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Content

See the homepage of the course:

http://www.uio.no/studier/emner/matnat/ifi/INF5140/v18/
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Evaluation System

1. Two (small) mandatory assignments
Alternative: Write a research report (paper) on a topic related
to the course (specification and model checking)

2. Paper presentation on related topics
3. Oral exam

The mandatory assignments (as usual) give you the right to
take the exam
A minimum will be required on every item above in order to be
approved (e.g. you must present a paper)

Remarks
We will give you more precise guidelines during the course
Check the web page regularly.
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The problem

Compute the value of a20 given the following definition1

a0 = 11
2

a1 = 61
11

an+2 = 111−
1130− 3000

an
an+1

1Thanks to César Muñoz (NASA, Langley) for providing the example.
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A Java Implementation

1 p ub l i c c l a s s Mya {
2

3 s t a t i c doub le a ( i n t n ) {
4 i f ( n==0)
5 r e t u r n 11/2 . 0 ;
6 i f ( n==1)
7 r e t u r n 61/11 . 0 ;
8 r e t u r n 111 − (1130 − 3000/a (n−2))/a (n−1);
9 }

10

11 p ub l i c s t a t i c vo i d main ( S t r i n g [ ] a rgv ) {
12 f o r ( i n t i =0; i <=20; i++)
13 System . out . p r i n t l n ( "a ( "+i+" ) ␣=␣"+a ( i ) ) ;
14 }
15 }
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The Solution (?)

$ java mya
a(0) = 5.5
a(2) = 5.5901639344262435
a(4) = 5.674648620514802
a(6) = 5.74912092113604
a(8) = 5.81131466923334
a(10) = 5.861078484508624
a(12) = 5.935956716634138
a(14) = 15.413043180845833
a(16) = 97.13715118465481
a(18) = 99.98953968869486
a(20) = 99.99996275956511

10 / 102



Should we trust software?

In fact, the value of an for any n ≥ 0 may be computed by using
the following expression:

an =
6n+1 + 5n+1

6n + 5n

Where
lim
n→∞

an = 6

We get then

a20 ≈ 6
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Correctness

A system is correct if it meets its “requirements” (or
specification)

Examples:
System: The previous Java program computing an
Requirement: For any n ≥ 0, the program should be conform
with the previous equation (limn→∞ an = 6)

System: A telephone system
Requirement: If user A want to call user B (and has credit)),
then eventually A will manage to establish a connection
System: An operating system
Requirement: A deadly embrace2 (nowaday’s aka deadlock)
will never happen

2A deadly embrace is when two processes obtain access to two mutually
dependent shared resources and each decide to wait indefinitely for the other.
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How to guarantee correctness? Is it possible at all?

How to show a system is correct?
It is not enough to show that it can meet its requirements
We should show that a system cannot fail to meet its
requirements

Dijkstra (1972) on testing
“Program testing can be used to show the presence of bugs, but never to
show their absence”

Dijkstra (1965) on proving programs correct
“One can never guarantee that a proof is correct,a the best one can say
is: ’I have not discovered any mistakes”

aOne may debate that.

What about automatic proof? It is impossible to construct a
general proof procedure for arbitrary programs3

Any hope? In some cases it is possible to mechanically verify
correctness; in other cases . . . we try to do our best

3Undecidability of the halting problem, by Turing. 13 / 102



What is validation?

In general, validation is the process of checking if something
satisfies a certain criterion
Do not confuse validation with verification4

The following may clarify the difference between these terms:
Validation: "Are we building the right product?", i.e., does the

product do what the user really requires
Verification: "Are we building the product right?", i.e., does the

product conform to the specification

4Some authors define verification as a validation technique, others talk
about V & V –Validation & Verification– as being complementary techniques.
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Usual approaches for validation

The following techniques are used in industry for validation:

Testing
Check the actual system rather than a model
Focused on sampling executions according to some coverage
criteria – Not exhaustive (“coverage”)
often informal, formal approaches exist (MBT)

Simulation
A model of the system is written in a PL, which is run with
different inputs – Not exhaustive

