
INF5140 – Specification and Verification of
Parallel Systems

Spring 2017

Institutt for informatikk, Universitetet i Oslo

April 28, 2017

1 / 82

INF5140 – Specification and Verification of
Parallel Systems

Lecture 5 - Introduction to Logical Model Checking and
Theoretical Foundations

Spring 2017

Institutt for informatikk, Universitetet i Oslo

April 28, 2017

2 / 82

Credits

Credits:
Many slides (all the figures with blue background and few
others) were taken from Holzmann’s slides on “Logical Model
Checking”, a course given at Caltech (no longer freely
available)
[Holzmann, 2003, Chapter 2 & 3]

3 / 82

The Spinmodel checker and Promela

Spin: “prototypical” explicit-state LTL model checker
Promela: it’s input language (for modelling).
Core: as described theoretically earlier (LTL → Büchi).
many optimizations and implementation “tricks”

partial-order reduction
various data-flow analyses (dead variables, communication
analysis)
bitstate hashing (old technique [Morris, 1968])
symmetry reduction . . .

repository of material http://spinroot.com/ (tool, manuals,
tutorials, pub’s etc)

5 / 82

http://spinroot.com/

Spin and Promela

Promela: PROcess MEta LAnguage
system description language/modelling language, not a
programming lang.
emphasis on modeling of process synchronization and
coordination, not computation
targeted to the description of software systems & protocols,
rather than hardware circuits

Spin:1 Simple Promela INterpreter
suppports: simulation + verification (i.e., model checking)
There are no floating points, no notion of time nor of a clock

1It’s also the Dutch word for spider . . .
6 / 82

Architecture of the tool

Promela

behavior

model

correctness

property

e.g., in LTL

SPIN

pan.c

model

checking

code

C

compiler

executable

model

checker

random and interactive

model simulation

error-trails

counter-examples to

correctness properties
guided simulation

-a

-i-v

-t

7 / 82

The Promela language

Promela

“input” language for modelling
C-inspired notation and data structures

Promela features

asynchronous processes (with shared variables + channel
communication)

buffered and unbuffered message channels

synchronizing statements

structured data

9 / 82

Example: Producer consumers

1 mtype = { P, C } ;
2 mtype t u rn = P ;
3
4 ac t i v e proctype p roduce r ()
5 {
6 do
7 : : (t u rn == P) −>
8 p r i n t f ("Produce \n") ;
9 t u rn = C

10 od
11 }
12
13 ac t i v e proctype consumer ()
14 {
15 do
16 : : (t u rn == C) −>
17 p r i n t f ("Consume\n") ;
18 t u rn = P
19 od
20 }

it’s a rather trivialized version of P&C

10 / 82

Central concepts

run-time configuration: 3 basic ingredients
1. processes
2. global and (process-)local data
3. message channels

focus on finite state

process0 process1

local

data

global

data

local

data

message

channels

11 / 82

Execution model

remember. LTL model checking based on “finite state
automata”

(model of) programs seens as FSA/Kripke-structure/transition
system2

Büchi-automata (for checking satisfactin of LTL formulas)

Extended finite state machines
(Often) used for networks of communicating finite state automata,
i.e. FSA’s plus FIFO buffers for message passing

polpular model (indendent from Spin) for procol verification
for example LOTOS

international ISO-standard3

protocol specification language (inspired by algebraic data
structures and process algebras,

2Assuming that there’s no infinite data types or a stack.
3https://www.iso.org/standard/16258.html

12 / 82

https://www.iso.org/standard/16258.html
https://www.iso.org/standard/16258.html

Scope

Only two levels of scope in Promela

global
global to all processes
impossible to define variables to a subset of processes

process local
local variables can be referenced from its point of declaration
onwards inside the proctype body
impossible to define local variables restricted to specific blocks

13 / 82

Data types

C-inspired (for various reasons)
default initialization to zero4

data types (except channels, which are special)
Basic data types
records (“structs”)
1-dimensional arrays5

no reals, floats, pointers

4Not good practice to rely on uninitialized variables.
5At least directly, only 1 dimensional ones are supported.

14 / 82

Basic types

15 / 82

Processes

basic unit of concurrency
dynamically creatable with arguments (via run) or
active-keyword
max 2556

asynchronous “running”, no assumption on relative speed,
non-deterministic
interacting via

shared variables
message passing, with channels.

basically 3 things one can do with channels (plus some
variations)

create a channel
send to channel
receive from channel

6But state-space explosion may well kill you before that.
16 / 82

Channel communication

Purpose of channels
1. communication: exchange of data via message passing.a

2. synchronization: very generally: reducing possible interleavings
(one process has to wait, for instance, wait until a value has
been safely received).

aAn alternative would be shared variable concurrency

execution of a statement with “synchronization power” enabled
or not enabled at a given state
channels are typed
sending channel (names) over channels7

no sending of processes over channels

7Typing not so “deep” for assuring type correctness of that. So it’s not type
safe.

