INF5140 - Specification and Verification of Parallel Systems

Spring 2018

Institutt for informatikk, Universitetet i Oslo

February 16, 2018

Linear-Time Temporal Logic (LTL)

Temporal Logic?

- Temporal logic is the logic of "time"a
- It is a modal logic.
- There are different ways of modeling time.
- linear time vs. branching time
- time instances vs. time intervals
- discrete time vs. continuous time
- past and future vs. future only

[^0]
First Order Logic

- We have used FOL to express properties of states.
- $\langle x: 21, y: 49\rangle \|=x<y$
- $\langle x: 21, y: 7\rangle \| \vDash x<y$
- A computation is a sequence of states.
- To express properties of computations, we need to extend FOL.
- This we can do using temporal logic.

In Linear Temporal Logic (LTL) (also called linear-time temporal logic) we can describe such properties as follows: assume time is a sequence ${ }^{1}$ of discrete points i in time, then: if i is now,

- p holds in i and every following point (the future)
- p holds in i and every preceding point (the past)

We will only be concerned with the future.

${ }^{1}$ a sequence is linear

We extend our first-order language ${ }^{2} \mathcal{L}$ to a temporal language \mathcal{L}_{T} by adding the temporal operators $\square, \diamond, \bigcirc, U, R$ and W.

Interpretation of the operators
$\varphi U \psi$
$\varphi R \psi$
$\varphi W \psi$
φ will always (in every state) hold
φ will eventually (in some state) hold
φ will hold at the next point in time
ψ will eventually hold, and until that point φ will hold
ψ holds until (incl.) the point (if any) where φ holds (release)
φ will hold until ψ holds (weak until or waiting for)
${ }^{2}$ Note: it's equally ok to extend a propositional language the same way. The difference is between a first-order LTL or propositional LTL.

We define LTL formulae as follows.

Definition

- $\mathcal{L} \subseteq \mathcal{L}_{T}$: first-order formulae are also LTL formulae.
- If φ is an LTL formula, so are the following.

$$
\square \varphi \quad \diamond \varphi \quad \bigcirc \varphi \quad \neg \varphi
$$

- If φ and ψ are LTL formulae, so are

$$
\begin{aligned}
& \varphi \cup \psi \quad \varphi R \psi \quad(\varphi W \psi) \\
& (\varphi \vee \psi) \quad(\varphi \wedge \psi) \quad(\varphi \rightarrow \psi) \quad(\varphi \leftrightarrow \psi)
\end{aligned}
$$

- nothing else

Definition

- A path is an infinite sequence

$$
\sigma=s_{0}, s_{1}, s_{2}, \ldots
$$

of states.

- σ^{k} denotes the path $s_{k}, s_{k+1}, s_{k+2}, \ldots$
- σ_{k} denotes the state s_{k}.
- All computations are paths, but not vice versa.

Definition

We define the notion that an LTL formula φ is true (false) relative to a path σ, written $\sigma \models \varphi(\sigma \not \models \varphi)$ as follows.

$$
\begin{array}{lll}
\sigma \neq \varphi & \text { iff } & \\
\sigma_{0} \|=\varphi \text { when } \varphi \in \mathcal{L} \\
\sigma \models \neg \varphi & \text { iff } & \sigma \not \models \varphi \\
\sigma \models \varphi \vee \psi & \text { iff } & \sigma \models \varphi \text { or } \sigma \models \psi \\
& & \\
\sigma \models \square \varphi & & \text { iff }
\end{array} \quad \sigma^{k} \models \varphi \text { for all } k \geq 0
$$

Definition

(cont.)

$$
\begin{array}{lll}
\sigma \models \varphi U \psi \quad \text { iff } & \sigma^{k} \models \psi \text { for some } k \geq 0, \text { and } \\
& \sigma^{i} \models \varphi \text { for every } i \text { such that } 0 \leq i<k
\end{array}
$$

$\sigma \models \varphi R \psi \quad$ iff \quad for every $j \geq 0$,
if $\sigma^{i} \not \models \varphi$ for every $i<j$ then $\sigma^{j} \models \psi$

$$
\sigma \models \varphi W \psi \quad \text { iff } \quad \sigma \models \varphi U \psi \text { or } \sigma \models \square \varphi
$$

