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Chapter 1
Learning Targets of Chapter “Fundamentals”.

1. Understand that software needs to be verified.
2. Understand the underlying principle of testing and

runtime verification.
3. Get an idea of the different verification techniques.
4. Know when to use which verification technique.
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Some Data
How Important is Testing in IT Projects?

I Software developers spend between 50% and 70% of
the time testing and validating code.

I Despite this, reliability is still the main problem of
software products (e.g. Microsoft Windows).

I A recent study estimates the cost of bad software for
industry in 60 billion dollars per year.

I The cost of a software bug in a critical system can be of
millions or even billions.
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Cost of Fixing Defects
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Ariane V88 Crash (1996)
What Happened

The launcher began to disintegrate at
about 39 seconds because of high
aerodynamic loads resulting from an angle
of attack of more than 20 degrees.
direct cost 500.000.000 €
indirect cost 2.000.000.000 €
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Ariane V88 crash (1996)
The Cause

P_M_DERIVE(T_ALG.E_BH) :=
UC_16S_EN_16NS (TDB.T_ENTIER_16S
((1.0/C_M_LSB_BH) *
G_M_INFO_DERIVE(T_ALG.E_BH)))

I The angle of attack was caused by incorrect altitude
data following a software exception.

I The software exception was raised by an overflow in the
conversion of a 64-bit floating-point number to a 16-bit
signed integer value. The result was an operand error.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Motivation
Statistics

Examples

Definitions
Testing

Validation and Verification

Runtime Verification

Classification
Verification Techniques

Course Topics

Conclusion
1-9

Loss of Mars Climate Orbiter (1999)
What Happened

I Mars Climate Orbiter
(MCO) was part of the
discovery program.

I The NASA robotic space
probe was on the way to
mars.

I Mars Climate Orbiter
went out of radio contact
on September 23, 1999.

I Communication was
never reestablished.
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Loss of Mars Climate Orbiter (1999)
Likely Cause

I Probe was at an altitude of 57 km instead of the
calculated 150 to 170 km.

I Probe was destroyed by heat in the mars atmosphere in
this too low orbit.

I The cause was a unit mismatch. Navigation software of
the probe caluclated thruster performance using the
metric unit Newtons while the ground crew entered
course correction using the Imperial measure
Pound-force (lbf).
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Loss of Mars Polar Lander (1998)
What Happened

I Last telemetry was sent
on December 3, 1999

I After cruise stage
separation and
atmospheric entry no
further signals were
received from the
spacecraft. Mars Polar
Lander remains lost.
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Loss of Mars Polar Lander (1998)
The Likely Cause

I The cause of the communication loss is not known.
I Most likely cause as concluded by the Failure Review

Board: Generation of spurious signals when the lander
legs were deployed, giving false indication that the
spacecraft had landed.

I This resulted in shutting down the engines 40 m above
surface.
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Power Shutdown of USS Yorktown

I A sailor mistakenly typed 0 in a field of the kitchen
inventory application.

I Subsequent division by this field caused an arithmetic
exception, which propagated through the system,
crashed all LAN consoles and remote terminal units,
and lead to power shutdown for about 3 hours.
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Pentium Bug (1994)

Wrong Calculation

4195835− (4195835/3145727) · 3145727 = 256

I Division used a speedy algorithm known as SRT
division.

I This algorithm uses a table of 1,066 values (part of the
chip’s circuitry).

I The cause was the omission of five entries in this table.
Cost (Intel estimate) 500.000.000 $
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GMail Data Loss (2011)
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Testing
The Definition

Definition (Testing)

Testing is the examination of a subset of the behaviours of a
program or system.

Testing can detect the presence of errors, but cannot prove
their absence.
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Myers Definition of Testing
Test Suite, Test Case and Test Run

I Testing is the process of executing a program on a test
suite with the intent of finding errors.

I A test suite is a subset of the possible inputs.
I An element of a test suite is called a test case.
I A run of the program on a test case is a test run.
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Testing cannot show the absence of errors

I Most programs have infinitely many possible inputs.
I Event programs with only finitely many inputs

can still have infinitely many executions.
I A program with finitely many executions

can have infinite executions
(possibly because of errors!)