Verification
“Is the process of applying a manual or automatic technique
for establishing whether a given system satisfies a given
property or behaves in accordance to some abstract description
(specification) of the system”5

5From Peled’s book [Peled, 2001]
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Sources of errors

Errors may arise at different stages of the software/hardware
development:

Specification errors (incomplete or wrong specification)
Transcription from the informal to the formal specification
Modeling errors (abstraction, incompleteness, etc.)
Translation from the specification to the actual code
Handwritten proof errors
Programming errors
Errors in the implementation of (semi-)automatic
tools/compilers
Wrong use of tools/programs
. . .
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Source of errors

Most errors, however, are detected quite late on the development
process6

6Picture borrowed from G.Holzmann’s slides
(http://spinroot.com/spin/Doc/course/index.html)
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Cost of Fixing Defects
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Some (in-)famous software bugs [Garfinkel, 2005]a

aSource: Garfinkel’s article “History’ worst software bugs”

July 28, 1962 – Mariner I space probe The Mariner I rocket diverts from
its intended direction and was destroyed by the mission control.
Software error caused the miscalculation of rocket’s trajectory.
Source of error: wrong transcription of a handwritten formula
into the implementation code.

1985-1987 – Therac-25 medical accelerator A radiation therapy device
deliver high radiation doses. At least 5 patients died and many
were injured. Under certain circumstances it was possible to
configure the Therac-25 so the electron beam would fire in
high-power mode but with the metal X-ray target out of
position. Source of error: a “race condition”.
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Some (in-)famous software bugsa

aSource: Garfinkel’s article “History’ worst software bugs”

1988 – Buffer overflow in Berkeley Unix finger daemon An Internet
worm infected more than 6000 computers in a day. The use of
a C routine gets() had no limits on its input. A large input
allows the worm to take over any connected machine. Kind of
error: Language design error (Buffer overflow).

1993 – Intel Pentium floating point divide A Pentium chip made
mistakes when dividing floating point numbers (errors of
0.006%). Between 3 and 5 million chips of the unit have to be
replaced (estimated cost: 475 million dollars). Kind of error:
Hardware error.
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Some (in-)famous software bugsa

aSource: Garfinkel’s article “History’ worst software bugs”

June 4, 1996 – Ariane 5 Flight 501 Error in a code converting 64-bit
floating-point numbers into 16-bit signed integer. It triggered
an overflow condition which made the rocket to disintegrate 40
seconds after launch. Error: Exception handling error.

November 2000 – National Cancer Institute, Panama City A therapy
planning software allowed doctors to draw some “holes” for
specifying the placement of metal shields to protect healthy
tissue from radiation. The software interpreted the “hole” in
different ways depending on how it was drawn, exposing the
patient to twice the necessary radiation. 8 patients died; 20
received overdoses. Error: Incomplete specification / wrong
use.

2016 — Schiaparelli crash on Mars “[..] the GNC Software [..] deduced
a negative altitude [..]. There was no check on board of the
plausibility of this altitude calculation"
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What are formal methods?

FM [Peled, 2001]
“Formal methods are a collection of notations and techniques for
describing and analyzing systems”a

aFrom D. Peled’s book “Software Reliability Methods”

Formal: based on mathematical theories (logic, automata,
graphs, set theory . . . )
Formal specification techniques: to unambiguously describe
the system itself and/or its properties
Formal analysis/verification techniques serve to verify that a
system satisfies its specification (or to help finding out why it
is not the case)
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What are formal methods?
Some terminology

The term verification is used in different ways

Sometimes used only to refer the process of obtaining the
formal correctness proof of a system (deductive verification)
In other cases, used to describe any action taken for finding
errors in a program (including model checking and testing)
Sometimes testing is not considered to be a verification
technique

We will use the following definition (reminder):

Formal verification is the process of applying a manual or automatic
formal technique for establishing whether a given system satisfies a
given property or behaves in accordance to some abstract
description (formal specification) of the system

Saying ’a program is correct’ is only meaningful w.r.t. a given spec!
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Limitations

Software verification methods do not guarantee, in general, the
correctness of the code itself but rather of an abstract model
of it
It cannot identify fabrication faults (e.g. in digital circuits)
If the specification is incomplete or wrong, the verification
result will also be wrong
The implementation of verification tools may be faulty
The bigger the system (number of possible states) more
difficult is to analyze it (state explosion problem)
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Any advantage?