Validity and semantic equivalence

Definition

- We say that φ is (temporally) valid, written $\models \varphi$, if $\sigma \mid=\varphi$ for all paths σ.
- We say that φ and ψ are equivalent, written $\varphi \sim \psi$, if

$$
\models \varphi \leftrightarrow \psi \text { (i.e. } \sigma \models \varphi \text { iff } \sigma \models \psi \text {, for all } \sigma \text {). }
$$

Example

\square distributes over \wedge, while \diamond distributes over \vee.

$$
\begin{aligned}
& \square(\varphi \wedge \psi) \sim(\square \varphi \wedge \square \psi) \\
& \diamond(\varphi \vee \psi) \sim(\diamond \varphi \vee \diamond \psi)
\end{aligned}
$$

$\sigma \models \square p$

$$
\bullet_{0}^{p} \longrightarrow \bullet_{1}^{p} \longrightarrow \bullet_{2}^{p} \longrightarrow \bullet_{3}^{p} \longrightarrow \bullet_{4}^{p} \longrightarrow \ldots
$$

$$
\sigma \models \diamond p
$$

$\sigma \models \bigcirc p$

$$
\bullet_{0} \longrightarrow \bullet_{1}^{p} \longrightarrow \bullet_{2} \longrightarrow \bullet_{3} \longrightarrow \bullet_{4} \longrightarrow \ldots
$$

$\sigma \models p U q$ (sequence of p 's is finite)

$\sigma \models p R q$ (The sequence of q s may be infinite)

$$
\bullet_{0}^{q} \longrightarrow \bullet_{1}^{q} \longrightarrow \bullet_{2}^{q} \longrightarrow \bullet_{3}^{p, q} \longrightarrow \bullet_{4} \longrightarrow \ldots
$$

$\sigma \equiv p W q$. The sequence of $p \mathrm{~s}$ may be infinite.
$(p W q \sim p \cup q \vee \square p)$.

$$
\bullet_{0}^{p} \longrightarrow \bullet_{1}^{p} \longrightarrow \bullet_{2}^{p} \longrightarrow \bullet_{3}^{p} \longrightarrow \bullet_{4}^{p} \longrightarrow \ldots
$$

Observation

- [Manna and Pnueli, 1992] uses pairs (σ, j) of paths and positions instead of just the path σ because they have past-formulae: formulae without future operators (the ones we use) but possibly with past operators, like \square^{-1} and \diamond^{-1}.

$$
\begin{aligned}
& (\sigma, j) \models \square^{-1} \varphi \quad \text { iff } \quad(\sigma, k) \models \varphi \text { for all } k, 0 \leq k \leq j \\
& (\sigma, j) \models \diamond^{-1} \varphi \quad \text { iff } \quad(\sigma, k) \models \varphi \text { for some } k, 0 \leq k \leq j
\end{aligned}
$$

- However, it can be shown that for any formula φ, there is a future-formula (formulae without past operators) ψ such that

$$
(\sigma, 0) \models \varphi \quad \text { iff } \quad(\sigma, 0) \models \psi
$$

The past: examples

Example
What is a future version of $\square\left(p \rightarrow \nabla^{-1} q\right)$?
$(\sigma, 0) \vDash \square\left(p \rightarrow \diamond^{-1} q\right)$
$\bullet^{p \rightarrow \diamond^{-1} q} \longrightarrow \bullet^{p \rightarrow \diamond^{-1} q} \longrightarrow \bullet^{p \rightarrow \diamond^{-1} q} \longrightarrow \bullet^{p \rightarrow \diamond^{-1} q}$ \qquad
$(\sigma, 0) \vDash q R(p \rightarrow q)$
$\bullet^{p \rightarrow q} \longrightarrow \bullet^{p \rightarrow q} \longrightarrow \bullet^{p \rightarrow q, q}$

Examples

Example

$\varphi \rightarrow \diamond \psi$: If φ holds initially, then ψ holds eventually.