Testing is not a correctness proof
Investigating in finitely many executions
we cannot prove the absence of errors.
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Quotes on Testing

“Testing can show the presence of errors, but never
their absence.” (E.W. Dijkstra)

“Testing is a destructive process, even a sadistic
process.” (G.J. Myers)

“Die destruktive Kreativität, das System aufs Kreuz
zu legen, und der Sportliche Ehrgeiz, Fehler zu
finden, sorgen für gute Testfälle.” (J. Siedersleben)
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Testing cannot show that software works.

I Testing reveals errors in programs if
the program does not what it is supposed to do.

I Programs that do what they are supposed to do
can still contain errors
if they do more than they are supposed to do.

I Specifications may contain errors as well.
Testing assumes specifications to be correct.
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Validation and Verification

Validation
“Are we building the right product?”
(Does the system meet the client’s expectations?)

Verification
“Are we building the product right?”
(Does the system meet its specification?)

Definition (Verification)

Verification is comparing code with its specification.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Motivation
Statistics

Examples

Definitions
Testing

Validation and Verification

Runtime Verification

Classification
Verification Techniques

Course Topics

Conclusion
1-22

Validation and Verification

Validation
“Are we building the right product?”
(Does the system meet the client’s expectations?)

Verification
“Are we building the product right?”
(Does the system meet its specification?)

Definition (Verification)

Verification is comparing code with its specification.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Motivation
Statistics

Examples

Definitions
Testing

Validation and Verification

Runtime Verification

Classification
Verification Techniques

Course Topics

Conclusion
1-23

IEEE 1012-2004
Standard for Software Verification and Validation

Abstract
Software verification and validation (V&V) processes determine
whether the development products of a given activity conform to
the requirements of that activity and whether the software satisfies
its intended use and user needs. Software V&V life cycle process
requirements are specified for different software integrity levels.
The scope of V&V processes encompasses software-based systems,
computer software, hardware, and interfaces. This standard
applies to software being developed, maintained, or reused [legacy,
commercial off-the- shelf (COTS), non-developmental items]. The
term software also includes firmware, microcode, and
documentation. Software V&V processes include analysis,
evaluation, review, inspection, assessment, and testing of software
products. Keywords: IV&V, software integrity level, software life
cycle, V&V, validation, verification
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IEEE 1012-2004
Standard for Software Verification and Validation

Software V&V processes consist of the verification process
and validation process. The verification process provides
objective evidence whether the software and its associated
products and processes

I conform to requirements (e.g., for correctness,
completeness, consistency, accuracy) for all life cycle
activities during each life cycle process (acquisition,
supply, development, operation, and maintenance),

I satisfy standards, practices, and conventions during life
cycle processes and

I successfully complete each life cycle activity and satisfy
all the criteria for initiating succeeding life cycle
activities (e.g., building the software correctly).
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IEEE 1012-2004
Standard for Software Verification and Validation

The validation process provides evidence whether the
software and its associated products and processes

I satisfy system requirements allocated to software at the
end of each life cycle activity,

I solve the right problem (e.g., correctly model physical
laws, implement business rules, use the proper system
assumptions) and

I satisfy intended use and user needs.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Motivation
Statistics

Examples

Definitions
Testing

Validation and Verification

Runtime Verification

Classification
Verification Techniques

Course Topics

Conclusion
1-24

Verification or Validation?

Testing and Runtime Verification
are verification techniques.

Both do not work if the specification is wrong.
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Runtime Verification
The Definition

Definition (Runtime Verification)

Runtime verification is the discipline of computer science
that deals with the study, development and application of
those verification techniques that allow for checking whether
a run of a system under scrutiny satisfies or violates a given
correctness property.
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Run

Definition (Run)

A run of a system is a possibly infinite sequence of the
system’s states. Formally, a run may be considered as a
possibly infinite word or trace.

I Runs are formed by current variable assignments,
I or as the sequence of actions a system is emitting or

performing.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Motivation
Statistics

Examples

Definitions
Testing

Validation and Verification

Runtime Verification

Classification
Verification Techniques

Course Topics

Conclusion
1-27

Execution

Definition (Execution)

An execution of a system is a finite prefix of a run and,
formally, it is a finite trace.

I In verification, we check whether a run of a system
adhere to given correctness properties.

I RV is primarily used on executions.
I A monitor checks whether an execution meets a

correctness property.
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Adding Monitors to a System

Definition (Monitor)

A monitor is a device that reads a finite trace and yields a
certain verdict.

C1

C2

C3

C4

M

Figure: Monitor M checks correctness of components Ci.
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Monitors can Check Relations of Values

I A monitor can use more than one input value.
I A monitor can check the relations of multiple values.

