
INF5140 – Specification and Verification of
Parallel Systems

Spring 2018

Institutt for informatikk, Universitetet i Oslo

February 16, 2018

1 / 47

Linear-Time Temporal Logic (LTL)

Introduction

Temporal Logic?
Temporal logic is the logic of “time”a

It is a modal logic.
There are different ways of modeling time.

linear time vs. branching time
time instances vs. time intervals
discrete time vs. continuous time
past and future vs. future only

apay attention, it will be something kind of abstract, it’s mostly not what’s
known as real-time, but there are variants of temporal logics which can handle
real-time. They won’t occur in this lecture.

3 / 47

FOL (repetition)

First Order Logic
We have used FOL to express properties of states.

〈x : 21, y : 49〉 ||= x < y
〈x : 21, y : 7〉 6||= x < y

A computation is a sequence of states.
To express properties of computations, we need to extend FOL.
This we can do using temporal logic.

4 / 47

LTL: speaking about “time”

In Linear Temporal Logic (LTL) (also called linear-time temporal
logic) we can describe such properties as follows: assume time is a
sequence1 of discrete points i in time, then: if i is now,

p holds in i and every following point (the future)
p holds in i and every preceding point (the past)

We will only be concerned with the future.

. . . •pi−2 •pi−1 •pi •pi+1 •pi+2 . . .

1a sequence is linear
5 / 47

LTL operators

We extend our first-order language2 L to a temporal language LT
by adding the temporal operators �, ♦, ©, U, R and W .

Interpretation of the operators
�ϕ ϕ will always (in every state) hold
♦ϕ ϕ will eventually (in some state) hold
©ϕ ϕ will hold at the next point in time
ϕUψ ψ will eventually hold, and until that point ϕ will hold
ϕRψ ψ holds until (incl.) the point (if any) where ϕ holds

(release)
ϕWψ ϕ will hold until ψ holds (weak until or waiting for)

2Note: it’s equally ok to extend a propositional language the same way. The
difference is between a first-order LTL or propositional LTL.

6 / 47

Syntax

We define LTL formulae as follows.

Definition
L ⊆ LT : first-order formulae are also LTL formulae.
If ϕ is an LTL formula, so are the following.

�ϕ ♦ϕ © ϕ ¬ϕ

If ϕ and ψ are LTL formulae, so are

ϕUψ ϕRψ (ϕWψ)

(ϕ ∨ ψ) (ϕ ∧ ψ) (ϕ→ ψ) (ϕ↔ ψ)

nothing else

7 / 47

Paths and computations

Definition
A path is an infinite sequence

σ = s0, s1, s2, . . .

of states.
σk denotes the path sk , sk+1, sk+2, . . .

σk denotes the state sk .
All computations are paths, but not vice versa.

8 / 47

Satisfaction (semantics)

Definition
We define the notion that an LTL formula ϕ is true (false) relative
to a path σ, written σ |= ϕ (σ 6|= ϕ) as follows.

σ |= ϕ iff σ0 ||= ϕ when ϕ ∈ L
σ |= ¬ϕ iff σ 6|= ϕ

σ |= ϕ ∨ ψ iff σ |= ϕ or σ |= ψ

σ |= �ϕ iff σk |= ϕ for all k ≥ 0

σ |= ♦ϕ iff σk |= ϕ for some k ≥ 0

σ |=©ϕ iff σ1 |= ϕ

(cont.)

9 / 47

Satisfaction (semantics) (2)

Definition
(cont.)

σ |= ϕUψ iff σk |= ψ for some k ≥ 0, and

σi |= ϕ for every i such that 0 ≤ i < k

σ |= ϕRψ iff for every j ≥ 0,

if σi 6|= ϕ for every i < j then σj |= ψ

σ |= ϕWψ iff σ |= ϕUψ or σ |= �ϕ

10 / 47

Validity and semantic equivalence

Definition
We say that ϕ is (temporally) valid, written |= ϕ, if

σ |= ϕ for all paths σ.
We say that ϕ and ψ are equivalent, written ϕ ∼ ψ, if

|= ϕ↔ ψ (i.e. σ |= ϕ iff σ |= ψ, for all σ).

