q}∅ω |= F q.
I {q}{q}({p, q}{q})ω |= G q.

I (∅{p}{p, q}∅)ω |= G F q.
I {p}∅{q}{p}({p, q}{q})ω |= F G q.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

LTL on Infinite
Words
Semantics

Equivalences and Examples

Anticipatory LTL
Semantics: LTL3
Anticipation

Definition

Examples

Monitorable
Properties
(Co-)Safety

Examples

Monitorability

Conclusion

5-7

Finally and Globally Examples

Examples (Finally and Globally)

Consider infinite words over the alphabet Σ = 2AP with
AP = {p, q}.

I {p}∅{q}∅ω |= F q.
I {q}{q}({p, q}{q})ω |= G q.

I (∅{p}{p, q}∅)ω |= G F q.

I {p}∅{q}{p}({p, q}{q})ω |= F G q.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

LTL on Infinite
Words
Semantics

Equivalences and Examples

Anticipatory LTL
Semantics: LTL3
Anticipation

Definition

Examples

Monitorable
Properties
(Co-)Safety

Examples

Monitorability

Conclusion

5-7

Finally and Globally Examples

Examples (Finally and Globally)

Consider infinite words over the alphabet Σ = 2AP with
AP = {p, q}.

I {p}∅{q}∅ω |= F q.
I {q}{q}({p, q}{q})ω |= G q.

I (∅{p}{p, q}∅)ω |= G F q.
I {p}∅{q}{p}({p, q}{q})ω |= F G q.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

LTL on Infinite
Words
Semantics

Equivalences and Examples

Anticipatory LTL
Semantics: LTL3
Anticipation

Definition

Examples

Monitorable
Properties
(Co-)Safety

Examples

Monitorability

Conclusion

5-8

Parts of Infinite Words

In the formal definition of LTL semantics we denote parts of
a word as follows:

Let w = a1a2a3 . . . ∈ Σω be an infinite word over the
alphabet Σ = 2AP and let i ∈ N with i ≥ 1 be a position in
this word. Then

I wi = ai is the i-th letter of the word,
I w(i) = a1a2 . . . ai is the prefix of w of length i and
I wi is the subword of w s. t. w = w(i−1)wi.
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LTL Semantics on Infinite Words

Definition (LTL Semantics on Infinite Words)

Let ϕ,ψ be LTL formulae and let w ∈ Σω be an infinite
word. Then the semantics of ϕ with respect to w is
inductively defined as follows:

w |= true
w |= p iff p ∈ w1

w |= ¬ p iff p 6∈ w1

w |= ¬ϕ iff w 6|= ϕ

w |= ϕ∨ψ iff w |= ϕ or w |= ψ

w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
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LTL Semantics on Infinite Words

Definition (LTL Semantics on Infinite Words)

Let ϕ,ψ be LTL formulae and let w ∈ Σω be an infinite
word. Then the semantics of ϕ with respect to w is
inductively defined as follows:

w |= Xϕ iff w2 |= ϕ

w |= Xϕ iff w2 |= ϕ
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LTL Semantics on Infinite Words

Definition (LTL Semantics on Infinite Words)

Let ϕ,ψ be LTL formulae and let w ∈ Σω be an infinite
word. Then the semantics of ϕ with respect to w is
inductively defined as follows:

w |= ϕUψ iff ∃i ≥ 1 : (wi |= ψ

and ∀k, 1 ≤ k < i : wk |= ϕ)
w |= ϕRψ iff ∃i ≥ 1 : (wi |= ϕ

and ∀k, 1 ≤ k ≤ i : wk |= ψ)
or ∀i ≥ 1 : wi |= ψ
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LTL Semantics on Infinite Words

Definition (LTL Semantics on Infinite Words)

Let ϕ,ψ be LTL formulae and let w ∈ Σω be an infinite
word. Then the semantics of ϕ with respect to w is
inductively defined as follows:

w |= Fϕ iff ∃i ≥ 1 : wi |= ϕ

w |= Gϕ iff ∀i ≥ 1 : wi |= ϕ
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Semantic Function for LTL on Infinite
Words

I We defined the LTL semantics on infinite words as
relation w |= ϕ between a word w ∈ Σω and a LTL
formula ϕ.

I This can be interpreted as semantic function

semω : Σω × LTL→ B2,

semω(w,ϕ) = Jw |= ϕKω :=
{
> if w |= ϕ

⊥ else.
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Languages Defined by LTL Formulae

The set of models of an LTL formula ϕ defines a language
L(ϕ) ⊆ Σω of infinite words over Σ = 2AP as follows:

L(ϕ) = {w ∈ Σω | Jw |= ϕKω = >}.
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Equivalences

Weak Next
Let w ∈ Σω be an infinite word.

I w has no last character.
I For every position i ≥ 1 the word wi ∈ Σω is infinite.
I X and X have the same semantics.

The De Morgan rules, equivalences for G and F and the
fixed point equations for U and R are still valid.
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Finite and Infinite Semantics

Examples (Globally and Finally)

I We know

J{p}({p}{q})ω |= F qKω = >

from
J{p}{p}{q} |= F qK4 = >.

I We know

J{p}({p}{q})ω |= G pKω = ⊥

from
J{p}{p}{q} |= G pK4 = ⊥.
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Finite and Infinite Semantics

Examples (Until)

I We know

J{p}({p}{q})ω |= pU qKω = >

from
J{p}{p}{q} |= pU qK4 = >.

I We know

(

J{p}∅{q}ω |= pU qKω = ⊥

)

from
J{p}∅ |= pU qK4 = ⊥.
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Anticipation

Be Anticipatory

I go for a final verdict (> or ⊥) once you really know
I do not delay the decision

Definition (Anticipation)

Anticipation requires that once every (possibly infinite)
continuation of a finite trace leads to the same verdict, then
the finite trace evaluates to this very same verdict.
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FLTL4 is Not Anticipatory

Example (Next Operator)

We have

J{p} |= X X falseK4 = ⊥p

J{p}{p} |= X X falseK4

= J{p} |= X falseK4 = ⊥p

J{p}{p}{p} |= X X falseK4

= J{p}{p} |= X falseK4

= J{p} |= falseK4 = ⊥,

but it would be anticipatory to have

J{p} |= X X falseK3 = ⊥.
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FLTL4 is Not Anticipatory

Example (Globally and Finally Operator)

We have

Jw |= G trueK4 = Jw |= false R trueK4 = >p and
Jw |= F falseK4 = Jw |= true U falseK4 = ⊥p

but it would be anticipatory to have

Jw |= G trueK3 = > and
Jw |= F falseK3 = ⊥.
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Impartial Anticipation

I Define LTL semantics for finite, non-terminated words.
I The set of all infinite continuations of a finite word

contains only infinite words.
I Define semantics for finite words based on semantics of

these infinite continuations.
I If the semantic function yields the same verdict for all

infinite continuations use that verdict.
I Combine >p and ⊥p to a common ? for the other cases.
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Anticipatory Three-Valued LTL Semantics

Definition (LTL3 Semantics)

Let ϕ be an LTL formula and let u ∈ Σ∗ be a finite word.
Then the semantics of ϕ with respect to u is defined as
follows:

Ju |= ϕK3 =


> if ∀w ∈ Σω : Juw |= ϕKω = >
⊥ if ∀w ∈ Σω : Juw |= ϕKω = ⊥
? else.
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Example

Consider ϕ = G(p→F false) and ∅{q}{p}∅ ∈ Σ∗ for
Σ = 2AP and AP = {p, q}. We then have

I J∅ |= ϕK3 =?
I J∅{q} |= ϕK3 =?
I J∅{q}{p} |= ϕK3 = ⊥
I J∅{q}{p}∅ |= ϕK3 = ⊥

I J∅{q}{p}u |= ϕK3 = ⊥ for all u ∈ Σ∗
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Example

Consider ϕ = G(p→F false) and ∅{q}{p}∅ ∈ Σ∗ for
Σ = 2AP and AP = {p, q}. We then have

I J∅ |= ϕK3 =?
I J∅{q} |= ϕK3 =?
I J∅{q}{p} |= ϕK3 = ⊥
I J∅{q}{p}∅ |= ϕK3 = ⊥
I J∅{q}{p}u |= ϕK3 = ⊥ for all u ∈ Σ∗
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Possible Verdicts of LTL Formulae

Consider a word w ∈ Σ∗ for Σ = 2AP and propositions
p, q ∈ AP. We then have

I Jw |= pU qK3 ∈ {>, ?,⊥}
I Jw |= pR qK3 ∈ {>, ?,⊥}

I Jw |= F pK3 ∈ {>, ?}
I Jw |= G pK3 ∈ {?,⊥}
I Jw |= G F pK3 = ?
I Jw |= F G pK3 = ?
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Possible Verdicts of LTL Formulae

Consider a word w ∈ Σ∗ for Σ = 2AP and propositions
p, q ∈ AP. We then have

I Jw |= pU qK3 ∈ {>, ?,⊥}
I Jw |= pR qK3 ∈ {>, ?,⊥}
I Jw |= F pK3 ∈ {>, ?}
I Jw |= G pK3 ∈ {?,⊥}
I Jw |= G F pK3 = ?
I Jw |= F G pK3 = ?