Of course
Formal methods are not intended to guarantee absolute reliability
but to increase the confidence on system reliability. They help
minimizing the number of errors and in many cases allow to find
errors impossible to find manually.
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Using formal methods

Used in different stages of the development process, giving a
classification of formal methods7

1. We describe the system giving a formal specification
2. We can then prove some properties about the specification
3. We can proceed by:

Deriving a program from its specification (formal synthesis)
Verifying the specification wrt. implementation

7Testing is sometimes including as a formal method if based on a formal
methodology.
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Formal specification

A specification formalism must be unambiguous: it should
have a precise syntax and semantics

Natural languages are not suitable
A trade-off must be found between expressiveness and analysis
feasibility

More expressive the specification formalism more difficult its
analysis

Do not confuse the specification of the system itself with the
specification of some of its properties

Both kinds of specifications may use the same formalism but
not necessarily
For example:

the system specification can be given as a program or as a
state machine
system properties can be formalized using some logic
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Proving properties about the specification

To gain confidence about the correctness of a specification it is
useful to:

Prove some properties of the specification to check that it
really means what it is supposed to
Prove the equivalence of different specifications

Example
a should be true for the first two points of time, and then oscillates

First attempt:

a(0) ∧ a(1) ∧ ∀t · a(t + 1) = ¬a(t)

INCORRECT! – The error may be found when trying to prove
some properties
“Correct” (?) specification:
a(0) ∧ a(1) ∧ ∀t ≥ 0 · a(t + 2) = ¬a(t + 1)
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Formal synthesis

It would be helpful to automatically obtain an implementation
from the specification of a system
Difficult since most specifications are declarative and not
constructive

They usually describe what the system should do; not how it
can be achieved

Example: program extraction
1. specify the operational semantics of a programming language

in a constructive logic (calculus of constructions)
2. prove the correctness of a given property w.r.t. the operational

semantics (e.g. in Coq)
3. extract an ocaml code from the correctness proof (using Coq’s

extraction mechanism)
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Verifying specifications w.r.t. implementations

Mainly two approaches:

Deductive approach ((automated) theorem proving)
Describe the specification Φspec in a formal model (logic)
Describe the system’s model Φimp in the same formal model
Prove that Φimp =⇒ Φspec

Algorithmic approach
Describe the specification Φspec as a formula of a logic
Describe the system as an interpretation Mimp of the given
logic (e.g. as a finite automaton)
Prove that Mimp is a “model” (in the logical sense) of Φspec

30 / 102



A few success stories

Esterel Technologies (synchronous languages – Airbus,
Avionics, Semiconductor & Telecom, ...)

Scade/Lustre
Esterel

Astrée (Abstract interpretation – Used in Airbus)
Java PathFinder (model checking — find deadlocks on
multi-threaded Java programs)
verification of circuits design (model checking)
verification of different protocols (model checking and
verification of infinite-state systems)
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Classification of systems

Before discussing how to choose an appropriate formal method we
need a classification of systems

Different kind of systems and not all methodologies/techniques
may be applied to all kind of systems
Systems may be classified depending on [Schneider, 2004]: 8

Their architecture
The type of interaction

8Here we follow Klaus Schneider’s book “Verification of reactive systems”.
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Classification of systems
According to the system architecture

Asynchronous vs. synchronous hardware
Analog vs. digital hardware
Mono- vs. multi-processor systems
Imperative vs. functional vs. logical vs. object-oriented
software
Concurrent vs. sequential software
Conventional vs. real-time operating systems
Embedded vs. local vs. distributed systems
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Classification of systems
According to the type of interaction