Example
� distributes over ∧, while ♦ distributes over ∨.

�(ϕ ∧ ψ) ∼ (�ϕ ∧�ψ)
♦(ϕ ∨ ψ) ∼ (♦ϕ ∨ ♦ψ)

11 / 47

Semantics

σ |= �p

•p0 •p1 •p2 •p3 •p4 . . .

σ |= ♦p

•0 •1 •2 •p3 •4 . . .

σ |=©p

•0 •p1 •2 •3 •4 . . .

12 / 47

σ |= pUq (sequence of p’s is finite)

•p0 •p1 •p2 •q3 •4 . . .

σ |= pRq (The sequence of qs may be infinite)

•q0 •q1 •q2 •p,q3 •4 . . .

σ |= pW q. The sequence of ps may be infinite.
(pW q ∼ pUq ∨�p).

•p0 •p1 •p2 •p3 •p4 . . .

13 / 47

The past

Observation
[Manna and Pnueli, 1992] uses pairs (σ, j) of paths and
positions instead of just the path σ because they have
past-formulae: formulae without future operators (the ones we
use) but possibly with past operators, like �−1 and ♦−1.

(σ, j) |= �−1ϕ iff (σ, k) |= ϕ for all k , 0 ≤ k ≤ j

(σ, j) |= ♦−1ϕ iff (σ, k) |= ϕ for some k , 0 ≤ k ≤ j

However, it can be shown that for any formula ϕ, there is a
future-formula (formulae without past operators) ψ such that

(σ, 0) |= ϕ iff (σ, 0) |= ψ

14 / 47

The past: examples

Example
What is a future version of �(p → ♦−1q)?
(σ, 0) |= �(p → ♦−1q)

•p→♦−1q •p→♦−1q •p→♦−1q •p→♦−1q • . . .

(σ, 0) |= qR(p → q)

•p→q •p→q •p→q,q • • . . .

15 / 47

Examples

Example
ϕ→ ♦ψ: If ϕ holds initially, then ψ holds eventually.

•ϕ • • •ψ • . . .

This formula will also hold in every path where ϕ does not hold
initially.

•¬ϕ • • • • . . .

16 / 47

Example: Response

Example (Response)
�(ϕ→ ♦ψ)
Every ϕ-position coincides with or is followed by a ψ-position.

• •ϕ • •ψ • •ϕ,ψ . . .

This formula will also hold in every path where ϕ never holds.

•¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ . . .

17 / 47

Examples

Example
�♦ψ
There are infinitely many ψ-positions.

•ψ • • •ψ • •ψ • . . .

This formula can be obtained from the previous one, �(ϕ→ ♦ψ),
by letting ϕ = >: �(> → ♦ψ).

18 / 47

Example: permanence

Example
♦�ϕ
Eventually ϕ will hold permanently.

• •ϕ • • •ϕ •ϕ •ϕ . . .

Equivalently: there are finitely many ¬ϕ-positions.

19 / 47

LTL example

Example
(¬ϕ)Wψ
The first ϕ-position must coincide or be preceded by a ψ-position.

•¬ϕ •¬ϕ •¬ϕ •ψ •ϕ • • . . .

ϕ may never hold

•¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ . . .

20 / 47

LTL Example

Example
�(ϕ→ ψWχ)
Every ϕ-position initiates a sequence of ψ-positions, and if
terminated, by a χ-position.

• •ϕ,ψ •ψ •ψ •χ • •ϕ,ψ . . .

The sequence of ψ-positions need not terminate.

• •ϕ,ψ •ψ •ψ •ψ •ψ •ψ . . .

21 / 47

Nested waiting-for

A nested waiting-for formula is of the form

�(ϕ→ (ψmW (ψm−1W · · · (ψ1Wψ0) · · ·))),

where ϕ,ψ0, . . . , ψm ∈ L. For the sake of convenience, we write

�(ϕ→ ψm W ψm−1 W · · · W ψ1 W ψ0).

Every ϕ-position initiates a succession of intervals, beginning with a
ψm-interval, ending with a ψ1-interval and possibly terminated by a
ψ0-position. Each interval may be empty or extend to infinity.