17 / 82

Simple channel example

1 chan c = [3] of {chan} /∗ g l o b a l hand le , v i s i b l e to A and B ∗/
2
3 ac t i v e proctype A () {
4 chan a ; /∗ u n i n i t i a l i z e d l o c a l channe l ∗/
5 c ?a /∗ get chan . i d from p r o c e s s B ∗/
6 a ! c /∗ and s t a r t u s i n g b ’ s channe l ∗/
7 } /∗ dub ious t y p i n g ∗/
8
9 ac t i v e proctype B() {

10 chan b = [2] of { chan } ;
11 c ! b ; /∗ make channe l b a v a i l a b l e to A ∗/
12 b? c ; /∗ v a l u e o f c doesn ’ t r e a l l y change ∗/
13 /∗ t y p ew i s e dub ious :−O ∗/
14 0 /∗ avo i d death o f B, o t h e rw i s e b d i s a p p e a r s ∗/
15 }

18 / 82

(Almost) same example in Go

1 package main
2 import (" fmt" ; " t ime ")
3
4 var c = make(chan (chan i n t) , 3)
5
6 func A() () {
7 a := <− c // r e c e i v e from c , s t o r e i n a
8 a <− 42 // bounce back a v a l u e
9 }

10 func B() () {
11 var b = make (chan int , 2) ;
12 c <− b
13 r := <− b
14 fmt . P r i n t f (" r e c e i v e d : ␣␣ r ␣=␣%v\n" , r)
15 }
16 //−−
17 func main () {
18 go A () ;
19 go B () ;
20 t ime . S l e ep (100000) // wh i l e t r u e r e s p f o r f a l s e {}
21 } // does not work w e l l .

Unlike go: run-command in Promela gives back process id
19 / 82

Sending and receiving

Sending
c!e1,e2,e3

enabled only if channel is not
full (but cf. Spin’s - m option)

Receiving/retrieving
c?x1,x2,x3

enabled only if channel is not
empty

c : “channel”8, e’s: expressions, x ’s: variables
special(?) case: channel with capacity = 0: synchronous
channel, rendez-vous communication

8Variable of appropriate channel type, referring to the channel.
20 / 82

Asynchronous vs. synchronous

m1

m2

m3

q!m1

q!m2

q!m3 q?m1

q?m2

q?m3

asynchronous

messages can be buffered for

later retrieval – up to the capacity

of the channel

sender blocks when channel is full

receiver blocks when channel

is empty

synchronous

channel capacity is 0

can only perform an rv handshake

not store messages

sender blocks until matching receiver

is available and vice versa

q!m1

q!m2

q!m3

q?m1

q?m2

q?m3

21 / 82

Receiving can do slightly more fancy things: matching

Matching with constant
If some of the parameters of the receive op ? is a constant (instead
of variable) ⇒ receive executable only if the constant parameter(s=
match the values of the corresponding fields in the message to be
received.

Note: receiving is a side-effect operation, as in Hoare’s CSP, 6=
in Milner’s CCS
eval for matching on (current) content of a variable

c?eval(x1),x2,x3

22 / 82

Variants

Sorted send: q!!n,m,p
Like q!n,m,p but adds the message n,m,p to q in numerical
order (rather than in FIFO order)

Random receive: q??n,m,p
Like q?n,m,p but can match any message in q (it need not be
the first message)

“Brackets”: q?[n,m,p]
It is a side-effect free Boolean expression
It evaluates to true precisely when q?n,m,p is executable, but
has no effect on n,m,p and does not change the contents of q

“Braces”: q?n(m,p)
Alternative notation for standard receive; same as q?n,m,p
Sometimes useful for separating type from arguments

Channel polls: q?<n,m,p>
It is executable iff q?n,m,p is executable; has the same effect
on n,m,p as q?n,m,p, but does not change the contents of q

23 / 82

Food for thought

send and receive: sync. statements!, receive with side effects
on variables
Known knowns:

send and receive: not expressions, but i/o statements (see
also 2 slides later)

(a>b && qname?msg0) illegal
(a>b && qname?[msg0]) fine (or at least legal).
Expression qname?[msg0] is true when qname?msg0 would be
executed at this point (but the actual receive is not executed)

known unknowns: what happens for
c?x1,x2 if the xs are global vars with a race condition
is the receive at least atomic (and what’s c?x,x),
what about c?x,eval(x)

does the second one refer to the value of x before the receive
or: does it guarantee that 2 equal values are sent
(left-to-right)?

similar headaches for send? and the other variants?
keep an eye also on “select”-statements!

the pragmatist’s advice: don’t program/model like that
24 / 82

Execution

concurrency ⇒ need for synchronization
depending on the system state each statement

executable (aka: enabled)
blocked (aka: not enabled)

cf. also the concept of guarded commands
Promela looks often like C, but that may be deceiving, in
particular:

expressions (which have no side-effects!) are
executable if they eval. to true or a non-zery integer
value

cf.
(a==b);

25 / 82

6 commandmends for executability of basic statements

Unconditionally enabled
assignment: x++, x--, x = x+1, x = run P()

b = c++ is not a valid expression (right-hand side is not
side-effect free)

print: printf(‘‘x = %d\n’’, x)

assertion: assert(1+1==2)

Conditionally enabled
expression statement: when true/non-zeroa

(x), (1), run P(), skip, true, else, timeout

channel ops: Executable
when target channel is non-full resp. non-empty (and matching)

q!ack(m) q?ack(n)

aelse is weird: predefined variable
26 / 82

5 groups of compound control flow

Basic statements (so far)
print, assignment, assertions, expressions, send and receive
Notice that run is not a statement but an operator and skip
is an expression (equivalent to (1) or true)

Five ways to define control flow
1. Semicolons + gotos and labels
2. structuring aids (or hacks)

inlines
macros

3. atomic sequences (indivisible sequences)
atomic {...}
d_step {...}

4. Non-deterministic selection and iteration
if ... fi
do ... od

5. Escape sequences (for error handling/interruptions)
{...} unless {...}

27 / 82

Selection

The (non-deterministic) if statement is inspired on Dijkstra’s
guarded command language

the else guard is executable iff none
of the other guards is executable.