C

M

Figure: Monitor M checks data input/output relation of
component C.
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Testing
Testing
i0/o0, i1/o1, . . .→ S

Does system S satisfy
the input/output
sequence
i0/o0, i1/o1, . . .?

Input/output sequence
is written manually.

Main research topic is
input/output sequence
generation.
Current execution must
be correct.
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Testing vs. Oracle Testing
Testing Oracle Testing
i0/o0, i1/o1, . . .→ S i0, i1, . . .→ S ×M

Does system S satisfy
the input/output
sequence
i0/o0, i1/o1, . . .?

Does system S satisfy
the test oracle M on
input sequence
i0, i1, . . .?

Input/output sequence
is written manually.

Input sequence and test
oracle are written
manually.

Main research topic is
input/output sequence
generation.

Main research topic is
input sequence
generation.

Current execution must
be correct.

Current execution must
be correct.
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Oracle Testing vs. Runtime Verification
Oracle Testing Runtime Verification
i0, i1, . . .→ S ×M i0, i1, . . .→ S ×Mϕ

Does system S satisfy
the test oracle M on
input sequence
i0, i1, . . .?

Does system S satisfy
the generated monitor
Mϕ on input sequence
i0, i1, . . .?

Input sequence and test
oracle are written
manually.

Monitor is synthesized
from correctness
property.

Main research topic is
input sequence
generation.

Main research topic is
monitor generation.

Current execution must
be correct.

Current execution must
be correct.
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Runtime Verification vs. Model Checking
Runtime Verification Model Checking
i0, i1, . . .→ S ×Mϕ S |= ϕ via L(S) ⊆ L(ϕ)

Does system S satisfy
the generated monitor
Mϕ on input sequence
i0, i1, . . .?

Is system S a model of
the correctness property
ϕ? Are all runs of the
system L(S) a subset of
all correct runs L(ϕ)?

Monitor is synthesized
from correctness
property.

Automatic proof using
manually created
system model.

Main research topic is
monitor generation.

Main research topic are
algorithms for proving
model relation.

Current execution must
be correct.

All runs must be
correct.
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Model Checking vs. Theorem Proofing
Model Checking Theorem Proving
S |= ϕ via L(S) ⊆ L(ϕ) S |= ϕ via S ` ϕ
Is system S a model of
the correctness property
ϕ? Are all runs of the
system L(S) a subset of
all correct runs L(ϕ)?

Is system S a model of
the correctness property
ϕ? Can we find a proof
that property ϕ derives
from system S?

Automatic proof using
manually created
system model.

Proof is done manually
by deriving property
from the system.

Main research topic are
algorithms for proving
model relation.

Main research topic is
proof generation using a
calculus.

All runs must be
correct.

All runs must be
correct.
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Conclusion of the Comparison
SST RV MC TP

I/O → S
resp.

I → S ×M

I →
S ×Mϕ

S |= ϕ
via

L(S) ⊆ L(ϕ)

S |= ϕ
via

S ` ϕ
sequence
generation

monitor
synthesis

proof
algorithms

manual
proofs

current
execution

current
execution all runs all runs

I input sequence I = i0, i1, . . .

I output sequence O = o0, o1, . . .

I system S

I test oracle resp. monitor M
I correctness property ϕ
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Topics Covered in Course
“Testing and Runtime Verification”

I Definitions of testing, verification and validation
I Static testing vs. dynamic testing
I Manual vs. automated testing
I Black box vs. white box testing
I Coverage criteria
I Test case generation
I Temporal logic and multi-valued semantics
I Finite (ω-)automata
I Monitor synthesis

I Automata constructions and -analysis
I Formula rewriting

I Runtime monitoring, monitor integration
I Runtime verification frameworks
I Conformance testing
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Conclusion

1. Testing is the examination of a subset of the behaviours
of a program or system. Testing can detect the
presence of errors, but cannot prove their absence.

2. Runtime verification deals with verification techniques
that allow checking whether an execution of a system
under scrutiny satisfies or violates a given correctness
property.

3. Testing and Runtime Verification are verification
techniques. They do not validate the given
specification.

4. One of the main challenges for testing is how to
generate a proper input/ output sequence.

5. One of the main challenges for runtime verification is
the synthesis of efficient monitors from logical
specifications.
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Chapter 2
Learning Targets of Chapter “Recall Runtime
Verification in More Depth”.