Transformational systems: Read inputs and produce outputs
– These systems should always terminate
Interactive systems: Idem previous, but they are not
assumed to terminate (unless explicitly required) –
Environment has to wait till the system is ready
Reactive systems: Non-terminating systems. The
environment decides when to interact with the system – These
systems must be fast enough to react to an environment
action (real-time systems)
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Taxonomy of properties

Many specification formalisms can be classified depending on
the kind of properties they are able to express/verify
Properties may be organized in the following categories
Functional correctness: The program for computing the square

root really computes it
Temporal behavior: The answer arrives in less than 40 seconds
Safety properties (“something bad never happens”): Traffic

lights of crossing streets are never green
simultaneously

Liveness properties (“something good eventually happens”):
Process A will eventually be executed

Persistence properties (stabilization): For all computations
there is a point where process A is always
enabled

Fairness properties (some property will hold infinitely often):
No process is ignored infinitely often by an OS/
scheduler
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When and which formal method to use?

It depends on the problem, the underlying system and the
property we want to prove
Examples:

Digital circuits ... (BDDs, model checking)
Communication protocol with unbounded number of
processes.... (verification of infinite-state systems)
Overflow in programs (static analysis and abstract
interpretation)
...

Open distributed concurrent systems with unbounded number
of processes interacting through shared variables and with
real-time constraints ⇒ Very difficult!!
Need the combination of different techniques
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Some formalisms for specification

An incomplete list of formalisms for specifying systems:
Logic-based formalisms

Modal and temporal logics (E.g. LTL, CTL)
Real-time temporal logics (E.g. Duration calculus, TCTL)
Rewriting logic

Automata-based formalisms
Finite-state automata
Timed and hybrid automata

Process algebra/process calculis
CCS (LOTOS, CSP, . . . )
π-calculus

Visual formalisms
MSC (Message Sequence Chart)
Statecharts (e.g. in UML)
Petri nets
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Some techniques and methodologies for verification

Algorithmic verification
Finite-state systems (model checking)
Infinite-state systems
Hybrid systems
Real-time systems

Deductive verification (theorem proving)
Abstract interpretation
Formal testing (black box, white box, structural, ...)
Static analysis
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Summary

Formal methods are useful and needed
Which FM to use depends on the problem, the underlying
system and the property we want to prove
In real complex systems, only part of the system may be
formally proved and no single FM can make the task

Our course will concentrate on
Temporal logic as a specification formalism
Safety, liveness and (maybe) fairness properties
SPIN (LTL Model Checking)
Few other techniques from student presentation (e.g., abstract
interpretation, CTL model checking, timed automata)
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Ten Commandments of formal methods

From “Ten commandments revisited” [Bowen and Hinchey, 2005]
1. Choose an appropriate notation
2. Formalize but not over-formalize
3. Estimate costs
4. Have a formal method guru on call
5. Do not abandon your traditional methods
6. Document sufficiently
7. Do not compromise your quality standards
8. Do not be dogmatic
9. Test, test, and test again

10. Do reuse
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Further reading

This part is based on many different sources. The following
references have been consulted:

Klaus Schneider: Verification of reactive systems, 2003.
Springer. Chap. 1 [Schneider, 2004]
G. Andrews: Foundations of Multithreaded, Parallel, and
Distributed Programming, 2000. Addison Wesley. Chap. 2
[Andrews, 2000]
Z. Manna and A. Pnueli: Temporal Verification of Reactive
Systems: Safety, Chap. 09 [Manna and Pnueli, 1992]

9This chapter is also the base of lectures 3 and 4.
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Introduction

Logic is “the” specification language for us.10

There are many logics to choose from.
Today we see two of them:

First-order logic (FOL) can be used to describe the state of a
program.
Modal logic can be used to describe the change of state of a
program.

Other logics that we will see in other lectures:

Temporal logics has features not available in FOL like
possibility to describe sequences of states.
Hoare logic is specially designed to reason about (imperative)
programs.
Dynamic logics: more expressive than Hoare logic, more
abstract constructs and is more in the tradition of modal logic.