This formula will also hold in every path where φ does not hold initially.
$\bullet{ }^{\varphi} \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \longrightarrow$

Example: Response

Example (Response)
$\square(\varphi \rightarrow \Delta \psi)$
Every φ-position coincides with or is followed by a ψ-position.

This formula will also hold in every path where φ never holds.

Examples

Example

$\square \diamond \psi$
There are infinitely many ψ-positions.

This formula can be obtained from the previous one, $\square(\varphi \rightarrow \diamond \psi)$, by letting $\varphi=\mathrm{T}: \square(\top \rightarrow \diamond \psi)$.

Example: permanence

Example
$\diamond \square \varphi$
Eventually φ will hold permanently.

Equivalently: there are finitely many $\neg \varphi$-positions.

Example
$(\neg \varphi) W \psi$
The first φ-position must coincide or be preceded by a ψ-position.

φ may never hold

Example

$\square(\varphi \rightarrow \psi W \chi)$
Every φ-position initiates a sequence of ψ-positions, and if terminated, by a χ-position.
$\bullet \longrightarrow \bullet^{\varphi, \psi} \longrightarrow \bullet^{\psi} \longrightarrow \bullet^{\psi} \longrightarrow \bullet^{\chi} \longrightarrow \bullet \longrightarrow \bullet^{\varphi} \psi \longrightarrow \ldots$

The sequence of ψ-positions need not terminate.

A nested waiting-for formula is of the form

$$
\square\left(\varphi \rightarrow\left(\psi_{m} W\left(\psi_{m-1} W \cdots\left(\psi_{1} W \psi_{0}\right) \cdots\right)\right)\right)
$$

where $\varphi, \psi_{0}, \ldots, \psi_{m} \in \mathcal{L}$. For the sake of convenience, we write

$$
\square\left(\varphi \rightarrow \psi_{m} W \psi_{m-1} W \cdots W \psi_{1} W \psi_{0}\right)
$$

Every φ-position initiates a succession of intervals, beginning with a ψ_{m}-interval, ending with a ψ_{1}-interval and possibly terminated by a ψ_{0}-position. Each interval may be empty or extend to infinity.

Capturing informally understood temporal specifications formally

It can be difficult to correctly formalize informally stated requirements in temporal logic.

Example

How does one formalize the informal requirement " φ implies ψ "?

- $\varphi \rightarrow \psi ? \varphi \rightarrow \psi$ holds in the initial state.
- $\square(\varphi \rightarrow \psi)$? $\varphi \rightarrow \psi$ holds in every state.
- $\varphi \rightarrow \Delta \psi$? φ holds in the initial state, ψ will hold in some state.
- $\square(\varphi \rightarrow \diamond \psi)$? We saw this earlier.
- None of these is necessarily what we intended

Definition (Duals)

For binary boolean connectives ${ }^{a} \circ$ and \bullet, we say that \bullet is the dual of \circ if

$$
\neg(\varphi \circ \psi) \sim(\neg \varphi \bullet \neg \psi) .
$$

Similarly for unary connectives: • is the dual of \circ if $\neg \circ \varphi \sim \bullet \neg \varphi$.
${ }^{a}$ Those are not concrete connectives or operators, they are meant as "placeholders"

Duality is symmetric:

- If \bullet is the dual of \circ then
- ○ is the dual of \bullet, thus
- we may refer to two connectives as dual (of each other).

Which connectives are duals?

- \wedge and \vee are duals:

$$
\neg(\varphi \wedge \psi) \sim(\neg \varphi \vee \neg \psi)
$$

- \neg is its own dual:

$$
\neg \neg \varphi \sim \neg \neg \varphi
$$

- What is the dual of \rightarrow ? It's \nleftarrow :

$$
\begin{aligned}
\neg(\varphi \nleftarrow \psi) & \sim \varphi \leftarrow \psi \\
& \sim \psi \rightarrow \varphi \\
& \sim \neg \varphi \rightarrow \neg \psi
\end{aligned}
$$

Complete sets of connectives

- A set of connectives is complete (for boolean formulae) if every other connective can be defined in terms of them.
- Our set of connectives is complete (e.g., \nleftarrow can be defined), but also subsets of it, so we don't actually need all the connectives.

Example
$\{\vee, \neg\}$ is complete.