Section
Monitorable Properties

(Co-)Safety
Examples
Monitorability

Chapter 5 “Anticipatory LTL Semantics”
Course “Runtime Verification”
M. Leucker & V. Stolz
INF5140 / V17



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

LTL on Infinite
Words
Semantics

Equivalences and Examples

Anticipatory LTL
Semantics: LTL3
Anticipation

Definition

Examples

Monitorable
Properties
(Co-)Safety

Examples

Monitorability

Conclusion

5-22

Monitorability
When Does Anticipation Help?
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The Good, The Bad and The Ugly

Definition (Good, Bad and Ugly Prefixes)

Given a language L ⊆ Σω of infinite words over Σ we call a
finite word u ∈ Σ∗

I a good prefix for L if ∀w ∈ Σω : uw ∈ L,
I a bad prefix for L if ∀w ∈ Σω : uw 6∈ L and
I an ugly prefix for L if ∀v ∈ Σ∗ : uv is neither a good

prefix nor a bad prefix.
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Examples for Good, Bad and Ugly

Examples (The Good, The Bad and The Ugly)

I {p}{q} is a good prefix for L(F q).
I {p}{q}{p} is a good prefix for L(F q).
I {p}{q} is a bad prefix for L(G p).
I every w ∈ Σ∗ is an ugly prefix for L(G F p).
I {p} is an ugly prefix for L(p→G F p).
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LTL3 indentifies good/bad prefixes

Given an LTL formula ϕ and a finite word u ∈ Σ∗, then

Ju |= ϕK3 =


> if u is a good prefix for L(ϕ)
⊥ if u is a bad prefix for L(ϕ)
? otherwise
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The Idea of Saftey and Co-Safety

Safety Properties assert that nothing bad happens.
Such a property is violated iff something bad
happens after finitely many steps.
(→ A bad prefix exists.)

Co-Safety Properties assert that something good happens.
Such a property is fulfilled iff something good
happens after finitely many steps.
(→ A good prefix exists.)
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(Co-)Safety Languages and Properties

Definition ((Co-)Safety Languages)

A language L ⊆ Σω is called
I a safety language if for all w 6∈ L there is a prefix
u ∈ Σ∗ of w which is a bad prefix for L.

I a co-safety language if for all w ∈ L there is a prefix
u ∈ Σ∗ of w which is a good prefix for L.

Definition ((Co-)Safety Properties)

An LTL formula ϕ is called
I a safety property if its set of models L(ϕ) is a safety

language.
I a co-safety property if its set of models L(ϕ) is a

co-safety language.
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Examples

Consider propositions p, q ∈ AP.

Formula Safety Co-Safety
G p
F p
X p
G F p
F G p
X p∨G F p
pU q
pR q
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Examples

Consider propositions p, q ∈ AP.

Formula Safety Co-Safety
G p 4 8

F p
X p
G F p
F G p
X p∨G F p
pU q
pR q
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Examples

Consider propositions p, q ∈ AP.

Formula Safety Co-Safety
G p 4 8

F p 8 4

X p
G F p
F G p
X p∨G F p
pU q
pR q
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Examples

Consider propositions p, q ∈ AP.

Formula Safety Co-Safety
G p 4 8

F p 8 4

X p 4 4

G F p
F G p
X p∨G F p
pU q
pR q
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Examples

Consider propositions p, q ∈ AP.

Formula Safety Co-Safety
G p 4 8

F p 8 4

X p 4 4

G F p 8 8

F G p 8 8

X p∨G F p 8 8

pU q 8 4

pR q
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Examples

Consider propositions p, q ∈ AP.

Formula Safety Co-Safety
G p 4 8

F p 8 4

X p 4 4

G F p 8 8

F G p 8 8

X p∨G F p 8 8

pU q 8 4
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Details on The Examples

I pU q is not a safety property, because
{p}ω 6|= pU q, but
there is no bad prefix.

I pU q is a co-safety property, because
every infinite word w ∈ Σω with w |= pU q
must contain the releasing q in a finite prefix.

I pR q is not a co-safety property, because
{q}ω |= pR q, but
there is no good prefix.

I pR q is a safety property, because
every infinite word w ∈ Σω with w 6|= pR q
must contain the violating absence of q in a finite prefix.
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Monitorability

Definition (Monitorable Languages)

A language L ⊆ Σω is called monitorable iff L has no ugly
prefix.

Definition (Monitorable Properties)

An LTL formula ϕ is called monitorable iff its set of models
L(ϕ) is monitorable.
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Monitorable Properties

Safety Properties

∃ ∀

Co-Safety Properties

∃ ∀

Remark
Safety and Co-Safety Properties are monitorable.
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Monitorable Properties

Safety Properties

∃

∀

Co-Safety Properties

∃ ∀

Remark
Safety and Co-Safety Properties are monitorable.
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∃ ∀
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Safety- and Co-Safety-Properties

Theorem
The class of monitorable properties

I comprises safety- and co-safety properties, but
I is strictly larger than their union.
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Safety- and Co-Safety-Properties

Proof.
Consider AP = {p, q, r} and ϕ = ((p∨ q) U r)∨G p.

I {p}ω |= ϕ without good prefix,
therefore ϕ is not a co-safety property.

I {q}ω 6|= ϕ without bad prefix,
therefore ϕ is not a safety property.

I Every finite word u ∈ Σ∗ that is not a bad prefix
can become a good prefix by appending {r}.

I Every finite word u ∈ Σ∗ that is not a good prefix
can become a bad prefix by appending ∅.

I No ugly prefix exists as every prefix
is either good, bad or can become good or bad
by appending {r} or ∅.
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Safety- and Co-Safety-Properties

Proof by Another Counterexample.
Consider AP = {p, q} and ϕ = F p∨G q.

I {q}ω |= ϕ without good prefix,
therefore ϕ is not a co-safety property.

I ∅ω 6|= ϕ without bad prefix,
therefore ϕ is not a safety property.

I Every finite word u ∈ Σ∗ that is not a bad prefix
can become a good prefix by appending {p}.

I No ugly prefix exists as every prefix
is either bad or can become good by appending {p}.
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Conclusion

1. In the semantics for LTL on infinite words there is no
difference between X and X.

2. The semantics LTL3 for finite, non-terminated words is
defined based on the LTL semantics for infinite words
on the lattice B3 = {>, ?,⊥}.

3. FLTL4 is not anticipatory, LTL3 is.
4. Jw |= ϕK3 is > for all good prefixes of L(ϕ), ⊥ for all

bad prefixes of L(ϕ) and ? for all ugly prefixes of L(ϕ).
5. The class of monitorable properties comprises safety-

and co-safety properties, but is strictly larger than their
union.
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Chapter 6
Learning Targets of Chapter “Alternating Büchi
Automata”.

1. Recall the definition of DFA and NFA.
2. Understand the acceptance condition of Büchi automata

(BA) on infinite words.
3. Learn about alternating Büchi automata (ABA).
4. Know how ABA can be translated into BA.
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Recall Finite Automata

Finite Automata
I consist of finitely many states and transitions.
I read a word over an alphabet letter by letter.
I change current state depending on the current letter.
I accept or reject a word depending after reading it.
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Deterministic Finite Automata (DFA)

Definition (Deterministic Finite Automata (DFA))

A deterministic finite automata (DFA) is a tuple
A = (Σ, Q, q0, δ, F ) such that

I Σ is the input alphabet,
I Q is a finite non-empty set of states,
I q0 ∈ Q is the initial state,
I δ : Q× Σ→ Q is the transition function and
I F ⊆ Q is the set of accepting states.
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Run of a DFA

Definition (Run of a DFA)

A Run of a DFA A = (Σ, Q, q0, δ, F ) on a finite word
w ∈ Σ∗ is a function ρ : {0, . . . , |w|} → Q such that

I ρ(0) = q0 and
I ∀i ∈ {1, . . . , |w|} : ρ(i) = δ(ρ(i− 1), wi).

A run is called accepting iff ρ(|w|) ∈ F .
A accepts w if the run ρ of A on w is accepting.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Automata on
Finite Words
Deterministic Finite
Automata (DFA)

Non-determinstic Finite
Automata (NFA)

Büchi Automata
(BA)
Non-deterministic Büchi
Automata (BA)

Deterministic Büchi
Automata?

Alternating Büchi
Automata (ABA)
The Idea

Definition

Translating ABA into BA

Conclusion

6-9

Non-determinstic Finite Automata

q0

q1

q2

∅, {p}, {q}, {p, q}

{p}, {p, q} {p}, {p, q}

∅, {p}, {q}, {p, q}

Word

∅{p}{q}{p}{p, q}



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Automata on
Finite Words
Deterministic Finite
Automata (DFA)

Non-determinstic Finite
Automata (NFA)

Büchi Automata
(BA)
Non-deterministic Büchi
Automata (BA)

Deterministic Büchi
Automata?

Alternating Büchi
Automata (ABA)
The Idea

Definition

Translating ABA into BA

Conclusion

6-9

Non-determinstic Finite Automata

q0

q1

q2

∅, {p}, {q}, {p, q}

{p}, {p, q} {p}, {p, q}

∅, {p}, {q}, {p, q}

Word

∅{p}{q}{p}{p, q}



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Automata on
Finite Words
Deterministic Finite
Automata (DFA)

Non-determinstic Finite
Automata (NFA)

Büchi Automata
(BA)
Non-deterministic Büchi
Automata (BA)

Deterministic Büchi
Automata?