/* pick a number 0..3 */
if
:: n=0
:: n=1
:: n=2
:: n=3
fi

non-deterministically assigns

a value to n in the range 0..3

if
:: (n % 2 != 0) -> n = 1
:: (n >= 0) -> n = n-2
:: (n % 3 == 0) -> n = 3
:: else /* -> skip */
fi

underlying

non-deterministic

automaton

/* find the max of x and y */
if
:: x >= y -> m = x
:: x <= y -> m = y
fi

28 / 82

Selection

else is a predefined variable

where in C one writes:

if (x <= y)

x = y-x;

y++;

i.e., omitting the ‘else’

in Promela this is written:

if

:: (x <= y) -> x = y-x

:: else

fi;

y++

i.e., the ‘else’ part cannot be omitted

x <= y else

x = y-x

y++

in this case ‘else’ evaluates to:

!(x <= y)

the else clause always has to

be explicitly present

without it, the if- statement would

block until (x<=y) becomes true

(it then gives only one option for behavior)

no need to add
“-> skip”

29 / 82

Selection

timeout is also a predefined variable

if
:: q?msg -> ...
:: q?ack -> ...
:: q?err -> ...
:: timeout -> ...
fi

wait until an expected message

arrives, or recover when the system

as a whole gets stuck (e.g., due to

message loss)

note carefully that using‘else’

intead of ‘timeout’ is dubious

in this context

checking for bad timeouts:

spin –Dtimeout=true model

30 / 82

Selection

else and timeout are related
both predefined Boolean variables
their values are set to true or false by the system, depending
on the context

They are, however, not interchangeable
else is true iff no other statement in the process is executable
timeout is true iff no other statement in the system is
executable

A timeout may be seen as a system level else
Are these equivalent?

if
:: q?msg -> ...
:: q?ack -> ...
:: timeout -> ...
fi

if
:: q?msg -> ...
:: q?ack -> ...
:: else -> ...
fi

No! In the second, if a message is not received when the
control is at the if then the else is taken immediately

31 / 82

Repetition

The do statement is an if statement caught in a cycle

do
:: guard1 -> stmnt1.1; stmnt1.2; stmnt1.3;...
:: guard2 -> stmnt2.1; stmnt2.2; stmnt2.3;...
::...
:: guardn -> stmntn.1; stmntn.2; stmntn.3;...
od

Only a break or a goto can exit from a do

A break transfers control to the end of the loop

32 / 82

Repetition

There are many ways of writing a waiting loop, by exploiting the
executability rules it’s possible to simplify the model

do

:: (a == b) -> break

:: else -> skip

od

L: if

:: (a==b) -> skip

:: else -> goto L

fi

the skip is not needed here

and can introduce an

unnecessary control state

(a == b)

these two constructs

are equivalent to a single

expression statement

else

a==b

a==b else

skip

a==b

note that ‘break’,
like ‘goto’, is not
a basic statement
but a control-flow
specifier

33 / 82

State space explosion, interleaving, and synchronization

explicit state model checking
non-deterministic scheduling, the only way restriction is
“synchronization”
more interleaving/more scheduling or suspension points: larger
state-space
synchronization: for “programming” correctly
more coarse-grained parallelism: smaller state-space
Cf: ACID
two forms: atomic and d-steps

34 / 82

Atomic Sequences

atomic { guard -> stmnt1; stmnt2; ... stmntn }

– executable if the guard statement is executable

– any statement can serve as the guard statement

– executes all statements in the sequence without

interleaving with statements in other processes

– if any statement other than the guard blocks, atomicity is lost

atomicity can be regained when the statement becomes

executable

– example: mutual exclusion with an indivisible test&set:

active [10] proctype P()
{ atomic { (busy == false) -> busy = true };
mutex++;

assert(mutex==1);

mutex--;
busy = false;

}

35 / 82

Deterministic Steps

d_steps are more restrictive and more efficient than atomic
sequences

d_step { guard -> stmnt1; stmnt2; ... stmntn }

– like an atomic, but must be deterministic and may not block

anywhere

– especially useful to perform

intermediate computations

with a deterministic result,

in a single indivisible step

– atomic and d_step sequences are often used as a model
reduction method, to lower complexity of large models
(improving tractability)

d_step { /* reset array elements to 0 */
i = 0;
do
:: i < N -> x[i] = 0; i++
:: else -> break
od;
i = 0