10Note: there is no such thing as “the logics”. There are many . . .
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First-order logic



Syntax

Language
The symbols of our first-order language are

variables (a countable set of them V = {x , y , . . . })
relation symbols P = {P,Q, . . . } of varying arity (incl. .= of
arity 2)
function symbols F = {f , g , . . . } of varying arity (if the arity
of f is 0 then f is called a constant symbols)a

the propositional connectives ¬, ∨, ∧, → and ↔
the quantifiers ∀ and ∃

aCf. also the notion of signature in the term-rewriting talk later (by L.
Tveito, 2015)
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Syntax: expressions

Expressions (terms)
Variables are atomic expressions.
If f is a function symbol of arity n, and t1, . . . , tn are terms,
then the following is also an expression.

f (t1, . . . , tn)

If n = 0, f is a constant.

Example
Using infix notation, the following are expressions:

x U ∪ V

y − 1 U ∩ V

(x + y) + z U \ V
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Syntax: Atomic formulae

Atomic formulae
> (top) and ⊥ (bottom) are atomic formulae.
If P is a relation symbol of arity n, and t1, . . . , tn are terms,
then the following is an atomic formulae.

P(t1, . . . , tn)

Example
Using infix notation, the following are atomic formulae.

> x ∈ U

x < y + 1 U ⊆ V

x
.

= x − 1 U ∩ V
.

= ∅
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Boolean formulae

Boolean formulae
All atomic formulae are boolean formulae.
If ϕ and ψ are boolean formulae, so are the following.

¬ϕ (ϕ ∨ ψ) (ϕ ∧ ψ) (ϕ→ ψ) (ϕ↔ ψ)

Example
Some examples of Boolean formulas are:

¬¬>
¬(x < y + 1)→ ⊥
P → (Q → P)
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FO formulae

First-order formulae
All boolean formulae are first-order formulae.
Let x be a variable. If ϕ is a first-order formulae, so are the
following.

(∃x)ϕ (∀x)ϕ

If ϕ and ψ are first-order formulae, so are the following.

¬ϕ (ϕ ∨ ψ) (ϕ ∧ ψ) (ϕ→ ψ) (ϕ↔ ψ)

L denotes the set of first-order formulae.

Example
Q(y) ∨ (∀x)P(x)
(∀x)(∀y)(x < y → (∃z)(x < z ∧ z < y))
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First-order model

Definition
A model is a pair M = (D, I ), such that

D is a non-empty set (the domain)
I is mapping (the interpretation), such that

f I : Dn → D for every function symbol f of arity n
P I ⊆ Dn for every relation symbol P of arity n

Observation
We will assume an implicit model, whose domain will include
the natural numbers and sets of natural numbers, and it will
be obvious what function and relation symbols should be
mapped to.
E.g.: if + is a function symbol +I is the addition function on
the natural numbers, and .

= is mapped to a suitable =.
Simplification here: no “sorts” or “types”: only one sort ⇒ only
one domain. Normally: many-sorted
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Valuation / state

Given a model

Definition (Valuation)

A valuation s over a set of variables V is a mapping from V to D.

other names: variable assignment
here, in the context of using logics to speak about programs,
where variables in the formula may refer to program variables:
we will often call a valuation a state

Example
Let V = {x , y , z}, let x and z be variables of type natural number,
and y a variable of type “set of natural numbers”.

s(x) = 256
s(y) = {1, 2, 3}
s(z) = 512
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Valuation of an expression/term

Definition
To every FOL expression t we associate a value s(t) from the
domain D in a homomorphic way:

s(f (t1, . . . , tn)) = f I (s(t1), . . . , s(tn))

Example

s((2 ∗ x) + z) = s([2 ∗ x ]I ) +I s(z)

= (s(2I ) ∗I s(x)) +I s(z)

= (2 ∗ s(x)) + s(z)

= (2 ∗ 256) + 512
= 1024
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Free and bound variable occurrences

Definition
A variable occurrence is free in a formula if it is not within the
scope of a quantifier. A variable occurrence that is not free is
bound.
Let s1 and s2 be states over V , and x ∈ V . s2 is an x-variant
of s1 if

s1(y) = s2(y) for all y ∈ V \ {x}.