Alternating Büchi
Automata (ABA)
The Idea

Definition

Translating ABA into BA

Conclusion

6-9

Non-determinstic Finite Automata

q0

q1

q2

∅, {p}, {q}, {p, q}

{p}, {p, q} {p}, {p, q}

∅, {p}, {q}, {p, q}

Word
∅

{p}{q}{p}{p, q}



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Automata on
Finite Words
Deterministic Finite
Automata (DFA)

Non-determinstic Finite
Automata (NFA)

Büchi Automata
(BA)
Non-deterministic Büchi
Automata (BA)

Deterministic Büchi
Automata?

Alternating Büchi
Automata (ABA)
The Idea

Definition

Translating ABA into BA

Conclusion

6-9

Non-determinstic Finite Automata

q0

q1

q2

∅, {p}, {q}, {p, q}

{p}, {p, q} {p}, {p, q}

∅, {p}, {q}, {p, q}

Word
∅{p}

{q}{p}{p, q}



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Automata on
Finite Words
Deterministic Finite
Automata (DFA)

Non-determinstic Finite
Automata (NFA)

Büchi Automata
(BA)
Non-deterministic Büchi
Automata (BA)

Deterministic Büchi
Automata?

Alternating Büchi
Automata (ABA)
The Idea

Definition

Translating ABA into BA

Conclusion

6-9

Non-determinstic Finite Automata

q0

q1

q2

∅, {p}, {q}, {p, q}

{p}, {p, q} {p}, {p, q}

∅, {p}, {q}, {p, q}

Word
∅{p}{q}

{p}{p, q}



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Automata on
Finite Words
Deterministic Finite
Automata (DFA)

Non-determinstic Finite
Automata (NFA)

Büchi Automata
(BA)
Non-deterministic Büchi
Automata (BA)

Deterministic Büchi
Automata?

Alternating Büchi
Automata (ABA)
The Idea

Definition

Translating ABA into BA

Conclusion

6-9

Non-determinstic Finite Automata

q0

q1

q2

∅, {p}, {q}, {p, q}

{p}, {p, q} {p}, {p, q}

∅, {p}, {q}, {p, q}

Word
∅{p}{q}{p}

{p, q}



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Automata on
Finite Words
Deterministic Finite
Automata (DFA)

Non-determinstic Finite
Automata (NFA)

Büchi Automata
(BA)
Non-deterministic Büchi
Automata (BA)

Deterministic Büchi
Automata?

Alternating Büchi
Automata (ABA)
The Idea

Definition

Translating ABA into BA

Conclusion

6-9

Non-determinstic Finite Automata

q0

q1

q2

∅, {p}, {q}, {p, q}

{p}, {p, q} {p}, {p, q}

∅, {p}, {q}, {p, q}

Word
∅{p}{q}{p}{p, q}



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Automata on
Finite Words
Deterministic Finite
Automata (DFA)

Non-determinstic Finite
Automata (NFA)

Büchi Automata
(BA)
Non-deterministic Büchi
Automata (BA)

Deterministic Büchi
Automata?

Alternating Büchi
Automata (ABA)
The Idea

Definition

Translating ABA into BA

Conclusion

6-10

Non-deterministic Finite Automata (NFA)

Definition (Non-deterministic Finite Automata (NFA))

A non-deterministic finite automata (NFA) is a tuple
A = (Σ, Q,Q0,∆, F ) such that

I Σ is the input alphabet,
I Q is a finite non-empty set of states,
I Q0 ⊆ Q is the set of initial states,
I ∆ ⊆ Q× Σ×Q is the transition relation and
I F ⊆ Q is the set of accepting states.
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Run of an NFA

Definition (Run of an NFA)

A Run of an NFA A = (Σ, Q,Q0,∆, F ) on a finite word
w ∈ Σ∗ is a function ρ : {0, . . . , |w|} → Q such that

I ρ(0) ∈ Q0 and
I ∀i ∈ {1, . . . , |w|} : (ρ(i− 1), wi, ρ(i)) ∈ ∆.

A run is called accepting iff ρ(|w|) ∈ F .
A accepts w if there is an accepting run ρ of A on w.
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Language of Automata

Definition (Language of Automata)

The language L(A) ⊆ Σ∗ of an automaton A with the
alphabet Σ is defined as follows:

L(A) = {w ∈ Σ∗ | A accepts w}.

We say that A accepts a language L iff L(A) = L.
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Power of Finite Automata

I Every NFA can be translated into an equivalent DFA
using the power set construction.

I DFAs can accept all regular languages.
(Proof: Construct a DFA from a regular grammar using
its nonterminals as states.)

I For every regular language one can construct a DFA.
(Proof: See regular expressions.)



Section
Büchi Automata (BA)

Non-deterministic Büchi Automata (BA)
Deterministic Büchi Automata?

Chapter 6 “Alternating Büchi Automata”
Course “Runtime Verification”
M. Leucker & V. Stolz
INF5140 / V17



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Automata on
Finite Words
Deterministic Finite
Automata (DFA)

Non-determinstic Finite
Automata (NFA)

Büchi Automata
(BA)
Non-deterministic Büchi
Automata (BA)

Deterministic Büchi
Automata?

Alternating Büchi
Automata (ABA)
The Idea

Definition

Translating ABA into BA

Conclusion

6-15

ω-regular Languages

Definition (ω-regular Languages)

A language L ⊆ Σω over an alphabet Σ is called ω-regular iff
there are regular languages Ui, Vi ⊆ Σ∗ for i ∈ {1, . . . ,m}
such that

L =
m⋃
i=1

Ui ◦ V ω
i .

Example (ω-regular Languages)

Consider an alphabet Σ = 2AP for AP = {p, q}.

L(G p) = {{p}, {p, q}}ω

L(F p) = Σ∗ ◦ {{p}, {p, q}} ◦ Σω
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Finite Automata on Infinite Words

I Finite automata can be used on infinite words as well.
I Definition of run ρ can be reused.
I Problem: There is no last state ρ(|w|).
I Solution: New acceptance condition.
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Acceptance Condition of Büchi Automata

I Büchi automata can accept all ω-regular languages.
I An accepting run of a Büchi automaton

visits at least one accepting state infinitely often.

ω-regular Languages
I union

⋃
I concatenation ◦
I regular language Ui
I regular language V ω

i

Büchi Automata
I non-determinism
I simple transition
I like an NFA
I new acceptance condition
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Non-deterministic Büchi Automata (BA)

Definition (Non-deterministic Büchi Automata (BA))

A (non-deterministic) Büchi automaton is a tuple
A = (Σ, Q,Q0,∆, F ) such that

I Σ is the input alphabet,
I Q is the finite non-empty set of states,
I Q0 ⊆ Q is the set of initial states,
I ∆ ⊆ Q× Σ×Q is the transition relation and
I F ⊆ Q is the set of accepting states.
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Run of a BA

Definition (Run of a BA)

A run of a BA A = (Σ, Q,Q0,∆, F ) on an infinite word
w ∈ Σω is a function ρ : N→ Q such that

I ρ(0) ∈ Q0 and
I ∀i ∈ N\{0} : (ρ(i− 1), wi, ρ(i)) ∈ ∆.
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Accepting Runs of a BA

Definition (Accepting Runs of a BA)

A run ρ of a BA A = (Σ, Q,Q0,∆, F ) is called accepting iff

Inf(ρ) ∩ F 6= ∅,

where Inf(ρ) denotes the set of states visited infinitely often
given by

Inf(ρ) =
{
q ∈ Q

∣∣∣ |{k ∈ N | ρ(k) = q}| =∞
}
.

A accepts w if there is an accepting run ρ of A on w.

Again the language L(A) ⊆ Σω of an automata A with the
alphabet Σ is defined as follows:

L(A) = {w ∈ Σω | A accepts w}.
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Deterministic Büchi Automata

Definition (Deterministic Büchi Automata)

A BA A = (Σ, Q,Q0,∆, F ) is called determistic iff for every
q ∈ Q and a ∈ Σ there is exactly one q′ ∈ Q such that
(q, a, q′) ∈ ∆.

I The successor state is determined by the current state
and the action.

I Non-deterministic BA are strictly more expressive than
deterministic BA.

I The language {p, q}∗ ◦ {q}ω cannot be accepted by a
deterministic BA.
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BA for {p, q}∗ ◦ {q}ω

q0 q1

p, q

q

q

I Impossible to handle with determistic transition
function.

I There are infinitely many possible finite prefixes in
{p, q}∗.

I You don’t know when to stop scanning the finite prefix
and start scanning the infinite loop.
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Alternating Automata

I Extend non-deterministic automata by universal choices.
I Non-deterministic transition relations denote a set of

possible next states.
I Alternating transition functions denote a positive

Boolean combination of next states.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Automata on
Finite Words
Deterministic Finite
Automata (DFA)

Non-determinstic Finite
Automata (NFA)

Büchi Automata
(BA)
Non-deterministic Büchi
Automata (BA)

Deterministic Büchi
Automata?