. . . •ϕ,ψm •ψm •ψm •ψm−1 •ψm−1 . . .

. . . •ψ2 •ψ2 •ψ1 •ψ1 •ψ0 . . .

22 / 47

Capturing informally understood temporal specifications
formally

It can be difficult to correctly formalize informally stated
requirements in temporal logic.

Example
How does one formalize the informal requirement “ϕ implies ψ”?

ϕ→ ψ? ϕ→ ψ holds in the initial state.
�(ϕ→ ψ)? ϕ→ ψ holds in every state.
ϕ→ ♦ψ? ϕ holds in the initial state, ψ will hold in some state.
�(ϕ→ ♦ψ)? We saw this earlier.
None of these is necessarily what we intended

23 / 47

Duals

Definition (Duals)
For binary boolean connectivesa ◦ and •, we say that • is the dual
of ◦ if

¬(ϕ ◦ ψ) ∼ (¬ϕ • ¬ψ).

Similarly for unary connectives: • is the dual of ◦ if ¬ ◦ ϕ ∼ •¬ϕ.
aThose are not concrete connectives or operators, they are meant as

“placeholders”

Duality is symmetric:
If • is the dual of ◦ then
◦ is the dual of •, thus
we may refer to two connectives as dual (of each other).

24 / 47

Dual connectives

Which connectives are duals?
∧ and ∨ are duals:

¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ).

¬ is its own dual:
¬¬ϕ ∼ ¬¬ϕ.

What is the dual of →? It’s 6←:

¬(ϕ 6← ψ) ∼ ϕ← ψ

∼ ψ → ϕ

∼ ¬ϕ→ ¬ψ

25 / 47

Complete sets of connectives

A set of connectives is complete (for boolean formulae) if
every other connective can be defined in terms of them.
Our set of connectives is complete (e.g., 6← can be defined),
but also subsets of it, so we don’t actually need all the
connectives.

Example
{∨,¬} is complete.

∧ is the dual of ∨.
ϕ→ ψ is equivalent to ¬ϕ ∨ ψ.
ϕ↔ ψ is equivalent to (ϕ→ ψ) ∧ (ψ → ϕ).
> is equivalent to p ∨ ¬p
⊥ is equivalent to p ∧ ¬p

26 / 47

Duals in LTL

We can extend the notions of duality and completeness to temporal
formulae.

Duals of temporal operators
What is the dual of �? And of ♦?
� and ♦ are duals.

¬�ϕ ∼ ♦¬ϕ
¬♦ϕ ∼ �¬ϕ

Any other?
U and R are duals.

¬(ϕUψ) ∼ (¬ϕ)R(¬ψ)
¬(ϕRψ) ∼ (¬ϕ)U(¬ψ)

27 / 47

Complete set of LTL operators

We don’t need all our temporal operators either.

Proposition
{∨,¬,U,©} is complete for LTL.

Proof: ♦ϕ ∼ >Uϕ
�ϕ ∼ ⊥Rϕ
ϕRψ ∼ ¬(¬ϕU¬ψ)
ϕWψ ∼ �ϕ ∨ (ϕUψ)

28 / 47

Classification of properties

We can classify properties expressible in LTL.

Classification
safety �ϕ

liveness ♦ϕ

obligation �ϕ ∨ ♦ψ
recurrence �♦ϕ
persistence ♦�ϕ
reactivity �♦ϕ ∨ ♦�ψ

29 / 47

Safety

important basic class of properties
relation to testing and run-time verification
“nothing bad ever happens”

Definition (Safety)
A safety formula is of the form

�ϕ

for some first-order formula ϕ.
A conditional safety formula is of the form

ϕ→ �ψ

for (first-order) formulae ϕ and ψ.
Safety formulae express invariance of some state property ϕ:
that ϕ holds in every state of the computation.

30 / 47

Safety property example

Example
Mutual exclusion is a safety property. Let Ci denote that
process Pi is executing in the critical section. Then

�¬(C1 ∧ C2)

expresses that it should always be the case that not both P1
and P2 are executing in the critical section.
Observe that the negation of a safety formula is a liveness
formula; the negation of the formula above is the liveness
formula

♦(C1 ∧ C2)

which expresses that eventually it is the case that both P1 and
P2 are executing in the critical section.