}

36 / 82

Atomic Sequences, Deterministic Steps and Gotos

• goto-jumps into and out of atomic sequences are

allowed

– atomicity is preserved only if the jump starts inside on atomic

sequence and ends inside another atomic sequence, and

the target statement is executable

• goto-jumps into and out of d_step sequences are

forbidden
d_step {

i = 0;
do
:: i < N -> x[i] = 0; i++
:: else -> break
od

};
x[0] = x[1] + x[2];

this is a jump out
of the d_step sequence
and it will trigger an
error from Spin

the problem is prevented in this
case by adding a “; skip” after the
od keyword – there’s no runtime penalty for
this, since it’s inside the d_step

37 / 82

Deterministic Steps vs Atomic Sequences

Both sequences are executable only when the first (guard)
statement is executable

atomic: if any other statement blocks, atomicity is lost at
that point; it can be regained once the statement becomes
executable later
d_step: it is an error if any statement other than the (first)
guard statement blocks

Other differences:
d_step: the entire sequence is executed as one single
transition
atomic: the sequence is executed step-by-step, but without
interleaving, it can make non-deterministic choices

Remarks
Infinite loops inside atomic or d_step sequences are not
detected
The execution of this type of sequence models an indivisible
step, which means that it cannot be infinite

38 / 82

Deterministic Steps and Atomic Sequences

execution with

full interleaving

active proctype P1() { t1a; t1b }
active proctype P2() { t2a; t2b }

(0,1)

t2a

t2b

(0,2)

(0,-)

end

t2a t1a

t1a

t1a

t1b

t1b

t1b

end

end

end

end

end

end

t2b

t2b

t2b

t2a

t2a

0

1

2

t1a

t1b

end

P1

0

1

2

t2a

t2b

end

P2
(0,0)

(1,0)

(2,0)

t1a

t1b

(-,0)

end (1,1)

(2,1)

(-,1)

(1,2)

(2,2)

(-,2)

(1,-)

(2,-)

(-,-)

execution

without atomics or d_steps

39 / 82

Deterministic Steps and Atomic Sequences

execution with one

atomic sequence

active proctype P1() { atomic { t1a; t1b } }
active proctype P2() { t2a; t2b }

P1 could make alternate choices at

the intermediate states (e.g., in if

or do-statements)

P2 can be interrupted, but not P1

(0,1)

(0,2)

(0,-)

t2a

t2b

end

(0,0)

(1,0)

(2,0)

(-,0)

t1a

t1b

end

t1a

t1b

t1a

(1,1)

(2,1)

(-,1)

(1,2)

(2,2)

(-,2)

(1,-)

(2,-)

(-,-)

t2a

t2b

end

end
t1b

end

t1a

t1b

end

0

1

2

t1a

t1b

end

P1

0

1

2

t2a

t2b

end

P2

40 / 82

Deterministic Steps and Atomic Sequences

execution with a

d_step sequence

active proctype P1() { d_step {t1a; t1b} }
active proctype P2() { t2a; t2b }

no intermediate states are created:

faster, smaller graph, but no non-

determinism possible inside d_step

sequence itself

P1 now has only one transition…

(0,0)

(0,1)

(1,0)

(1,1)

(-,1)

(-,0)
(0,2)

(1,2)

(-,2)

(0,-)

(1,-)

(-,-)

end

end

end

end
end

t1a;t1b

t1a;t1b

t1a;t1b

t1a;t1b

t2a

t2b

end

end

t2a

t2bt2a

t2b

0

1

t1a;t1b

end

P1

0

1

2

t2a

t2b

end

P2

41 / 82

Escape sequences

Syntax: { P } unless { Q }
Execution starts with the statements from P
Before executing each statement in P, the executability of the
first statement in Q is checked
Execution of P statements continue only if the first instruction
of Q is not executable
As soon as the Q first statement can be executed, then control
changes and execution continues in Q
Example
A; { do

:: b1 -> B1
:: b1 -> B1
...
od } unless { c -> C };

D

c acts here as a watchdog: as soon as it becomes true, C is
executed and then D

42 / 82

Inline definitions

• somewhere in between a macro and a procedure

• used as replacement text with textual name substitution through

parameters (it is a named piece of text with optional parameters)

• an inline is not a function – it cannot return values to the caller

• can help to structure a model

• compare:

#define swap(a,b) tmp = a; \

a = b; \

b = tmp

#define swap(a,b) tmp = a; \

a = b; \

b = tmp

inline swap(a,b) {

tmp = a;

a = b;

b = tmp

}

inline swap(a,b) {

tmp = a;

a = b;

b = tmp

}

looks a little cleaner

line nr refs are better

hint:
when confused, usespin –I spec.pml

to show the result of all inlining

and macro preprocessing operations...

43 / 82

Specification & claims

Model checking: specifying (desired) behavior

model checking P |=? ϕ:
spec. what the program does
spec. what the program should (not) do

Side remark:
remember: model of the system is not (mostly) the
program/system itself
One can also interpret the model as description of the
“desired” system behavior, use it for monitoring etc.

The theoretician’s view
Program models are Kripke-structures and specifications are LTL
formulas (which can be translated to Büchi-automata). Build the
joint transition system and check (iterated) reachability. Problem
solved, next question . . .