Alternating Büchi
Automata (ABA)
The Idea

Definition

Translating ABA into BA

Conclusion

6-26

Alternating Büchi Automaton

q0

∧

q1

true

∅, {p},
{q}, {p, q} ∅, {q}

{p}, {p, q}

Word

{p}{q}{p, q}{p}ω



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Automata on
Finite Words
Deterministic Finite
Automata (DFA)

Non-determinstic Finite
Automata (NFA)

Büchi Automata
(BA)
Non-deterministic Büchi
Automata (BA)

Deterministic Büchi
Automata?

Alternating Büchi
Automata (ABA)
The Idea

Definition

Translating ABA into BA

Conclusion

6-26

Alternating Büchi Automaton

q0

∧

q1

true

∅, {p},
{q}, {p, q} ∅, {q}

{p}, {p, q}

Word

{p}{q}{p, q}{p}ω



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Automata on
Finite Words
Deterministic Finite
Automata (DFA)

Non-determinstic Finite
Automata (NFA)

Büchi Automata
(BA)
Non-deterministic Büchi
Automata (BA)

Deterministic Büchi
Automata?

Alternating Büchi
Automata (ABA)
The Idea

Definition

Translating ABA into BA

Conclusion

6-26

Alternating Büchi Automaton

q0

∧

q1

true

∅, {p},
{q}, {p, q} ∅, {q}

{p}, {p, q}

Word
{p}

{q}{p, q}{p}ω



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Automata on
Finite Words
Deterministic Finite
Automata (DFA)

Non-determinstic Finite
Automata (NFA)

Büchi Automata
(BA)
Non-deterministic Büchi
Automata (BA)

Deterministic Büchi
Automata?

Alternating Büchi
Automata (ABA)
The Idea

Definition

Translating ABA into BA

Conclusion

6-26

Alternating Büchi Automaton

q0

∧

q1

true

∅, {p},
{q}, {p, q} ∅, {q}

{p}, {p, q}

Word
{p}{q}

{p, q}{p}ω



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Automata on
Finite Words
Deterministic Finite
Automata (DFA)

Non-determinstic Finite
Automata (NFA)

Büchi Automata
(BA)
Non-deterministic Büchi
Automata (BA)

Deterministic Büchi
Automata?

Alternating Büchi
Automata (ABA)
The Idea

Definition

Translating ABA into BA

Conclusion

6-26

Alternating Büchi Automaton

q0

∧

q1

true

∅, {p},
{q}, {p, q} ∅, {q}

{p}, {p, q}

Word
{p}{q}{p, q}

{p}ω



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Automata on
Finite Words
Deterministic Finite
Automata (DFA)

Non-determinstic Finite
Automata (NFA)

Büchi Automata
(BA)
Non-deterministic Büchi
Automata (BA)

Deterministic Büchi
Automata?

Alternating Büchi
Automata (ABA)
The Idea

Definition

Translating ABA into BA

Conclusion

6-26

Alternating Büchi Automaton

q0

∧

q1

true

∅, {p},
{q}, {p, q} ∅, {q}

{p}, {p, q}

Word
{p}{q}{p, q}{p}

ω



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Automata on
Finite Words
Deterministic Finite
Automata (DFA)

Non-determinstic Finite
Automata (NFA)

Büchi Automata
(BA)
Non-deterministic Büchi
Automata (BA)

Deterministic Büchi
Automata?

Alternating Büchi
Automata (ABA)
The Idea

Definition

Translating ABA into BA

Conclusion

6-26

Alternating Büchi Automaton

q0

∧

q1

true

∅, {p},
{q}, {p, q} ∅, {q}

{p}, {p, q}

Word
{p}{q}{p, q}{p}ω



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Automata on
Finite Words
Deterministic Finite
Automata (DFA)

Non-determinstic Finite
Automata (NFA)

Büchi Automata
(BA)
Non-deterministic Büchi
Automata (BA)

Deterministic Büchi
Automata?

Alternating Büchi
Automata (ABA)
The Idea

Definition

Translating ABA into BA

Conclusion

6-27

Recall: Positive Boolean Combination

The set B+(Q) of all positive boolean combinations (PBC)
over Q contains

I true, false and all elements of Q and
I all conjunctions and disjunctions of its elements.

A subset S ⊆ Q is a model of α ∈ B+(Q), denoted by
S |= α, iff α evaluates to true in propositional logic
interpreting all p ∈ S as true and all p ∈ Q\S as false.
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Alternating Büchi Automata (ABA)

Definition (Alternating Büchi Automata (ABA))

A alternating Büchi automaton is a tuple
A = (Σ, Q,Q0, δ, F ) such that

I Σ is the input alphabet,
I Q is the finite non-empty set of states,
I Q0 ∈ B+(Q) is the PBC of initial states,
I δ : Q× Σ→ B+(Q) is the transition function and
I F ⊆ Q is the set of accepting states.
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Minimal Models of a PBC

Definition (Minimal Models of a PBC)

A model S |= α of a PBC α ∈ B+(Q) is called minimal,
denoted by S |≡ α, if none of its proper subsets S′ ( S is a
model S′ |= α.

Examples
Consider α = (q1 ∧ q2) ∨ (q1 ∧ q3) ∈ B+({q0, q1, q2, q3})

I {q1, q2} |≡ α
I {q1, q3} |≡ α
I {q1, q2, q3} |= α but {q1, q2, q3} 6|≡ α
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Minimal Models of a PBC

Definition (Minimal Models of a PBC)

A model S |= α of a PBC α ∈ B+(Q) is called minimal,
denoted by S |≡ α, if none of its proper subsets S′ ( S is a
model S′ |= α.

Examples

I ∅ |≡ true
I ∀S ⊆ Q : S 6= ∅ ⇒ S 6|≡ true
I ∀S ⊆ Q : S 6|= false
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Run of an ABA

Definition (Run of an ABA)

A run of an ABA A = (Σ, Q,Q0, δ, F ) on an infinite word
w ∈ Σω is a Q-labeled directed acyclic graph (V,E) such
that there exist labelings l : V → Q and h : V → N which
satisfy the following properties:

I {l(v) | v ∈ h−1(0)} |≡ Q0.
I E ⊆

⋃
i∈N(h−1(i)× h−1(i+ 1)).

I ∀v′ ∈ V : h(v′) ≥ 1⇒ {v ∈ V | (v, v′) ∈ E} 6= ∅.
I ∀v, v′ ∈ V : v 6= v′ ∧ l(v) = l(v′)⇒ h(v) 6= h(v′).
I ∀v ∈ V : {l(v′) | (v, v′) ∈ E} |≡ δ(l(v), wh(v)+1).
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Accepting Run of an ABA

I A run of a BA is accepting, if infinitely many accepting
states are visited.

I Think of the run of an ABA as runs of several copies of
BAs at the same time.

I Every copy has to visit infinitely many accepting states.

Definition (Accepting Run of an ABA)

A run (V,E) on w ∈ Σω is accepting if every maximal
infinite path, with respect to the labeling l, visits at least
one accepting state infinitely often.

Note that every maximal finite path ends in a node v ∈ V
with δ(l(v), wh(v)+1) = true.
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Translating ABA into BA

Theorem
For every alternating Büchi automaton A, there is a Büchi
automaton A′ with L(A) = L(A′). The size of A′ is
exponential in the size of A.
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The Idea

I Transition function of
ABA points to PBCs.

I Use minimal models
X ⊆ Q of these PBCs
as states of the BA.

I Problem: What are the
new accepting states?

I Accepting only if every
state of X is accepting
is not enough.
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q3 q4
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The Idea: The new accepting states

I Idea: Keep track of the paths on which
we already visited an accepting state.

I Split states into two components.
I Shift successor states of the current states

into the second component if they are accepting.
I An empty first component indicates that

accepting states have been seen on all paths.
I Such states are accepting and

all not accpeting successors are
shifted back to the first component.
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The Idea: The New Accepting States
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Translating ABA into BA

Proof.
Let A = (Σ, Q,Q0, δ, F ) be an ABA. We then define the BA
A′ = (Σ, Q′, Q′0,∆′, F ′) such that L(A) = L(A′), where

I Q′ = 2Q × 2Q,
I ∆′ ⊆ Q′ × Σ×Q′ as defined next,
I Q′0 = {(X, ∅) | X ⊆ Q,X |≡ Q0} and
I F ′ = ∅ × 2Q.
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Translating ABA into BA

Proof.
A pair (U, V ) ∈ Q′, an action a ∈ Σ and a pair
(U ′, V ′) ∈ Q′ are element of the transition relation ∆′ iff

I case U 6= ∅: there are X,Y ⊆ Q satisfying

X |≡
∧
q∈U

δ(q, a) and Y |≡
∧
q∈V

δ(q, a)

and U ′ = X\F and V ′ = (X ∩ F ) ∪ (Y \U ′).
I case U = ∅: there is Y ⊆ Q satisfying

Y |≡
∧
q∈V

δ(q, a)

and U ′ = Y \F and V ′ = Y ∩ F .
Note that we identify an empty conjunction with true, so
that e. g. ((∅, ∅), a, (∅, ∅)) ∈ ∆′.
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Translating ABA into BA

Proof.
By Q′ = 2Q × 2Q we get

|Q′| = 2|Q| · 2|Q| = 22|Q|,

but since the components U and V of a state (U, V ) have
an empty intersection U ∩ V = ∅ we get an upper bound for
the number of needed states of

|Q|∑
k=0

(
|Q|
k

)(
k∑
l=0

(
k

l

))

=
|Q|∑
k=0

(
|Q|
k

)
2k

= 3|Q| = 2|Q| log2 3
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Example: ABA

q0

∧

q1

true

∅, {p},
{q}, {p, q} ∅, {q}

{p}, {p, q}
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Example: Matching BA

({q0}, ∅)

({q1}, {q0})

(∅, {q0, q1})

∅, {p}, {q}, {p, q}

∅, {q}

{p}, {p, q}∅, {p}, {q}, {p, q}
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Conclusion

1. DFA and NFA are finite automata on finite words and
accept a word depending on the last state of a run on it.

2. Büchi automata (BA) are finite automata on infintite
words and accept a word depending on the set of states
visited infinitely often in a run on it.