- \wedge is the dual of \vee.
- $\varphi \rightarrow \psi$ is equivalent to $\neg \varphi \vee \psi$.
- $\varphi \leftrightarrow \psi$ is equivalent to $(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$.
- T is equivalent to $p \vee \neg p$
- \perp is equivalent to $p \wedge \neg p$

We can extend the notions of duality and completeness to temporal formulae.
Duals of temporal operators

- What is the dual of \square ? And of \diamond ?
- \square and \diamond are duals.

$$
\begin{aligned}
& \neg \square \varphi \sim \diamond \neg \varphi \\
& \neg \diamond \varphi \sim \square \neg \varphi
\end{aligned}
$$

- Any other?
- U and R are duals.

$$
\begin{aligned}
& \neg(\varphi U \psi) \sim(\neg \varphi) R(\neg \psi) \\
& \neg(\varphi R \psi) \sim(\neg \varphi) U(\neg \psi)
\end{aligned}
$$

Complete set of LTL operators

We don't need all our temporal operators either.

Proposition

$\{\vee, \neg, U, \bigcirc\}$ is complete for $L T L$.

Proof: • $\Delta \varphi \sim T U \varphi$

- $\square \varphi \sim \perp R \varphi$
- $\varphi R \psi \sim \neg(\neg \varphi U \neg \psi)$
- $\varphi W \psi \sim \square \varphi \vee(\varphi U \psi)$

Classification of properties

We can classify properties expressible in LTL.
Classification

```
safety
\square \varphi
liveness \diamond\varphi
obligation }\square\varphi\vee\diamond
recurrence }\square\diamond
persistence }\diamond\square
reactivity }\square\diamond\varphi\vee\diamond\square
```


Safety

- important basic class of properties
- relation to testing and run-time verification
- "nothing bad ever happens"

Definition (Safety)

- A safety formula is of the form

$$
\square \varphi
$$

for some first-order formula φ.

- A conditional safety formula is of the form

$$
\varphi \rightarrow \square \psi
$$

for (first-order) formulae φ and ψ.

- Safety formulae express invariance of some state property φ : that φ holds in every state of the computation.

Example

- Mutual exclusion is a safety property. Let C_{i} denote that process P_{i} is executing in the critical section. Then

$$
\square \neg\left(C_{1} \wedge C_{2}\right)
$$

expresses that it should always be the case that not both P_{1} and P_{2} are executing in the critical section.

- Observe that the negation of a safety formula is a liveness formula; the negation of the formula above is the liveness formula

$$
\diamond\left(C_{1} \wedge C_{2}\right)
$$

which expresses that eventually it is the case that both P_{1} and P_{2} are executing in the critical section.

Definition (Liveness)

- A liveness formula is of the form

$$
\Delta \varphi
$$

for some first-order formula φ.

- A conditional liveness formula is of the form

$$
\varphi \rightarrow \diamond \psi
$$

for first-order formulae φ and ψ.

- Liveness formulae guarantee that some event φ eventually happens: that φ holds in at least one state of the computation.

Connection to Hoare logic

Observation

- Partial correctness is a safety property. Let P be a program and ψ the post condition.

$$
\square(\text { terminated }(P) \rightarrow \psi)
$$

- In the case of full partial correctness, where there is a precondition φ, we get a conditional safety formula,

$$
\varphi \rightarrow \square(\text { terminated }(P) \rightarrow \psi),
$$

which we can express as $\{\varphi\} P\{\psi\}$ in Hoare Logic.

Observation

- Total correctness is a liveness property. Let P be a program and ψ the post condition.

$$
\diamond(\text { terminated }(P) \wedge \psi)
$$

- In the case of full total correctness, where there is a precondition φ, we get a conditional liveness formula,

$$
\varphi \rightarrow \diamond(\text { terminated }(P) \wedge \psi)
$$

Observation
Partial and total correctness are dual.
Let

$$
\begin{aligned}
& P C(\psi) \triangleq \square(\text { terminated } \rightarrow \psi) \\
& T C(\psi) \triangleq \diamond(\text { terminated } \wedge \psi)
\end{aligned}
$$

Then

$$
\begin{aligned}
& \neg P C(\psi) \sim P C(\neg \psi) \\
& \neg T C(\psi) \sim T C(\neg \psi)
\end{aligned}
$$

Obligation

Definition (Obligation)

- A simple obligation formula is of the form

$$
\square \varphi \vee \diamond \psi
$$

for first-order formula φ and ψ.