45 / 82

Pragmatics

Promela: “user-friendly” modelling language (with a
Kripke-semantics)

“programming” in Promela models/describes program behavior
the Spin execution engines executes the model (simulation or
state exploration)

Separating desired from undesired behavior
Similar to the fact that naked Kripke structures may not be ideal
for easy modelling, Spin offers (besides LTL) pragmatically useful
ways to specify (un)-desired behavior

46 / 82

Introduction

A Spin model consists of
behavior specification (what is possible)

Asynchronous process behavior
Variables, data types
Message channels

logical correctness properties (what is valid)
assertions
end-state, progress-state, and acceptance state labels
never claims
trace assertions
temporal logic formulae
default properties checked automatically:

absence of system deadlock
absence of dead code (unreachable code)

47 / 82

Basic assertions

basic assertion
assert(expression)

most straightforward form of “specification”
often pragmatically: sprinkle the model/program code with
“logical” variables + add assertions

byte state = 1;
active proctype A()
{ (state == 1) -> state++;

assert(state == 2)
}
active proctype B()
{ (state == 1) -> state--;

assert(state == 0)
}

But, in the example: does the program satisfy the
specification/claim??

48 / 82

Beware of (non-)atomicity

byte state = 1;
active proctype A()
{ (state == 1) -> state++;

assert(state == 2)
}
active proctype B()
{ (state == 1) -> state--;

assert(state == 0)
}

$ spin –a simple.pml
$ gcc –o pan pan.c
$./pan –E # -E means ignore invalid endstate errors...
pan: assertion violated (state==2) (at depth 6)
pan: wrote simple.pml.trail
...

$ spin -t -p simple.pml
1: proc 1 (B) line 7 "simple.pml" (state 1) [((state==1))]
2: proc 0 (A) line 3 "simple.pml" (state 1) [((state==1))]
3: proc 1 (B) line 7 "simple.pml" (state 2) [state--]
4: proc 1 (B) line 8 "simple.pml" (state 3) [assert((state==0))]
5: proc 0 (A) line 3 "simple.pml" (state 2) [state++]

spin: line 4 "simple.pml", Error: assertion violated
spin: text of failed assertion: assert((state==2))

49 / 82

Preventing the Race

byte state = 1;
active proctype A()
{ atomic { (state == 1) -> state++ };

assert(state == 2)
}
active proctype B()
{ atomic { (state == 1) -> state-- };

assert(state == 0)
} $ spin –a simple.pml

$ gcc –o pan pan.c
$./pan –E # -E means ignore invalid endstates...
(Spin Version 4.1.0 -- 6 December 2003)

+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states - (disabled by -E flag)

State-vector 20 byte, depth reached 3, errors: 0
6 states, stored
0 states, matched
6 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)
(max size 2^18 states)

unreached in proctype A
(0 of 5 states)

unreached in proctype B
(0 of 5 states)

Q: are there invalid endstates?

we added two atomic
sequences to create
indivisible test&sets

nothing is unreachable

50 / 82

System invariants using basic assertions

mtype = { p, v };

chan sem = [0] of { mtype };

byte count;

active proctype semaphore()
{

do
:: sem!p ->

sem?v
od

}

active [5] proctype user()
{

do
:: sem?p ->

count++;
/* critical section */
count--;

sem!v
od

}

active proctype invariant()
{

assert(count <= 1)
}

instantiate

assert(count <= 1)

terminate

adding active proctype invariant

multiplies the search space 3x...

(from 16 reachable states to 48)

Q: how expensive is

it to check the

invariant in this way?

51 / 82

A small (but easy) improvement

mtype = { p, v };

chan sem = [0] of { mtype };

byte count;

active proctype semaphore()
{

do
:: sem!p ->

sem?v
od

}

active [5] proctype user()
{

do
:: sem?p;

count++;
/* critical section */
count--;

sem!v
od

}

active proctype invariant()
{

do :: assert(count <= 1) od
}

instantiate

assert(count <= 1)

no increase in number of

reachable states

(more transitions
, but not more states)

can also put the assertion inside
proctype user to check it only
when the value of the expression
could change

52 / 82

End states

for checking deadlock states: distinguish valid system end
states from invalid ones
default: valid end states = end-of-code for all processes
Not all the processes, however, are meant to reach the end of
its code (e.g., waiting loop or state)
special labels to tell the verifier that those states are valid end
states: end-state labels
label with 3-letter prefix end

Examples: endone, end_two, end_whatever_you_want

one of 3 meta labels
Spin checks invalid end states by default9

9It is possible to disable it by calling Spin with the E+ option.
53 / 82

Example: Mutex & semaphore

mtype = { p, v };

chan sem = [0] of { mtype };

byte count;

active proctype semaphore()
{

do
:: sem!p ->

sem?v
od

}

active [5] proctype user()
{

do
:: sem?p;

count++;
/* critical section */
count--;
sem!v

od
}

sem!p sem?v

semaphore

s0

s1

sem?p

count++

count--

sem!v

user

s0

s1

s2

s3

neither process is intended
to terminate
the proper endstate in
both proctypes is s0

end:

end:

end: end:

the model check can now search
for reachable invalid end-states

54 / 82

Semaphore example: result

$ spin -a semaphore.pml
$ cc -o pan pan.c
$./pan

(Spin Version 4.2.6 -- 27 October 2005)
+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 40 byte, depth reached 5, errors: 0
16 states, stored
5 states, matched