3. Non-deterministic BA can accept all ω-regular
languages, deterministic BA cannot.

4. Alternating Büchi Automata (ABA) use transition
functions mapping to positive Boolean combinations
(PBCs) of states.

5. Every ABA can be translated into an BA accepting the
same language using minimal models of the PBCs as
states and keeping track of the paths on which
accepting states were already visited.
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Chapter 7
Learning Targets of Chapter “Monitor Construc-
tion for Anticipatory Runtime Verification”.

1. Understand the translation from LTL to alternating
Büchi automata.

2. Understand the monitor construction for LTL3.
3. Know the single steps of this construction, especially how

a satisfiability check is implemented in the emptiness per
state function.

4. Learn about its complexity and its relation to
monitorable properties.
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Impartial Anticipation

Impartiality

I Go for a final verdict (> or ⊥) only if you really know.
I Be a rational being: Stick to your word.
I Every two-valued logic is not impartial.

We therefore use B3 = {⊥, ?,>}.

Anticipation

I Go for a final verdict (> or ⊥) once you really know.
I Don’t be a cunctator: Don’t delay the decision.
I Implementing anticipation is dificult—you need to

identify all shortest bad resp. good prefixes.
I Consider for example X X X false or F false.
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The Semantics

Let ϕ be an LTL formula and let u ∈ Σ∗ be a finite word.
Then the semantics of ϕ with respect to u is given as follows:

Ju |= ϕK3 =


> if ∀w ∈ Σω : Juw |= ϕKω = >
⊥ if ∀w ∈ Σω : Juw |= ϕKω = ⊥
? else.
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Target

Construct a Moore machineMϕ for an LTL formula ϕ that
I reads a word letter by letter
I outputs in every state the value of Jw |= ϕK3

where w is the word read so far.
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First Idea

Remember the evlFLTL4 function:
I It reads a word letter by letter and
I outputs the subformula that has to be satisfied next

for every letter it gets.

First idea: Perform a satisfiability check on the returned
formula of such a function.

I Return ? if the formula is satisfiable.
I Return > if the formula is a tautology.
I Return ⊥ if the formula is a contradiction.
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Satisfiability Checking for LTL

I Satisfiability checking for LTL is a difficult task.
I The problem of deciding if there exists a word w ∈ Σω

for an LTL formula ϕ such that w |= ϕ is
pspace-complete.

I We will use a translation of LTL formulae to Büchi
automata to perform this task.
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Monitor construction
Construct a BA of the LTL formula and identify:

good states > BA will accept on every continuation.
bad states ⊥ BA will reject on every continuation.
other states ? We don’t know (yet).

For example consider AP = {p, q} and Σ = 2AP:

?
>

⊥

q0 q1

q2

q3 q4

{p}, {p, q}

∅, {q}

{p},
{p, q}

∅, {q}

∅, {p},
{q}, {p, q}

{p}, {p, q}

∅, {q}

Create a Moore machine using these labels as outputs.
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Analysis of the Construction

It’s an LTL3 Monitor!
4 One can construct an ABA from LTL.
4 We can translate an ABA into a BA.
4 The monitor performs the desired satisfiability check.

How to detect regions?
4 The bad regions (⊥) are subautomata S without

accepting states and without edges leaving S.
4 They can be identified using linear-time nested

depth-first search algorithms.
8 The good regions (>) are universal subautomata

accepting every possible word.
8 Universality check for BA is pspace-complete.
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Identifying The Good States

I Only identify bad states (⊥) and
I label everything else as not bad (6= ⊥).
I Perform this for the LTL formulae ϕ and ¬ϕ.
I Good states for ϕ are bad states for ¬ϕ.

6= ⊥

⊥

q0 q1 q2

q3 q4

{p}, {p, q}

∅, {q}

{p}, {p, q}

∅, {q}

∅, {p},
{q}, {p, q}

{p}, {p, q}

∅, {q}
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Identifying The Good States

I Only identify bad states (⊥) and
I label everything else as not bad (6= ⊥).
I Perform this for the LTL formulae ϕ and ¬ϕ.
I Good states for ϕ are bad states for ¬ϕ.

6= ⊥

⊥

q0 q1 q2

q3 q4

{p}, {p, q}

∅, {q}

{p}, {p, q}

∅, {q}

∅, {p},
{q}, {p, q}

{p}, {p, q}

∅, {q}
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Identifying The Good States

I Only identify bad states (⊥) and
I label everything else as not bad (6= ⊥).
I Perform this for the LTL formulae ϕ and ¬ϕ.
I Good states for ϕ are bad states for ¬ϕ.

Remark

I An LTL formula can be complemented by adding ¬.
I Computing the NNF can be done in linear time.
I Complementing a BA potentially needs exponential

time.
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The Complete Construction

1. Translate ϕ and ¬ϕ into ABA.
2. Translate ABAs into BAs.
3. Create NFAs based on bad states in BAs.
4. Determinize NFAs to DFAs.
5. Compute Moore machine out of both DFAs.
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Recall the Idea of the AMM for FLTL4

We monitor an LTL formula ϕ by evaluating its current
subformula ψ w.r.t. the current letter a. Progression
provides the LTL formula ψ′ that has to be fulfilled next.

I The set of states consists of all subformulae of ϕ.
I The initial state is ϕ.
I The current state is ψ.
I It reads the letter a
I and sets ψ′ as new state.

But when to accept?
I ABA accepts if all paths are finite (ending in true).
I Only Release R and Globally G allow for infinite loops.
I Make these states accepting.
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LTL to ABA
Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic
proposition, a ∈ Σ a letter, ϕ,ψ1, ψ2 LTL formulae in NNF
and Q the set of all subformulae of ϕ.

We then define ABAϕ = (Σ, Q, ϕ, δ, F ) with

F = {ψ1 Rψ2,Gψ1 | ψ1, ψ2 ∈ Q}.

and its transition function δ : Q× Σ→ B+(Q) inductively
given as follows:

δ(true, a) = true
δ(false, a) = false

δ(p, a) =
{

true if p ∈ a
false else

δ(¬ p, a) =
{

true if p 6∈ a
false else
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LTL to ABA
Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic
proposition, a ∈ Σ a letter, ϕ,ψ1, ψ2 LTL formulae in NNF
and Q the set of all subformulae of ϕ.

We then define ABAϕ = (Σ, Q, ϕ, δ, F ) with

F = {ψ1 Rψ2,Gψ1 | ψ1, ψ2 ∈ Q}.

and its transition function δ : Q× Σ→ B+(Q) inductively
given as follows:

δ(ψ1 ∨ψ2, a) = δ(ψ1, a) ∨ δ(ψ2, a)
δ(ψ1 ∧ψ2, a) = δ(ψ1, a) ∧ δ(ψ2, a)
δ(Xψ1, a) = ψ1

δ(Xψ1, a) = ψ1
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LTL to ABA
Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic
proposition, a ∈ Σ a letter, ϕ,ψ1, ψ2 LTL formulae in NNF
and Q the set of all subformulae of ϕ.

We then define ABAϕ = (Σ, Q, ϕ, δ, F ) with

F = {ψ1 Rψ2,Gψ1 | ψ1, ψ2 ∈ Q}.

and its transition function δ : Q× Σ→ B+(Q) inductively
given as follows:

δ(ψ1 Uψ2, a) = δ(ψ2 ∨(ψ1 ∧X(ψ1 Uψ2)), a)
δ(ψ1 Rψ2, a) = δ(ψ2 ∧(ψ1 ∨X(ψ1 Rψ2)), a)

δ(Fψ1, a) = δ(ψ1 ∨(X(Fψ1)), a)
δ(Gψ1, a) = δ(ψ1 ∧(X(Gψ1)), a)
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Example

Consider AP = {p, q}, Σ = 2AP and ϕ = G(pU q).

δ(G(pU q), a) = G(pU q) ∧ δ(pU q, a) ∀a ∈ Σ
δ(pU q, ∅) = δ(q, ∅) ∨ (δ(p, ∅) ∧ (pU q))

= false∨(false∧(pU q)) = false
δ(pU q, {p}) = δ(q, {p}) ∨ (δ(p, {p}) ∧ (pU q))

= false∨(true∧(pU q)) = pU q

δ(pU q, {q}) = δ(q, {q}) ∨ (δ(p, {q}) ∧ (pU q))
= true∨(false∧(pU q)) = true

δ(pU q, {p, q}) = δ(q, {p, q}) ∨ (δ(p, {p, q}) ∧ (pU q))
= true∨(true∧(pU q)) = true
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Example

Consider AP = {p, q}, Σ = 2AP and ϕ = G(pU q).