1. Recall the underlying principle of runtime verification.
2. Get to know to applications of runtime verification.
3. See different frameworks for runtime verification.
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Runtime Verification (Recall)

Verification technique that allow for checking
whether a run of a system under scrutiny
satisfies or violates a given correctness property.
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Run and Execution (Recall)

Run

I Run: possibly infinite sequence of the system’s states.
I Run formally: possibly infinite word or trace.

I Execution: finite prefix of a run.
I Execution formally: finite word or trace.
I RV is primarly used on executions.
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Run and Execution (Recall)

RunExecution

I Run: possibly infinite sequence of the system’s states.
I Run formally: possibly infinite word or trace.

I Execution: finite prefix of a run.
I Execution formally: finite word or trace.
I RV is primarly used on executions.
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Adding Monitors to a System (Recall)

I A monitor checks whether an execution meets a
correctness property.

I A monitor is a device that reads a finite trace and yields
a certain verdict.

C1

C2

C3

C4

M
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Monitors can Check Relations of Values
(Recall)

I A monitor can use more than one input value.
I A monitor can check the relations of multiple values.

C

M
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RV and the Word Problem

A simple monitor outputs
I yes if the execution satisfies the correctness property,
I no if not.

I Let JϕK denote the set of valid executions given by
property ϕ.

I Then runtime verification answers the word problem
w ∈ JϕK.

I The word problem can be decided with lower complexity
compared to the subset problem.
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How Does a Good Monitor Look?
Impartiality and Anticipation

Definition (Impartiality)

Impartiality requires that a finite trace is not evaluated to
true or, respectively false, if there still exists a (possibly
infinite) continuation leading to another verdict.

Definition (Anticipation)

Anticipation requires that once every (possibly infinite)
continuation of a finite trace leads to the same verdict, then
the finite trace evaluates to this very same verdict.

A monitor for RV should adhere to both maxims!
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Runtime Reflection

Runtime reflection (RR) is an architecture pattern for the
development of reliable systems.

I A monitoring layer
is enriched with

I a diagnosis layer
and a subsequent

I mitigation layer.

Logging

Monitoring

Diagnosis

Mitigation
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Runtime Reflection
Logging—Recording of System Events

The logging layer
I observes system events and
I provides them for the monitoring layer.

Realization

I Add code annotations within the system to build or
I use separated stand-alone loggers.
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Runtime Reflection
Monitoring—Fault Detection

The monitoring layer
I is implemented using runtime verification techniques,
I consists of a number of monitors,
I detects the presence of faults in the system and
I raises an alarm for the diagnosis layer in case of faults.
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Runtime Reflection
Diagnosis—Failure Identification

The diagnosis layer
I collects the verdicts of the monitors and
I deduces an explanation for the current system state

solely based upon the results of the monitors
and general information on the system.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Runtime
Verification
Recall

Word Problem

Good Monitors?

Applications
Runtime Reflection

When to Use RV?

RV Frameworks

Conclusion

2-16

Runtime Reflection
Mitigation—Reconfiguration

The reconfiguration layer
I mitigates the failure, if possible,
I or else may store detailed diagnosis information

for off-line treatment.
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When to Use RV?

I The verification verdict is often referring to a model of
the real system. Runtime verification may then be used
to easily check the actual execution of the system.
Thus, runtime verification may act as a partner to
theorem proving and model checking.

I Often, some information is available only at runtime. In
such cases, runtime verification is an alternative to
theorem proving and model checking.

I The behavior of an application may depend heavily on
the environment of the target system. In this scenario,
runtime verification adds on formal correctness proofs
by model checking and theorem proving.

I In the case of systems where security is important, it is
useful also to monitor behavior or properties that have
been statically proved or tested.
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Monitoring Systems/Logging: Overview

monitoring systems
/logging

instru-
mentation

source
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byte code

binary
code

logging APIs

trace tools
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Monitoring Systems/Logging: Overview
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Conclusion

1. Runtime verification deals with verification techniques
that allow checking whether an execution of a system
under scrutiny satisfies or violates a given correctness
property.

2. A Monitor checks whether an execution meets a
correctness property.

3. One of its main technical challenges is the synthesis of
efficient monitors from logical specifications.
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1. Understand that RV specifies shape of words.
2. Recall the idea of regular expressions and understand

their limitations for practical specifications.
3. Get an idea about temporal logics.
4. Understand the difference of regular expressions and

temporal logics.
5. Understand how to specify properties in LTL.
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Recap

We want to monitor the execution of a system.