21 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

2.622 memory usage (Mbyte)

unreached in proctype semaphore
line 13, state 6, "-end-"
(1 of 6 states)

unreached in proctype user
line 24, state 8, "-end-"
(1 of 8 states)

There are no errors: no invalid end state

At the end “unreached ... line 13” and “unreached
... line 24” show that non of the processes
terminates (they don’t reach the ending “}”

55 / 82

Progress-state labels

remember Büchi-acceptance
livelock
progress-state labels: used to check that the process is really
making progress, not just idling or waiting for other processes
to make progress
every potentially infinite execution cycle permitted by the
model passes through at least one of its progress labels
If the verifier find cycles without the above property: report
non-progress loop –corresponding to possible starvation
So, what Spin does is to check for the absence of
non-progress cycles10

Note: enabling the search for non-progress properties (a
liveness property) automatically disable the search for invalid
end states (a safety property)
for simulation runs, such labels have no meaning.

10The verifier needs to be compiled with the special option -DNP.
56 / 82

Mutex & semaphore (again)

mtype = { p, v };

chan sem = [0] of { mtype };

byte count;

active proctype semaphore()
{

do
:: sem!p ->

sem?v
od

}

active [5] proctype user()
{

do
:: sem?p ->

count++;
/* critical section */
count--;
sem!v

od
}

sem!p sem?v sem?p

count++

count--

sem!v

semaphore user

s0 s0

s1 s1

s2

s3

we make effective progress
each time a user gains access
to the critical section:
each time state s1 is reached in
proctype semaphore

progress:

progress:

the model checker can now search
for reachable non-progress cycles

57 / 82

Verifier output

see also “never claim”
$ spin -a sem-prog.pml
$ cc -DNP -o pan pan.c # enable non-progress checking
$./pan -l # search for non-progress cycles

(Spin Version 4.2.6 -- 27 October 2005)
+ Partial Order Reduction

Full statespace search for:
never claim +
assertion violations + (if within scope of claim)
non-progress cycles + (fairness disabled)
invalid end states - (disabled by never claim)

State-vector 44 byte, depth reached 9, errors: 0
21 states, stored
5 states, matched

26 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

2.622 memory usage (Mbyte)

unreached in proctype semaphore
line 13, state 6, "-end-"
(1 of 6 states)

unreached in proctype user
line 24, state 8, "-end-"
(1 of 8 states)

There are no errors: no assertion violations nor
non-progress cycles were found

This means the model does not permit infinite
executions that do not contain infinitely many
semaphore v operations

58 / 82

What about fairness?

byte x = 2;

active proctype A()
{

do
:: x = 3 - x
od

}

active proctype B()
{

do
:: x = 3 - x
od

}

x alternates between values 2 and 1 ad infinitum
each process has just 1 state
no progress labels used just yet: every cycle is
a non-progress cycle

$ spin -a fair.pml
$ gcc -DNP -o pan pan.c # non-progress cycle detection
$./pan -l # invoke np-cycle algorithm
pan: non-progress cycle (at depth 2)
pan: wrote fair.pml.trail
(Spin Version 4.0.7 -- 1 August 2003)
Warning: Search not completed

+ Partial Order Reduction
Full statespace search for:

never claim +
assertion violations + (if within scope of claim)
non-progress cycles + (fairness disabled)
invalid end states - (disabled by never claim)

State-vector 24 byte, depth reached 7, errors: 1
3 states, stored (5 visited)
4 states, matched
9 transitions (= visited+matched)
0 atomic steps

hash conflicts: 0 (resolved)
(max size 2^18 states)

Q1: what happens if we
mark one of the do-od
loops with a progress
label?
Q2: what happens if we
mark both do-od loops?

59 / 82

Accept states

3rd form of meta labels
Accept-state labels: usually used in never claims, but not
necessarily
By marking a state with a label which start with the prefix
accept the verifier can be asked to find all cycles that do pass
through at least one of those labels

The implicit correctness claim
expressed by an accept-state label:

There should not exist any execution that can pass
through an accept-state label infinitely often

for simulation: such labels without meaning

60 / 82

Example

mtype = { p, v };

chan sem = [0] of { mtype };

byte count;

active proctype semaphore()
{

do
:: sem!p ->

sem?v
od

}

active [5] proctype user()
{

do
:: sem?p ->

count++;
/* critical section */
count--;
sem!v

od
}

sem!p sem?v

semaphore

s0

s1

sem?p

count++

count--

sem!v

user

s0

s1

s2

s3

we may want to find infinite
executions that do pass through
a specially marked state

the state can be marked with an
accept label

accept:

accept:

the model checker can now search
for reachable acceptance cycles

61 / 82

Acceptance cycles

Why are they called acceptance cycles?
It has to do with the automata theoretic foundation we have
seen

never claims (discussed later) formally define ω-automata that
accept only those sequences that violate a correctness claim

acceptan
ce cycle:

a state m
arked wi

th an acc
ept label

that is re
achable

from the
initial sys

tem

state and
is also re

achable
from itse

lf

i.e.,

a strongl
y connec

ted comp
onent

in the rea
chability

graph, co
ntaining

at least o
ne accep

t state

62 / 82

Fairness assumptions

default: no assumption about relative speed of executing
processes ⇒ counter-examples where a process pauses
indefinitely
often: interested in detecting property violations under fairness
assumptions
One of such assumptions is the finite progress assumption: If a
process can execute a statement, it will eventually proceed
with that execution