G(pU q)

false

∧ pU q

true

false

{q}, {p, q}

∅

{p} {q}, {p, q}

∅

{p}
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The Monitor Construction

For a given LTL formula ϕ over an alphabet Σ we construct
a Moore machineMϕ that

I reads finite words w ∈ Σ∗ and
I outputs Jw |= ϕK3 ∈ B3.

For the next steps let

Aϕ = (Σ, Qϕ, Qϕ0 , δϕ, Fϕ)

denote the BA accepting all models of ϕ and

A¬ϕ = (Σ, Q¬ϕ, Q¬ϕ0 , δ¬ϕ, F¬ϕ)

denote the BA accepting all words falsifying ϕ.
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Emptiness per State

Definition (BA With Adjusted Initial State)

For an BA A, we denote by A(q) the BA that coincides with
A except for the set of initial states Q0, which is redefined in
A(q) as Q0 = {q}.

Definition (Emptiness per State)

We then define a function Fϕ : Qϕ → B2 (with
B2 = {>,⊥}) where we set Fϕ(q) = > iff L(Aϕ(q)) 6= ∅.

Using Fϕ, we define the NFA Âϕ = (Σ, Qϕ, Qϕ0 , δϕ, F̂ϕ)
with F̂ϕ = {q ∈ Qϕ | Fϕ(q) = >}. Analogously, we set
Â¬ϕ = (Σ, Q¬ϕ, Q¬ϕ0 , δ¬ϕ, F̂¬ϕ) with
F̂¬ϕ = {q ∈ Q¬ϕ | F¬ϕ(q) = >}.
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Definition (Emptiness per State)

We then define a function Fϕ : Qϕ → B2 (with
B2 = {>,⊥}) where we set Fϕ(q) = > iff L(Aϕ(q)) 6= ∅.

Using Fϕ, we define the NFA Âϕ = (Σ, Qϕ, Qϕ0 , δϕ, F̂ϕ)
with F̂ϕ = {q ∈ Qϕ | Fϕ(q) = >}. Analogously, we set
Â¬ϕ = (Σ, Q¬ϕ, Q¬ϕ0 , δ¬ϕ, F̂¬ϕ) with
F̂¬ϕ = {q ∈ Q¬ϕ | F¬ϕ(q) = >}.
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LTL3 Evaluation

Lemma (LTL3 Evaluation)

With the notation as before, we have

Jw |= ϕK3 =


> if w /∈ L(Â¬ϕ)
⊥ if w /∈ L(Âϕ)
? if w ∈ L(Âϕ ∩ L(Â¬ϕ))
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LTL3 Evaluation

Proof.
Jw |= ϕK3 = > if w /∈ L(Â¬ϕ)

I Feeding a finite prefix w ∈ Σ∗ to the BA A¬ϕ,
we reach the set δ¬ϕ(Q¬ϕ0 , w) ⊆ Q¬ϕ of states.

I If ∃q ∈ δ¬ϕ(Q¬ϕ0 , w) : L(A¬ϕ(q)) 6= ∅ then
we can choose σ ∈ L(A¬ϕ(q)) such that
wσ ∈ L(A¬ϕ).

I Such a state q exists by definition iff w ∈ L(Â¬ϕ).
I If w /∈ L(Â¬ϕ) then every possible continuation wσ of
w will be rejected by A¬ϕ, i.e. Jwσ |= ϕKω = > for all
σ ∈ Σω. Therefore we have Jw |= ϕK3 = >.

Jw |= ϕK3 = ⊥ if w /∈ L(Âϕ)
I can be seen by substituting ϕ for ¬ϕ.
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LTL3 Evaluation

Proof.
Jw |= ϕK3 =? if w ∈ L(Â¬ϕ) ∩ L(Âϕ)

I If ∃q ∈ δ¬ϕ(Q¬ϕ0 , w) : L(A¬ϕ(q)) 6= ∅ and
∃q′ ∈ δϕ(Qϕ0 , w) : L(Aϕ(q′)) 6= ∅ then
we can choose σ ∈ L(A¬ϕ(q)) and σ′ ∈ L(Aϕ(q′))
such that Jwσ |= ϕK2 = ⊥ and Jwσ′ |= ϕK2 = >.

I Hence we have Jw |= ϕK3 = ?.
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Deterministic Moore Machine (FSM)

q0
?

q1
⊥

q2
>

{p}

∅ {q}, {p, q}

∅, {p}, {q}, {p, q} ∅, {p}, {q}, {p, q}

Input

{p}{p, q}∅

Output

??>>{}
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q0
?

q1
⊥

q2
>

{p}

∅ {q}, {p, q}

∅, {p}, {q}, {p, q} ∅, {p}, {q}, {p, q}

Input

{p}{p, q}∅

Output
?

?>>{}
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Deterministic Moore Machine (FSM)

q0
?

q1
⊥

q2
>

{p}

∅ {q}, {p, q}

∅, {p}, {q}, {p, q} ∅, {p}, {q}, {p, q}

Input
{p}

{p, q}∅

Output
??

>>{}
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Deterministic Moore Machine (FSM)

q0
?

q1
⊥

q2
>

{p}

∅ {q}, {p, q}

∅, {p}, {q}, {p, q} ∅, {p}, {q}, {p, q}

Input
{p}{p, q}

∅

Output
??>

>{}
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Deterministic Moore Machine (FSM)

q0
?

q1
⊥

q2
>

{p}

∅ {q}, {p, q}

∅, {p}, {q}, {p, q} ∅, {p}, {q}, {p, q}

Input
{p}{p, q}∅

Output
??>>

{}
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Determinstic Moore Machine (FSM)

Definition (Deterministic Moore Machine (FSM))

A (deterministic) Moore machine is a tupel
M = (Σ, Q, q0,Γ, δ, λ) where

I Σ is the input alphabet,
I Q is a finite set of states,
I q0 ∈ Q is the initial state,
I Γ is the output alphabet,
I δ : Q× Σ→ Q is the transition function and
I λ : Q→ Γ is the output function.
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Run of a Deterministic Moore Machine

Definition (Run of a Deterministic Moore Machine)

A run of a (deterministic) Moore machine
M = (Σ, Q, q0,Γ, δ, λ) on a finite word w ∈ Σn with
outputs oi ∈ Γ is a sequence

t0
w1→ t1

w2→ . . .
wn−1→ tn−1

wn→ tn

such that
I t0 = q0,
I ti = δ(ti−1, wi) and
I oi = λ(ti).

The output of the run is on = λ(tn).
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Monitor Mϕ for an LTL Formula ϕ
Let Ãϕ = (Σ, Q̃ϕ, qϕ0 , δ̃ϕ, F̃ϕ) and
Ã¬ϕ = (Σ, Q̃¬ϕ, q¬ϕ0 , δ̃¬ϕ, F̃¬ϕ) be the equivalent DFAs of
the NFAs Âϕ and Â¬ϕ.

Definition (Monitor Mϕ for an LTL formula ϕ)

We define the product automaton Aϕ = Ãϕ × Ã¬ϕ
as the Moore machine (Σ, Q, q0,B3, δ, λ), where

I Q = Q̃ϕ × Q̃¬ϕ,
I q0 = (q̃ϕ0 , q̃

¬ϕ
0 ),

I δ((q, q′), a) = (δ̃ϕ(q, a), δ̃¬ϕ(q′, a)) and
I λ : Q→ B3 with

λ((q, q′)) =


> if q′ /∈ F̃¬ϕ

⊥ if q /∈ F̃ϕ

? if q ∈ F̃ϕ and q′ ∈ F̃¬ϕ.

The monitorMϕ of ϕ is obtained by minimizing Aϕ.
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The Complete Construction

The Construction

ϕ

ϕ

LTL

¬ϕ

Aϕ
BA

A¬ϕ

Fϕ

Emptiness
per State

F¬ϕ

Âϕ
NFA

Â¬ϕ
Ãϕ
DFA

Ã¬ϕ
Mϕ

FSM

LTL3 Evaluation

Ju |= ϕK3 =


>

if u /∈ L(NFA¬ϕ)

⊥ if u /∈ L(NFAϕ)
?

else



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

The Idea
Impartial Anticipation

The Construction

The Construction
From LTL to ABA

Emptiness per State

The Monitor

Analysis
Complexity

Monitorable Properties

Conclusion

7-25

The Complete Construction

The Construction

ϕ

ϕ

LTL

¬ϕ
Aϕ
BA

A¬ϕ

Fϕ

Emptiness
per State

F¬ϕ

Âϕ
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Â¬ϕ
Ãϕ
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Example

{p}

{q}, {p, q}
Σ {p}

∅
Σ

BA

pU q ¬(pU q)LTL

{p}

{q}, {p, q}

∅

Σ

Σ

{p}

∅

{q}, {p, q}

Σ

Σ

DFA

?⊥ >

{p}

∅ {q}, {p, q}
Σ Σ

FSM
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Complexity

The Construction
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Optimal result!
FSM can be minimised (Myhill-Nerode)
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Ã¬ϕ
Mϕ

FSM

Complexity
|M | ∈ 22O(|ϕ|)

Optimal result!
FSM can be minimised (Myhill-Nerode)



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

The Idea
Impartial Anticipation

The Construction

The Construction
From LTL to ABA

Emptiness per State

The Monitor

Analysis
Complexity

Monitorable Properties

Conclusion

7-28

Complexity

The Construction

ϕ
ϕ

LTL

¬ϕ
Aϕ
BA

A¬ϕ
Fϕ

Emptiness
per State

F¬ϕ
Âϕ
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Â¬ϕ
Ãϕ
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Â¬ϕ
Ãϕ
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Evaluation on Dwyer’s Specification
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Evaluation on Dwyer’s Specification
Patterns II
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Monitorability
When Does Anticipation Help?
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Recall The Good, The Bad and The Ugly

Given a language L ⊆ Σω of infinite words over Σ we call a
finite word u ∈ Σ∗

I a good prefix for L if ∀w ∈ Σω : uw ∈ L,
I a bad prefix for L if ∀w ∈ Σω : uw 6∈ L and
I an ugly prefix for L if ∀v ∈ Σ∗ : uv is neither a good

prefix nor a bad prefix.