Thus, x is the only variable the states disagree on.
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Substitution

Definition (Substitution)
Let ϕ be a first order formula, x a variable and t an expression.
Then ϕ[t/x ] is ϕ, only with every free occurrence of the x
replaced with t.

Note, the same definition is also used in the lecture about
term rewriting (used on terms, not on general FOL formula,
but it’s “the same”.)
Some other notation has been used like ϕx←c . The one used
here is the (most) standard one.
A really exact definition would have to cater for situations like
(∀x .x + y = 19)[x + 1/y ].

Example

ϕ = (∀x)P(x) ∨ P(x)

ϕ[c/x ] = (∀x)P(x) ∨ P(c) 54 / 102



Satisfaction

Definition (Satisfaction)

We define the notion that a state formula ϕ is true (false) relative
to a model M = (D, I ) in a state s, written M, s |= ϕ (M, s 6|= ϕ)
as follows.

M, s |= > and M, s 6|= ⊥
M, s |= R(t1, . . . , tn) iff (s(t1), . . . , s(tn)) ∈ R I

M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= ϕ→ ψ iff M, s 6|= ϕ or M, s |= ψ

M, s |= ϕ↔ ψ iff M, s |= ϕ→ ψ and M, s |= ψ → ϕ

M, s |= (∀x)ϕ iff M, t |= ϕ for every t that is an x-variant of s

M, s |= (∃x)ϕ iff M, t |= ϕ for some t that is an x-variant of s

55 / 102



“Truth” and validity

Definition
We say that ϕ is true in the model M, written M |= ϕ, if

M, s |= ϕ for every state s.
We say that ϕ is valid, written |= ϕ, if

M |= ϕ for every model M.

Observation
We will abuse this notation, and write |= ϕ if ϕ is true in our
implicit model, and refer to this as state-validity.
For instance: |= x + y

.
= y + x .

In a model where +I is the subtraction function, this will
obviously not hold.
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Exercises

Model the statement: “There are infinitely many primes”.
(∀x)(∃y)(x ≤ y ∧ (∀z)(z divides y → (z = 1 ∨ z = y)))
where we define: z divides y , (∃w)(z · w = y).
Can define prime(y) , (∀z)(z divides y → (z = 1 ∨ z = y))

“There is a person with at least two neighbors”
(∃x , y , z)(y 6= z ∧ Neigh(x , y) ∧ Neigh(x , z))
where Neigh(·, ·) is a binary relation.
Model now: “There is a person with exactly two neighbors”
(∃x , y , z)(y 6= z ∧ Neigh(x , y) ∧ Neigh(x , z) ∧
((∀w)Neigh(x ,w)→ (w = y ∨ w = z))).
“Every even number can be written as a sum of two primes”
(∀x)((even(x) ∧ x > 2)→
(∃y , z)(prime(y) ∧ prime(z) ∧ y + z = x))
where the shorthand even(x) , (∃w)(2 · w = x).

We assume the domain − with standard ·,+, >.
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Deductions and proof systems

Definition
A proof system for a given logic consists of

axioms (or axiom schemata), which are formulae assumed to
be true, and
inference rules, of approx. the form

ϕ1 . . . ϕn

ψ

where ϕ1, . . . , ϕn are premises and ψ the conclusion.
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Derivations and proofs

Definition
A derivation from a set of formulae S is a sequence of
formulae, where each formula is either in S , an axiom or can
be obtained by applying an inference rule to formulae earlier in
the sequence.
A proof is a derivation from the empty set.
A theorem is the last formula in a proof.
A proof system is

sound if every theorem is valid.
complete if evey valid formula is a theorem.

We do not study soundness and completeness in this course.
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Proof systems and proofs: remarks

the “definitions” from the previous slides: not very formal
in general: a proof system: a “mechanical” (= formal and
constructive) way of conclusions from axioms (= “given”
formulas), and other already proven formulas
Many different “representations” of how to draw conclusions
exists
the one sketched on the previous slide

works with “sequences”
corresponds to the historically oldest “style” of proof systems
(“Hilbert-style”)
otherwise, in that naive form: impractical (but sound &
complete).
nowadays, better ways and more suitable for computer support
of representation exists (especially using trees). For instance
natural deduction style system

for the course, those variations don’t matter.
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A proof system for prop. logic

Observation
We can axiomatize a subset of propositional logic as follows.