2 degrees

Weak fairness: If a statement is executable (enabled) infinitely long,
it will eventually be executed

Strong fairness: If a statement is executable infinitely often, it will
eventually be executed

Several interpretations are still possible – Fairness applied to
Non-deterministic statement selection within a process
Non-deterministic statement selection between processes

63 / 82

Statement vs. process selection

byte x = 2, y = 2;

active proctype A()
{

do
:: x = 3 - x
:: y = 3 - y
od

}

active proctype B()
{

do
:: x = 3 - x
:: y = 3 - y
od

}

x = 3-x y = 3-yA

x = 3-x

y = 3-y

B

x = 3-x

x = 3-x

y = 3-y

y = 3-y

AxB

Spin contains a predefined option for enforcing one specific

variant of weak-fairness (run-time option pan -l -f or pan -a -f):

if a process contains at least one statement

remains executable infinitely long,

that process will eventually execute

applies only to infinite executions (cycles)

64 / 82

Enforcing fairness constraints

built-in notion of fairness: only to process scheduling
not to the resolution of non-deterministic choices inside
processes

But: any type of fairness can be expressed in LTL
adding fairness assumptions increases the cost of verification
strong fairness constraints: more costly than weak

Weak: linear penalty in the number of active processes
Strong: quadratic penalty in the number of active processes

65 / 82

Never claims

limitations of previous “claim” mechanisms
reasoning about executions

Example
The truth of p is followed (within a finite number of steps) by the
truth of ¬q

two “approaches” that do not work:
assertions
using an extra process11 for global invariant checking

one that would work: LTL (but not here/now)

here

Never claims
manual construction of a “Büchi automaton observer”, using
accept-labels

11Like active proctype invariant { ...}.
66 / 82

Never claims: example

A never claim defines an observer process executing
synchronously with the system
cf. the accept label

!q q q q q !q q q q

!p p !p !p !p !p !p p !p

x xx x x x

true (p) (q) (q) (q) stop

property:
the truth of p is always followed
within a finite number of steps by
the truth of !q

never claim (negation of property):
the truth of p is not followed
within a finite number of steps by
the truth of !q

never {
do
:: true
:: (p) -> break
od;

accept:
do
:: (q)
od

}

(p)

(q)

true

67 / 82

Example: once more

The checker must execute synchronously with the system!

never {
do
:: true
:: (p) -> break
od;

accept:
do
:: (q) /* first p and then forever q is bad */
od

}

!q q q q q !q q q q

!p p !p !p !p !p !p p !p

a nev
er cla

im ex
ecute

s an

expre
ssion

statem
ent at

every

step i
n an e

xecut
ion

(p)

(q)

true

x xx x x x

true (p) (q) (q) (q) stop

never claims are intended
to observe system behavior
they should not contribute
to system behavior

the automaton can be
non-deterministic

the never claim tracks

behavior and can identify

the bad executions
(in this case with an

accept label)

be prepared to wait
for p to become true
at any point
in the execution

68 / 82

Never Claims

actually: slight misnomer, I think.
can be non-deterministic
all control flow constructs allowed including
if, do, unless, atomic, d_step, goto
but: no side-effect expression statements12

to define invalid execution sequences
It cannot block

A block would mean that the pattern expressed cannot be
matched
The never claim process gives up trying to match the current
execution sequence, backs up and tries to match another
Pausing in the never claim must be represented explicitly with
a self-loop on true

error found: when
closing curly brace of never claim is reached
acceptance cycle is closed

12q?[ack] ornfull(q) is okay, but not q?ack or q!ack
69 / 82

Where does the name come from

never claim: slight misnomer
easiest never claims for: invariant checking: S |= �p

Observing never claim process
“never I want to observe the opposite of p and if I do I will report it
as violation”

1 never {
2 do
3 : : ! p −> break
4 : : e l s e
5 od
6 }

70 / 82

Never Claims

Convention: use accept-state labels only in never claims and
progress and end-state labels only in the behavior model
Special precautions are needed if non-progress conditions are
checked in combination with never claims

non-progress is normally encoded in Spin as a predefined never
claim

71 / 82

Scope of never claims

never claim: defined globally
Within a claim we can therefore refer to:

global variables
message channels (using poll statements)
process control-flow states (remote reference operations)
predefined global variables such as timeout, _nr_pr, np_ but
not process local variables

In general, we can not refer to events, only to properties of
states

The effect of an event has to be made visible in the state of
the system to become visible to a claim
Only trace assertions can refer to send/recv events...