LTL3 indentifies good/bad prefixes:

Ju |= ϕK3 =


> if u is a good prefix for L(ϕ)
⊥ if u is a bad prefix for L(ϕ)
? otherwise.
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Monitors Revisited

Structure of Monitors
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Classification of Prefixes of Words

Bad prefixes Ugly prefixes Good prefixes
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Monitorable

Non-Monitorable
ϕ is non-monitorable after u, if u cannot be extended to a
bad oder good prefix.

Monitorable
ϕ is monitorable if there is no such u.

“?”

bad
“⊥”

ugly
“?”

good
“>”

Σ Σ Σ

Ugly occurs
Consider G F p
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Conclusion

1. LTL formulae on infinite words can be translated into
alternating Büchi automata.

2. The emptiness per state function computes the
satisfiability of an LTL formla and can be used to
generate an NFA accepting in the not bad states of the
BA of the LTL formula.

3. The impartial anticipatory LTL monitor is based on
such an NFA for the LTL formula and one for its
complement and identifies good, bad and ugly prefixes.

4. Universalitiy testing for Büchi automata can be avoided
by complementing the LTL formula instead of the Büchi
automaton.

5. The size of the generated monitor is double-exponential
in the size of the LTL formula.
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Chapter 8
Learning Targets of Chapter “LTL with a Predic-
tive Semantics”.

1. Understand how the underlying program to monitor
could be taken into account.

2. Understand how to build a corresponding monitor
synthesis procedure.
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Outline of Chapter “LTL with a Predictive Se-
mantics”.
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Motivation
Definition

Monitoring LTLP4
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Fusing model checking and runtime
verification

LTL with a predictive semantics
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Recall anticipatory LTL semantics

The truth value of a LTL3 formula ϕ with respect to u,
denoted by Ju |= ϕK, is an element of B3 defined by

Ju |= ϕK =


> if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? otherwise.
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Applied to the Empty Word

Empty word ε
Jε |= ϕKP = >

iff ∀σ ∈ Σω with εσ ∈ P : εσ |= ϕ
iff L(P) |= ϕ

RV more difficult than MC?
Then runtime verification implicitly answers model checking
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Abstraction

An over-abstraction or and over-approximation of a program
P is a program P̂ such that L(P) ⊆ L(P̂) ⊆ Σω.
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Predictive Semantics

Definition (Predictive Semantics of LTL)

Let P be a program and let P̂ be an over-approximation of
P. Let u ∈ Σ∗ denote a finite trace. The truth value of u
and an LTL formula ϕ with respect to P̂, denoted by
Ju |= ϕKP̂ ∈ B¿

4 = {⊥,>, ?, ¿}, and defined as follows:

Ju |= ϕKP̂ =



> if u ∈ω L(P̂) ∧ ∀w ∈ Σω :
uw ∈ L(P̂)⇒ Juw |= ϕKω = >

⊥ if u ∈ω L(P̂) ∧ ∀w ∈ Σω :
uw ∈ L(P̂)⇒ Juw |= ϕKω = ⊥

? if ∃w,w′ ∈ Σω : uw, uw′ ∈ L(P̂) ∧
Juw |= ϕKω = > ∧ Juw′ |= ϕKω = ⊥

¿ if u /∈ω L(P̂)

We use LTLP4 to indicate LTL with predictive semantics.
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Properties of Predictive Semantics

Remark
Let P̂ be an over-approximation of a program P over Σ,
u ∈ Σ∗, and ϕ ∈ LTL.

I Model checking is more precise than RV with the
predictive semantics:

P |= ϕ implies Ju |= ϕKP̂ ∈ {>, ?}
I RV has no false negatives:

Ju |= ϕKP̂ = ⊥ implies P 6|= ϕ

I The predictive semantics of an LTL formula is more
precise than LTL3:

Ju |= ϕK3 = > implies Ju |= ϕKP̂ = >
Ju |= ϕK3 = ⊥ implies Ju |= ϕKP̂ = ⊥

The reverse directions are in general not true.
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Conclusion

1. LTLP4 only considers extensions of the current word
leading to executions of an over-abstraction P̂ of the
underlying program P.

2. We introduced the new value ¿ of the output alphabet
indicating that the current execution has left the
over-abstraction.

3. The use of an over-abstraction is the tradeoff between
model checking and runtime verification as the use of
the program P itself would implicitly solve the model
checking problem.
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Chapter 9
Learning Targets of Chapter “Runtime Verifica-
tion Summary”.

1. Understand that FLTL, FLTL4 and LTL on infinite
words share a very similar semantics.

2. Understand that LTL3 and LTLP4 are defined with
respect to existing semantics.

3. Understand the difference of propositions and events.
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LTL Semantics

We know the following LTL semantics
FLTL LTL on finite, completed words

FLTL4 impartial LTL on finite, non-completed words
LTL LTL on infinite words

LTL3 anticipatory LTL on finite, non-completed
words

LTLP4 anticipatory LTL on finite, non-completed
words with respect to an over-abstraction of a
program P

I FLTL, FLTL4 and LTL have very similar semantics
with a big common part

I LTL3 and LTLP4 are defined based on LTL
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The Common Parts of LTL Semantics
Let AP be a finite set of atomic propositions, Σ = 2AP,
p ∈ AP, ϕ,ψ LTL formulae, and w ∈ Σ∞ a (finite or
infinite) word. The the common part of the LTL semantics
FLTL, FLTL4 and LTL (indicated by L) of an LTL formula
with respect to w is inductively defined as follows:

Boolean Constants

Jw |= trueKL = >
Jw |= falseKL = ⊥

Boolean Combinations

Jw |= ¬ϕKL = Jw |= ϕKL
Jw |= ϕ ∨ ψKL = Jw |= ϕKL t Jw |= ψKL
Jw |= ϕ ∧ ψKL = Jw |= ϕKL u Jw |= ψKL
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The Common Parts of LTL Semantics
Let AP be a finite set of atomic propositions, Σ = 2AP,
p ∈ AP, ϕ,ψ LTL formulae, and w ∈ Σ∞ a (finite or
infinite) word. The the common part of the LTL semantics
FLTL, FLTL4 and LTL (indicated by L) of an LTL formula
with respect to w is inductively defined as follows:

Atomic Propositions

Jw |= pKL =
{
> if p ∈ w1

⊥ if p /∈ w1

Local Temporal Operators

Jw |= XϕKL = defined dependent of L later
Jw |= XϕKL = defined dependent of L later
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The Common Parts of LTL Semantics
Let AP be a finite set of atomic propositions, Σ = 2AP,
p ∈ AP, ϕ,ψ LTL formulae, and w ∈ Σ∞ a (finite or
infinite) word. The the common part of the LTL semantics
FLTL, FLTL4 and LTL (indicated by L) of an LTL formula
with respect to w is inductively defined as follows:

Fixed Point Operators

Jw |= ϕUψKL =


> if ∃i, 1 ≤ i ≤ |w| : (Jwi |= ψKL = >

and ∀k, 1 ≤ k < i : Jwk |= ϕKL = >)
defined dependent of L later else

Jw |= ϕRψKL = Jw |= ¬ϕU¬ψKL
Jw |= FϕKL = Jw |= true UϕKL
Jw |= GϕKL = Jw |= false RϕKL
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LTL on Finite, Terminated Words
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FLTL: LTL on Finite, Completed Words

Let ϕ be an LTL formual. We then define the semantics of
FLTL by extending the common LTL semantics of an LTL
formula with respect to w ∈ Σ∗ as follows:

Local Temporal Operators

Jw |= XϕK2 =
{

Jw2 |= ϕK2 if |w| > 1
⊥ else

Jw |= XϕK2 =
{

Jw2 |= ϕK2 if |w| > 1
> else
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FLTL: LTL on Finite, Completed Words

Let ϕ be an LTL formual. We then define the semantics of
FLTL by extending the common LTL semantics of an LTL
formula with respect to w ∈ Σ∗ as follows:

Fixed Point Operator Until

Jw |= ϕUψK2 =


> if ∃i, 1 ≤ i ≤ |w| : (Jwi |= ψK2 = >

and ∀k, 1 ≤ k < i : Jwk |= ϕK2 = >)
⊥ else
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Monitor Function For FLTL