31 / 47

Liveness properties

Definition (Liveness)
A liveness formula is of the form

♦ϕ

for some first-order formula ϕ.
A conditional liveness formula is of the form

ϕ→ ♦ψ

for first-order formulae ϕ and ψ.
Liveness formulae guarantee that some event ϕ eventually
happens: that ϕ holds in at least one state of the computation.

32 / 47

Connection to Hoare logic

Observation
Partial correctness is a safety property. Let P be a program
and ψ the post condition.

�(terminated(P)→ ψ)

In the case of full partial correctness, where there is a
precondition ϕ, we get a conditional safety formula,

ϕ→ �(terminated(P)→ ψ),

which we can express as { ϕ } P { ψ } in Hoare Logic.

33 / 47

Total correctness and liveness

Observation
Total correctness is a liveness property. Let P be a program
and ψ the post condition.

♦(terminated(P) ∧ ψ)

In the case of full total correctness, where there is a
precondition ϕ, we get a conditional liveness formula,

ϕ→ ♦(terminated(P) ∧ ψ).

34 / 47

Duality of partial and total correctness

Observation
Partial and total correctness are dual.
Let

PC (ψ) , �(terminated → ψ)

TC (ψ) , ♦(terminated ∧ ψ)

Then

¬PC (ψ) ∼ PC (¬ψ)
¬TC (ψ) ∼ TC (¬ψ)

35 / 47

Obligation

Definition (Obligation)
A simple obligation formula is of the form

�ϕ ∨ ♦ψ

for first-order formula ϕ and ψ.
An equivalent form is

♦χ→ ♦ψ

which states that some state satisfies χ only if some state
satisfies ψ.

36 / 47

Obligation (2)

Proposition
Every safety and liveness formula is also an obligation formula.

Proof: This is because of the following equivalences.

�ϕ ∼ �ϕ ∨ ♦⊥
♦ϕ ∼ �⊥ ∨ ♦ϕ

and the facts that |= ¬�⊥ and |= ¬♦⊥.

37 / 47

Recurrence

Definition (Recurrence)
A recurrence formula is of the form

�♦ϕ

for some first-order formula ϕ.
It states that infinitely many positions in the computation
satisfies ϕ.

Observation
A response formula, of the form �(ϕ→ ♦ψ), is equivalent to a
recurrence formula, of the form �♦χ, if we allow χ to be a
past-formula.

�(ϕ→ ♦ψ) ∼ �♦(¬ϕ)W−1ψ

38 / 47

Recurrence

Proposition
Weak fairnessa can be specified as the following recurrence formula.

�♦(enabled(τ)→ taken(τ))

aweak and strong fairness will be “recurrent” (sorry for the pun) themes. For
instance they will show up again in the TLA presentation.

Observation
An equivalent form is

�(�enabled(τ)→ ♦taken(τ)),

which looks more like the first-order formula we saw last time.

39 / 47

Persistence

Definition (Persistence)
A persistence formula is of the form

♦�ϕ

for some first-order formula ϕ.
It states that all but finitely many positions satisfy ϕa

Persistence formulae are used to describe the eventual
stabilization of some state property.

aIn other words: only finitely (“but”) many position satisfy ¬ϕ. So at some
point onwards, it’s always ϕ.

40 / 47

Recurrence and Persistence

Observation
Recurrence and persistence are duals.

¬(�♦ϕ) ∼ (♦�¬ϕ)
¬(♦�ϕ) ∼ (�♦¬ϕ)

41 / 47

Reactivity

Definition (Reactivity)
A simple reactivity formula is of the form

�♦ϕ ∨ ♦�ψ

for first-order formula ϕ and ψ.
A very general class of formulae are conjunctions of reactivity
formulae.
An equivalent form is

�♦χ→ �♦ψ,

which states that if the computation contains infinitely many
χ-positions, it must also contain infinitely many ψ-positions.

42 / 47

Reactivity

Proposition
Strong fairness can be specified as the following reactivity formula.