72 / 82

Another example: questions and answers

“Question q is always eventually followed by answer a (assume
q and a are properties of states) BEFORE the next question is
asked”
This requirement is violated by any execution where a q is not
followed by an a at all, AND by any execution where a q
follows a q without an a in between

q q qa

q

true

!a
q

true

never {
do
:: true
:: q -> break
od;

accept0: do
:: !a
:: q -> break
od;

accept1: do
:: true
od

}

reaching the end
of a never claim is
an automatic error

we can (but need not)
make this explicit;
as is done here

73 / 82

Example: some conventions

never {
do
:: true
:: q -> break
od;

accept0: do
:: !a
:: q -> break
od;

accept1: do
:: true
od

}

never {
do
:: true
:: q -> break
od;

accept0: do
:: !a
:: q -> break
od

}

reaching the closing curly brace of a
never claim means that the entire behavior
pattern that was expressed was matched, and
is always interpreted as an error

(it should never happen)

never claims are designed to ‘accept’
bad behavior – property violations

74 / 82

Another example

“There is no execution where first p becomes true, then q, and
then r”

never {
do
:: p -> break
:: else
od;
do
:: q -> break
:: else
od;
do
:: r -> break
:: else
od

}

/* first try: */

never {
p; q; r

}

incorrect

monitors only
the first 3
steps in any
execution....

correct version

applies to an execution
of any length

error

p == true

q == true

r == true

error

p == true

q == true

r == true

else

else

else

75 / 82

Obtaining a Never Claim from an LTL Formula

never claims can be obtained from LTL formula
The never claim automaton of the (negated) formula
![](p -> <>!q) can be obtained by executing the following
Spin command:

spin -f ’![](p -> <>!q)’

Alternatively,
You can use the timeline editor (see Holzmann’s Chap. 13), or
You can use the LTL 2 BA fast algorithm from LTL to Büchi
Automata ltl2b -f ’![](p -> <>!q)’ (not distributed
with Spin, see
http://www.liafa.jussieu.fr/ oddoux/ltl2ba/)

never claims are equally expressive as ω-word automata (and
Büchi automata), so they are more expressive than LTL

76 / 82

Yet another useful form of claims: Trace assertions

so far: focus on states, more precisely state properties, not
events.13

Spin’s target application area: protocol/software verification
concurrent programs with message passing

Particularly important events
channel send and receive

specific kind of observer process just for those
keyword trace

13In the program model. Remember also: in the LTL construction, the
Büchi-automaton is labeled by sets of properties. For the Kripke
structure/transition system, the states have properties/ are “labelled” by
properties. In a way, the system being in a state is a kind of “events” from the
perspective of the observing Büchi-automaton.

77 / 82

Trace Assertions

Trace assertions can be used to reason about valid or invalid
sequences of send and receive statements

mtype = { a, b };

chan p = [2] of { mtype };
chan q = [1] of { mtype };

trace {
do
:: p!a; q?b
od

}

if at least one send (receive) operation
on a channel q appears in the trace
assertion, all send (receive) operations
on that channel q must be covered by
the assertion

this assertion only claims something
about how send operations on channel p
relate to receive operations on channel q

it claims that every send of a message a to p
is followed by a receive of a message b from q

a deviation from this pattern triggers an error

cannot use variables in trace
assertions

cannot use any statement other
than send or receive statements
in trace assertions

can use q?_ to specify an
unconditional receive

78 / 82

Notrace Assertions

A notrace assertion states that a particular access pattern is
impossible (it reverses the claim) invalid sequences of send and
receive statements

mtype = { a, b };

chan p = [2] of { mtype };
chan q = [1] of { mtype };

notrace {
if
:: p!a; q?b
:: q?b; p!a
fi

}

this notrace assertion claims that
there is no execution where the send of
a message a to channel p is followed by
the receive of a message b from q, or
vice versa: it claims that there must be
intervening sends or receives to break these
two patterns of access

the notrace assertion is fully matched when
the closing curly brace is reached

79 / 82

Correctness claims

Devil’s advocate
All correctness properties that can be verified with Spin can be
interpreted as formal claims that certain types of behavior are,
or are not, possible
instead of “verifying” a property, Spin hunts for
counter-examples (more efficient as well)

An assertion formalizes the claim
It is impossible for the given expression to evaluate to false
when the assertion is reached

An end-state label formalizes the claim
It is impossible for the system to terminate without all active
processes having either terminated, or having stopped at a
state that was marked with an end-state label

A progress-state label formalizes the claim
It is impossible for the system to execute forever without
passing through at least one of the states that was marked
with a progress-state label infinitely often

80 / 82

Correctness Claims (cont.)

An accept-state label formalizes the claim
It is impossible for the system to execute forever while passing
through at least one of the states that was marked with an
accept-state label infinitely often

A never claim formalizes the claim
It is impossible for the system to exhibit the behavior (finite or
infinite) that completely matches the behavior that is specified
in the claim

A trace assertion formalizes the claim
It is impossible for the system to exhibit behavior that does not
completely match the pattern defined in the trace assertion

81 / 82

References I

[Holzmann, 2003] Holzmann, G. J. (2003).
The Spin Model Checker.
Addison-Wesley.

[Morris, 1968] Morris, R. (1968).
Scatter storage techniques.
Communications of the ACM, 11(1):38–44.

82 / 82

	The Spin-model checker & Promela
	The Spinmodel checker and Promela
	The Promela language
	Data
	Processes
	Channels
	Execution
	Control flow constructs
	Regulating granularity of interleaving

	Specification & claims
	Intro
	Basic Assertions
	End-state labels
	Progress-state labels
	Accept-state labels
	Fair cycles
	Never claims
	Trace Assertions
	Correctness Claims: wrap up