The function

evlFLTL : Σ+ × LTL→ B2

takes a finite completed word w ∈ Σ+ and
an LTL formula ϕ and
returns Jw |= ϕK2.

evlFLTL evaluates recursively
I boolean constants, combinations and atomic

propisitions directly,
I the next operator by omitting the first letter of the word

and
I the fixed point operators using their fixed point

equations.
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FLTL4: LTL on Finite, Non-Completed
Words

Let ϕ be an LTL formual. We then define the semantics of
FLTL4 by extending the common LTL semantics of an LTL
formula with respect to w ∈ Σ∗ as follows:

Local Temporal Operators

Jw |= XϕK4 =
{

Jw2 |= ϕK4 if |w| > 1
⊥p else

Jw |= XϕK4 =
{

Jw2 |= ϕK4 if |w| > 1
>p else
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FLTL4: LTL on Finite, Non-Completed
Words

Let ϕ be an LTL formual. We then define the semantics of
FLTL4 by extending the common LTL semantics of an LTL
formula with respect to w ∈ Σ∗ as follows:

Fixed Point Operator Until

Jw |= ϕUψK4

=

 ⊔
1≤i≤|w|

Jwi |= ψK4 u
l

1≤j<i
Jwj |= ϕK4


t

⊥p u l

1≤i≤|w|
Jwi |= ϕK4


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Monitor Function for FLTL4

The function

evlFLTL4 : Σ× LTL→ B4 × LTL

takes a letter a ∈ Σ of a finite non-completed word and
an LTL formula ϕ and
returns Ja |= ϕK4 and a new LTL formula ϕ′.

evlFLTL4
I is based on the ideas of evlFLTL, but
I performs (not recursive) formula rewriting (progression)

and
I can be used as transition function of an AMM.
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Monitor For FLTL4

The monitor AMMMϕ = (Σ, Q, q0,Γ, δ) of the LTL
formula ϕ consists of

I the input alphabet Σ = 2AP,
I the states Q containing all subformulae of ϕ,
I the initial state q0 = ϕ,
I the output alphabet Γ = B4 = {⊥,⊥p,>p,>} and
I the transition function δ = evlFLTL4,

where boolean combinations are interpreted over
B+(Q).

Such an AMM can be translated into an MM using
conjunctive or disjunctive normal forms as new states.
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LTL: LTL on Infinite Words

Let ϕ be an LTL formual. We then define the semantics
LTL by extending the common LTL semantics of an LTL
formula with respect to w ∈ Σω as follows:

Local Temporal Operators

Jw |= XϕKω = Jw |= XϕKω = Jw2 |= ϕKω
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LTL: LTL on Infinite Words

Let ϕ be an LTL formual. We then define the semantics
LTL by extending the common LTL semantics of an LTL
formula with respect to w ∈ Σω as follows:

Fixed Point Operator Until

Jw |= ϕUψKω =


> if ∃i, 1 ≤ i : (Jwi |= ψKω = >

and ∀k, 1 ≤ k < i : Jwk |= ϕKω = >)
⊥ else
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Monitor For LTL
The monitor ABA Aϕ = (Σ, Q, q0, δ, F ) of the LTL formula
ϕ consists of

I the input alphabet Σ = 2AP,
I the states Q containing all subformulae of ϕ,
I the initial state q0 = ϕ,
I the transition function δ,

that performs progression like evlFLTL4, and
I the set F of accepting states,

that contains all subformulae searching a greatest
fixpoint.

Such an ABA can be translated into an BA using a power
set construction where every state consists of two sets of
states: All states from paths where we already saw an
accepting states and states from paths where we still need to
see an accepting state.
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LTL3: LTL on Finite, Non-Completed
Words

Let ϕ be an LTL formual. We then define the semantics
LTL3 of an LTL formula with respect to w ∈ Σ∗ based on
the LTL semantics as follows:

Ju |= ϕK3 =


> if ∀σ ∈ Σω : Jwσ |= ϕKω = >
⊥ if ∀σ ∈ Σω : Jwσ |= ϕKω = ⊥
? else.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Impartial RV
Common LTL Semantics

RV on Finite, Terminated
Executions

Impartial RV on Finite,
Non-Terminated Words

Anticipatory RV
LTL on Infinite Words

Anticipatory RV on Finite,
Non-Terminated Words

Other LTL
Semantics
Events vs. Propositions

Further Topics

Conclusion

9-17

Monitor For LTL3

The monitor FSMMϕ = Ãϕ × Ã¬ϕ of the LTL formula ϕ
consists of

I the DFA Ãϕ computed from the LTL monitor
Aϕ = (Σ, Qϕ, ϕ, δϕ, Fϕ) via the emptiness per state
function,

I the DFA Ã¬ϕ computed from the LTL monitor
A¬ϕ = (Σ, Q¬ϕ,¬ϕ, δ¬ϕ, F¬ϕ) via the emptiness per
state function and

I the labeling function λ : Q→ B3 that prints
I > if Ãϕ is in a rejecting state
I ⊥ if Ã¬ ϕ is in a rejecting state
I ? if both are in accepting states.
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LTLP4 : Predictive LTL on Finite,
Non-Completed Words

Let ϕ be an LTL formual and P a program. We then define
the semantics LTLP3 of an LTL formula with respect to
w ∈ Σ∗ and and an over-approximation P̂ of P based on the
LTL semantics as follows:

Ju |= ϕKP̂ =



> if u ∈ω L(P̂) ∧ ∀w ∈ Σω :
uw ∈ L(P̂)⇒ Juw |= ϕKω = >

⊥ if u ∈ω L(P̂) ∧ ∀w ∈ Σω :
uw ∈ L(P̂)⇒ Juw |= ϕKω = ⊥

? if ∃w,w′ ∈ Σω : uw, uw′ ∈ L(P̂) ∧
Juw |= ϕKω = > ∧ Juw′ |= ϕKω = ⊥

¿ if u /∈ω L(P̂)
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LTL With Propositions

So far we always used
I a set AP of atomic propositions and
I an alphabet Σ = 2AP.

An LTL formula consisting of an atomic proposition p ∈ AP
gets evaluated with respect to a word w ∈ Σ∞ as follows:

Jw |= pKL =
{
> if p ∈ w1

⊥ if p /∈ w1
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LTL With Events

We now consider
I a set EV of events and
I an alphabet Σ = EV.

An LTL formula consisting of an event e ∈ EV then gets
evaluated with respect to a word w ∈ Σ∞ as follows:

Jw |= eKL =
{
> if e = w1

⊥ if e 6= w1
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Propositions vs. Events

Propositions
I A state consist of

a set of propisitions.
I A word w ∈ (2AP)ω is

a sequence of states.
I The formula p∧ q

requires that p and q
hold in the current
state and therefore
can be fulfilled.

Events
I A state consist of

one event.
I A word w ∈ (EV)ω is

a sequence of events.
I The formula p∧ q

requires that the current
state is p and q
and therefore cannot
be fulfilled for p 6= q!
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LTL With Past
Sometimes it makes things easier to look back

Consider the property “Every alarm is due to a fault”
expressed in LTL as follows:

fault R(¬ alarm∨ fault)

Using the past operator once (finally in past) O this can be
expressed more intuitive as follows:

G(alarm→O fault)

I Monitor Generation for LTL with past uses two-way
automata.

I LTL with past is kind of syntactic sugar as it is not
more expressive than future LTL.
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Regular LTL
Adding the Power of Regular Expressions to the Elegance of LTL

Consider the property “p holds in every other state” for a
proposition p ∈ AP expressed as language as follows:

(Σ ◦ {p})∗

I LTL can express exactly the star-free languages.
I This property cannot be expressed in LTL.

The property “ϕ holds in every other state” for an RLTL
formula ϕ can be expressed as

ϕ
∣∣(Σ ◦ Σ)

〉
∅

using the ternary weak power operator •|•〉• with a delay of
two states expressed as language Σ ◦ Σ.
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Parameterized LTL

Consider the LTL formula G(close→X G(¬write)) that
prohibits writing to the closed resource.

Such formula would fail on an execution with two (or more)
resources c1 and c2:

open(c1); open(c2);
write(c2);
close(c2);
write(c1); // fail
close(c1);

We could solve this problem by allowing free variables in LTL
formulas. For example G(close(c)→X G(¬write(c))) is
parametric in c.
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LTL With Modulo Constraints
Consider a set VAR of integer variables. We then define
LTL semantics with respect to infinite sequences of
valuations for VAR taking their values in Z/nZ.

Example

ϕ := G(Xx = x)

requires that x ∈ VAR evaulates in every state to the same
value as in the next state (in all states).

Models of such LTL formulas are words w ∈ (Z/nZ)ω:
I (12)ω |= ϕ,

because x is always 12.
I (12; 13)ω 6|= ϕ,

because x alternates between 12 and 13.
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Conclusion

1. FLTL, FLTL4 and LTL share common semantics for
boolean constants, boolean combinations, atomic
propositions and fixed point operators defined using
dualization or simplification.

2. We only need to define the semantics of next, weak
next and until to specify the semantics of FLTL,
FLTL4 and LTL using the common semantics.

3. LTL3 and LTLP4 are defined based on LTL.
4. Sometimes it make sense to define LTL semantics using

events as states instead of sets of propositions.
5. There are very many extensions of LTL and runtime

verification not covered (and many not even mentioned)
in this course.
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