- An equivalent form is

$$
\diamond \chi \rightarrow \Delta \psi
$$

which states that some state satisfies χ only if some state satisfies ψ.

Obligation (2)

Proposition

Every safety and liveness formula is also an obligation formula.

Proof: This is because of the following equivalences.

$$
\begin{aligned}
& \square \varphi \sim \square \varphi \vee \diamond \perp \\
& \diamond \varphi \sim \square \perp \vee \diamond \varphi
\end{aligned}
$$

and the facts that $\models \neg \square \perp$ and $\models \neg \diamond \perp$.

Definition (Recurrence)

- A recurrence formula is of the form

$$
\square \diamond \varphi
$$

for some first-order formula φ.

- It states that infinitely many positions in the computation satisfies φ.

Observation

A response formula, of the form $\square(\varphi \rightarrow \diamond \psi)$, is equivalent to a recurrence formula, of the form $\square \diamond \chi$, if we allow χ to be a past-formula.

$$
\square(\varphi \rightarrow \diamond \psi) \sim \square \diamond(\neg \varphi) W^{-1} \psi
$$

Proposition

Weak fairness ${ }^{a}$ can be specified as the following recurrence formula.

$$
\square \diamond(\operatorname{enabled}(\tau) \rightarrow \operatorname{taken}(\tau))
$$

"weak and strong fairness will be "recurrent" (sorry for the pun) themes. For instance they will show up again in the TLA presentation.

Observation

An equivalent form is

$$
\square(\square \text { enabled }(\tau) \rightarrow \diamond \text { taken }(\tau)),
$$

which looks more like the first-order formula we saw last time.

Definition (Persistence)

- A persistence formula is of the form

$$
\diamond \square \varphi
$$

for some first-order formula φ.

- It states that all but finitely many positions satisfy φ^{a}
- Persistence formulae are used to describe the eventual stabilization of some state property.

[^1]Observation
Recurrence and persistence are duals.

$$
\begin{aligned}
& \neg(\square \Delta \varphi) \sim(\diamond \square \neg \varphi) \\
& \neg(\diamond \square \varphi) \sim(\square \Delta \neg \varphi)
\end{aligned}
$$

Definition (Reactivity)

- A simple reactivity formula is of the form

$$
\square \diamond \varphi \vee \diamond \square \psi
$$

for first-order formula φ and ψ.

- A very general class of formulae are conjunctions of reactivity formulae.
- An equivalent form is

$$
\square \diamond \chi \rightarrow \square \diamond \psi,
$$

which states that if the computation contains infinitely many χ-positions, it must also contain infinitely many ψ-positions.

Proposition

Strong fairness can be specified as the following reactivity formula.
$\square \diamond$ enabled $(\tau) \rightarrow \square \diamond \operatorname{taken}(\tau)$

Below is a computation σ of our recurring GCD program.

- a and b are fixed: $\sigma \models \square(a \doteq 21 \wedge b \doteq 49)$.
- at (I) denotes the formulae $(\pi \doteq\{l\})$.
- terminated denotes the formula $a t\left(I_{8}\right)$.

P-computation

States are of the form $\langle\pi, x, y, g\rangle$.

$$
\begin{aligned}
\sigma: & \left\langle I_{1}, 21,49,0\right\rangle \rightarrow\left\langle I_{2}^{b}, 21,49,0\right\rangle \rightarrow\left\langle I_{6}, 21,49,0\right\rangle \rightarrow \\
& \left\langle I_{1}, 21,28,0\right\rangle \rightarrow\left\langle I_{2}^{b}, 21,28,0\right\rangle \rightarrow\left\langle I_{6}, 21,28,0\right\rangle \rightarrow \\
& \left\langle I_{1}, 21,7,0\right\rangle \rightarrow\left\langle I_{2}^{a}, 21,7,0\right\rangle \rightarrow\left\langle I_{4}, 21,7,0\right\rangle \rightarrow \\
& \left\langle I_{1}, 14,7,0\right\rangle \rightarrow\left\langle I_{2}^{a}, 14,7,0\right\rangle \rightarrow\left\langle I_{4}, 14,7,0\right\rangle \rightarrow \\
& \left\langle I_{1}, 7,7,0\right\rangle \rightarrow\left\langle I_{7}, 7,7,0\right\rangle \rightarrow\left\langle I_{8}, 7,7,7\right\rangle \rightarrow \cdots
\end{aligned}
$$