�♦enabled(τ)→ �♦taken(τ)

43 / 47

GCD Example

Below is a computation σ of our recurring GCD program.
a and b are fixed: σ |= �(a .

= 21 ∧ b
.
= 49).

at(l) denotes the formulae (π
.
= {l}).

terminated denotes the formula at(l8).

P-computation
States are of the form 〈π, x , y , g〉.

σ : 〈l1, 21, 49, 0〉 → 〈lb2 , 21, 49, 0〉 → 〈l6, 21, 49, 0〉 →
〈l1, 21, 28, 0〉 → 〈lb2 , 21, 28, 0〉 → 〈l6, 21, 28, 0〉 →
〈l1, 21, 7, 0〉 → 〈la2 , 21, 7, 0〉 → 〈l4, 21, 7, 0〉 →
〈l1, 14, 7, 0〉 → 〈la2 , 14, 7, 0〉 → 〈l4, 14, 7, 0〉 →
〈l1, 7, 7, 0〉 → 〈l7, 7, 7, 0〉 → 〈l8, 7, 7, 7〉 → · · ·

44 / 47

GCD Example

Does the following properties hold for σ? And why?
1. �terminated (safety)
2. at(l1)→ terminated
3. at(l8)→ terminated
4. at(l7)→ ♦terminated (conditional liveness)
5. ♦at(l7)→ ♦terminated (obligation)
6. �(gcd(x , y) .= gcd(a, b)) (safety)
7. ♦terminated (liveness)
8. ♦�(y .

= gcd(a, b)) (persistence)
9. �♦terminated (recurrence)

45 / 47

Exercises

Exercises
1. Show that the following formulae are (not) LTL-valid.

1.1 �ϕ↔ ��ϕ
1.2 ♦ϕ↔ ♦♦ϕ
1.3 ¬�ϕ→ �¬�ϕ
1.4 �(�ϕ→ ψ)→ �(�ψ → ϕ)
1.5 �(�ϕ→ ψ) ∨�(�ψ → ϕ)
1.6 �♦�ϕ→ ♦�ϕ
1.7 �♦ϕ↔ �♦�♦ϕ

2. A modality is a sequence of ¬, � and ♦, including the empty
sequence ε. Two modalities σ and τ are equivalent if
σϕ↔ τϕ is valid.
2.1 Which are the non-equivalent modalities in LTL, and
2.2 what are their relationship (ie. implication-wise)?

46 / 47

References I

[Andrews, 2000] Andrews, G. R. (2000).
Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison-Wesley.

[Blackburn et al., 2001] Blackburn, P., de Rijke, M., and Venema, Y. (2001).
Modal Logic.
Cambridge University Press.

[Bowen and Hinchey, 2005] Bowen, J. P. and Hinchey, M. G. (2005).
Ten commandments revisited: a ten-year perspective on the industrial application of formal methods.
In FMICS ’05: Proceedings of the 10th international workshop on Formal methods for industrial
critical systems, pages 8–16, New York, NY, USA. ACM Press.

[Garfinkel, 2005] Garfinkel, S. (2005).
History’s worst software bugs.
Available at http://archive.wired.com/software/coolapps/news/2005/11/69355?currentPage=all.

[Harel et al., 2000] Harel, D., Kozen, D., and Tiuryn, J. (2000).
Dynamic Logic.
Foundations of Computing. MIT Press.

[Manna and Pnueli, 1992] Manna, Z. and Pnueli, A. (1992).
The temporal logic of reactive and concurrent systems—Specification.
Springer Verlag, New York.

[Peled, 2001] Peled, D. (2001).
Software Reliability Methods.
Springer Verlag.

[Schneider, 2004] Schneider, K. (2004).
Verification of Reactive Systems.
Springer Verlag.

47 / 47

http://archive.wired.com/software/coolapps/news/2005/11/69355?currentPage=all

	Lecture 4: (Hoare Logic and) Temporal Logics
	Linear-Time Temporal Logic (LTL)
	Introduction
	Syntax
	Semantics
	The Past
	Examples
	Nested waiting-for
	Formalization
	Duals
	Classification
	Properties
	Safety and Liveness
	Recurrence and Persistence
	Reactivity
	GCD Example

	Exercises