ϕ→ (ψ → ϕ) (A1)
(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) (A2)
((ϕ→ ⊥)→ ⊥)→ ϕ (DN)
ϕ ϕ→ ψ

ψ
(MP)

Let us call this logic PPL.

Note: As said, it’s only one of many different ways and styles to
axiomatize logic (here prop. logic)
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A proof system

Example
p → p is a theorem of PPL:

(p → ((p → p)→ p))→
((p → (p → p))→ (p → p))

AX2 (1)

p → ((p → p)→ p) AX1 (2)
(p → (p → p))→ (p → p) MP on (1) and (2) (3)
p → (p → p) AX1 (4)
p → p MP on (3) and (4) (5)

Observation
A proof can be represented as a tree of inferences where the leaves
are axioms.
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Modal logics



Introduction

Modal logic: logic of “necessity” and “possibility”, in that
originally the intended meaning of the modal operators � and
♦ was

�ϕ: ϕ is necessarily true.
♦ϕ: ϕ is possibly true.

Depending on what we intend to capture: we can interpret �ϕ
differently.

temporal ϕ will always hold.
doxastic I believe ϕ.
epistemic I know ϕ.
intuitionistic ϕ is provable.
deontic It ought to be the case that ϕ.

We will restrict here the modal operators to � and ♦ (and
mostly work with a temporal “mind-set”.
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Kripke structure

Definition (Kripke model)

A Kripke frame is a structure (W ,R) where
W is a non-empty set of worlds, and
R ⊆W ×W is called the accessibility relation between worlds.

A Kripke model M is a structure (W ,R,V ) where
(W ,R) is a frame, and
V : W → 2ϕ labels each world with a set of propositional
variables.

Remark: some also consider propositional variables as propositional
constants, propositional “symbols”, it’s unimportant. Kripke models
are sometimes called Kripke structures.
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Example

Example
Let M = (W ,R,V ) be the Kripke model such that

W = {w1,w2,w3,w4,w5}
R = {(w1,w5), (w1,w4), (w4,w1), . . . }
V = 〈w1 : ∅,w2 : {φ},w3 : {φ′}, . . . 〉
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Satisfaction

Definition (Satisfaction)

A modal formula ϕ is true in the world w of a model M, written
M,w |= ϕ, if:

M,w |= pi iff pi ∈ V (w)

M,w |= ¬ϕ iff M,w 6|= ϕ

M,w |= ϕ1 ∨ ϕ2 iff M,w |= ϕ1 or M,w |= ϕ2

M,w |= �ϕ iff M,w ′ |= ϕ for all w ′ such that wRw ′

M,w |= ♦ϕ iff M,w ′ |= ϕ for some w ′ such that wRw ′
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But what does box and diamond intuitively “mean”?

Observation
The semantics only differs for � and ♦.
We don’t put any restriction on the accessibility relation R .
The “mental picture” of what to think of � and ♦ depends on
the properties of R (and what we think R actually represent)
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Different kinds of accessibility relations

Definition
A binary relation R ⊆W ×W is

reflexive if every element in W is R-related to itself.

(∀a)aRa

transitive if
(∀abc)(aRb ∧ bRc → aRc)

euclidean if
(∀abc)(aRb ∧ aRc → bRc)

total if
(∀a)(∃b)(aRb)
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Modal Logic
Semantics

If (W ,R,V ), s |= ϕ for all s and V , we write

(W ,R) |= ϕ

Example
(W ,R) |= �ϕ→ ϕ iff R is reflexive.
(W ,R) |= �ϕ→ ♦ϕ iff R is total.
(W ,R) |= �ϕ→ ��ϕ iff R is transitive.
(W ,R) |= ¬�ϕ→ �¬�ϕ iff R is euclidean.