Does the following properties hold for σ ? And why?

1. \square terminated (safety)
2. $\operatorname{at}\left(I_{1}\right) \rightarrow$ terminated
3. $\operatorname{at}\left(I_{8}\right) \rightarrow$ terminated
4. at $\left(I_{7}\right) \rightarrow \diamond$ terminated (conditional liveness)
5. \diamond at $\left(h_{7}\right) \rightarrow \diamond$ terminated (obligation)
6. $\square(\operatorname{gcd}(x, y) \doteq \operatorname{gcd}(a, b))$ (safety)
7. \diamond terminated (liveness)
8. $\diamond \square(y \doteq \operatorname{gcd}(a, b))$ (persistence)
9. $\square \diamond$ terminated (recurrence)

Exercises

1. Show that the following formulae are (not) LTL-valid.
```
\(1.1 \square \varphi \leftrightarrow \square \square \varphi\)
\(1.2 \diamond \varphi \leftrightarrow \Delta \Delta \varphi\)
\(1.3 \neg \square \varphi \rightarrow \square \neg \square \varphi\)
\(1.4 \square(\square \varphi \rightarrow \psi) \rightarrow \square(\square \psi \rightarrow \varphi)\)
\(1.5 \square(\square \varphi \rightarrow \psi) \vee \square(\square \psi \rightarrow \varphi)\)
\(1.6 \square \diamond \square \varphi \rightarrow \diamond \square \varphi\)
\(1.7 \square \diamond \varphi \leftrightarrow \square \diamond \square \diamond \varphi\)
```

2. A modality is a sequence of \neg, \square and \diamond, including the empty sequence ϵ. Two modalities σ and τ are equivalent if $\sigma \varphi \leftrightarrow \tau \varphi$ is valid.
2.1 Which are the non-equivalent modalities in LTL, and
2.2 what are their relationship (ie. implication-wise)?
[Andrews, 2000] Andrews, G. R. (2000).
Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison-Wesley.
[Blackburn et al., 2001] Blackburn, P., de Rijke, M., and Venema, Y. (2001).
Modal Logic.
Cambridge University Press.
[Bowen and Hinchey, 2005] Bowen, J. P. and Hinchey, M. G. (2005).
Ten commandments revisited: a ten-year perspective on the industrial application of formal methods.
In FMICS '05: Proceedings of the 10th international workshop on Formal methods for industrial critical systems, pages 8-16, New York, NY, USA. ACM Press.
[Garfinkel, 2005] Garfinkel, S. (2005).
History's worst software bugs.
Available at http://archive.wired.com/software/coolapps/news/2005/11/69355?currentPage=all.
[Harel et al., 2000] Harel, D., Kozen, D., and Tiuryn, J. (2000).
Dynamic Logic.
Foundations of Computing. MIT Press.
[Manna and Pnueli, 1992] Manna, Z. and Pnueli, A. (1992).
The temporal logic of reactive and concurrent systems-Specification.
Springer Verlag, New York.
[Peled, 2001] Peled, D. (2001).
Software Reliability Methods.
Springer Verlag.
[Schneider, 2004] Schneider, K. (2004).
Verification of Reactive Systems.
Springer Verlag.

[^0]: ${ }^{a}$ pay attention, it will be something kind of abstract, it's mostly not what's known as real-time, but there are variants of temporal logics which can handle real-time. They won't occur in this lecture.

[^1]: ${ }^{\text {a }}$ In other words: only finitely ("but") many position satisfy $\neg \varphi$. So at some point onwards, it's always φ.