Observation
The axioms above are said to “hold on a frame”, which means, for
any valuation and at any state.
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Modal Logic
Exercises

Prove the double implications from the slide before!

1. The forward implications are based on the fact that we
quantify over all valuations and all states. More precisely;
assume an arbitrary frame (W ,R) which does NOT have the
property (e.g., reflexive). Find a valuation and a state where
the axiom does not hold. You have now the contradiction . . .

2. For the backward implication take an arbitrary frame (W ,R)
which has the property (e.g., euclidian). Take an arbitrary
valuation and an arbitrary state on this frame. Show that the
axiom holds in this state under this valuation. Sometimes one
may need to use an inductive argument or to work with
properties derived from the main property on R (e.g., if R is
euclidian then (∀w1,w2 ∈W )(w1Rw2 → w2Rw2))
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An axiomatic system

Every normal modal logic has the following inference rules.

ϕ is a tautology instance

ϕ
(PL)

ϕ ϕ→ ψ

ψ
(MP)

ϕ

�ϕ
(G)

We will only be concerned with normal modal logics.
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Sample axioms for different accessibility relations

Formulae that can be used to axiomatize logics with different
properties.

�(ϕ→ ψ)→ (�ϕ→ �ψ) (K)
�ϕ→ ♦ϕ (D)
�ϕ→ ϕ (T)
�ϕ→ ��ϕ (4)
¬�ϕ→ �¬�ϕ (5)
�(�ϕ→ ψ)→ �(�ψ → ϕ) (3)
�(�(ϕ→ �ϕ)→ ϕ)→ (♦�ϕ→ ϕ)) (Dum)

Every normal logic has K as axiom schema.
Observe that T implies D.
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Different “flavors” of modal logic

Logic Axioms Interpretation Properties of R
D K D deontic total
T K T reflexive
K45 K 4 5 doxastic transitive/euclidean
S4 K T 4 reflexive/transitive
S5 K T 5 epistemic reflexive/euclidean

reflexive/symmetric/transitive
equivalence relation
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Exercises

1. Consider the frame (W ,R) with W = {1, 2, 3, 4, 5} and
(i , i + 1) ∈ R

Choose the valuation V (p) = {2, 3} and V (q) = {1, 2, 3, 4, 5}
to get the model M = (W ,R,V ).
Which of the following statements are correct in M and why?

1.1 M, 1 |= ♦�p Correct
1.2 M, 1 |= ♦�p → p Incorrect
1.3 M, 3 |= ♦(q ∧ ¬p) ∧�(q ∧ ¬p) Correct
1.4 M, 1 |= q ∧ ♦(q ∧ ♦(q ∧ ♦(q ∧ ♦q))) Correct
1.5 M |= �q Correct . . . but why?
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Exercises 2 (bidirectional frames)

We call a frame (W ,R) bidirectional iff R = RF ] RP s.t.
∀w ,w ′(wRFw

′ ↔ w ′RPw).
i.e.: The R can be separated into two disjoind relations RF

and RP , which one is the inverse of the other.

Consider the model M = (W ,R,V ) from before.
Which of the following statements are correct in M and why?
0.1 M, 1 |= ♦�p Incorrect
0.2 M, 1 |= ♦�p → p Correct
0.3 M, 3 |= ♦(q ∧ ¬p) ∧�(q ∧ ¬p) Incorrect
0.4 M, 1 |= q ∧ ♦(q ∧ ♦(q ∧ ♦(q ∧ ♦q))) Correct
0.5 M |= �q Correct . . . but is it the same explanation as

before?
0.6 M |= �q → ♦♦p
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Exercises 3 (validities)

Which of the following are valid in modal logic. For those that are
not, argue why and find a class of frames on which they become
valid.

1. �⊥
Valid on frames where R = ∅.

2. ♦p → �p
Valid on frames where R is a partial function.

3. p → �♦p
Valid on bidirectional frames.

4. ♦�p → �♦p
Valid on Euclidian frames.
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Further readings

[Harel et al., 2000]
[Blackburn et al., 2001]
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