We have already seen that
I A run of a system is a possibly infinite sequence of the

system’s states.
I An execution of a system is a finite prefix of a run.

Observations

I We describe the execution of a system in a discrete way.
I The system is in exactly one state at a time.
I In the next step the system is in the next state.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Runs Are Words
States of the System

Executions Are Words

Regular
Expressions
The Idea

Syntax and Semantics

Limitations

Linear Temporal
Logic (LTL)
Propositional Logic

Temporal Logic

Conclusion
3-6

Atomic Propositions

I An atomic proposition is an indivisible bit.
I We consider a fixed set of finitely many such bits.
I In every state every atomic proposition is either true or

false.
I In other words:

In every state of the execution some atomic
propositions hold.

Example

I Variable count is greater than 5.
I Memory for a variable data is allocated.
I Memory for data is free.
I The file handle logfile points to an opened file.
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States

I Let AP be a fixed finite non empty set of atomic
propositions.

I Σ = 2AP is the power set of these.
I A state can be seen as an element a ∈ Σ.
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Executions Are Like Linear Paths
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Languages over Alphabets

Let Σ be an alphabet and n ∈ N.
We then use the following notation:

Notation Meaning
Σ∗ set of all finite words over Σ
Σn all words in Σ∗ of length n
Σ≤n all words in Σ∗ of length at most n
Σ≥n all words in Σ∗ of length at least n
Σ+ = Σ≥1

Σω set of all infinite words over Σ
Σ∞ = Σ∗ ∪ Σω
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Executions Are Words

I A state can be seen as an element a ∈ Σ.
I Now a run is an infinite word w ∈ Σω

I and an execution a finite prefix w ∈ Σ∗.

Runtime verification is about checking if an execution is
correct, so we need to specify the set of correct executions
as a language L ⊆ Σ∗. Therefore a correctness property is a
language L.
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Regular Expressions: The Idea

I Use a bottom up construction to construct a complex
language by combining simpler languages together.

I Start with languages containing only one word of length
1.

I Use the common operations on languages to combine
these into complexer languages.
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Operations on Languages

Let L1 ⊆ Σ∗ and L2 ⊆ Σ∗ be two languages. We than have
intersection L1 ∩ L2 = {w ∈ Σ∗ | w ∈ L1 ∧ w ∈ L2}

union L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 ∨ w ∈ L2}
complement L = {w ∈ Σ∗ | w 6∈ L}
concatenation L1 ◦ L2 = {uv ∈ Σ∗ | u ∈ L1 ∧ v ∈ L2}
Kleene star L∗ = {u1u2 . . . un ∈ Σ∗ | ∀i : ui ∈ L}
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Regular Expressions

Regular expressions use only the operations union,
concatenation and Kleene star. These are enough to build all
regular languages.

I Every symbol a ∈ Σ is a regular expression.
I The empty word ε describes the empty word.
I Concatenation is expressed by concatenating regular

expressions.
I Union is expressed by the | operator combining two

regular expressions.
I Kleene star is expressed by the * operator at the end of

a regular expression.
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Examples

Examples
Let Σ = {0, 1} be the finite alphabet.

I (0|1)* specifies all words w ∈ Σ∗.
I 1*0* specifies all words w ∈ Σ∗ that do not contain

the string 01.
I ((0|1)1)* specifies all words w ∈ Σ∗ of even length

where every second letter is 1.
I ((0|1)1)*(0|1|ε) specifies all words w ∈ Σ∗ where

every second letter is 1.
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Syntax of Regular Expressions

Definition (Syntax of regular expressions)

Let x ∈ Σ be a symbol from a given alphabet. The syntax of
regular expressions is inductively defined by the following
grammar:

ϕ ::= ε | x | ϕϕ | (ϕ|ϕ) | (ϕ)*
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Semantics of Regular Expression
Definition (Semantics of Regular Expressions)

Let w, ui ∈ Σ∗ be words over the given alphabet, x ∈ Σ be
an element of the alphabet and R,R′ regular expressions.
Then the semantics of a regular expression is inductively
defined as relation |= of a non empty word and a regular
expression as follows.

ε |= ε

x |= x

w |= RR′ iff ∃u1, u2 : w = u1u2

and u1 |= R and u2 |= R′

w |= (R|R′) iff w |= R or w |= R′

w |= (R)* iff ∃u1, . . . , un : w = u1 . . . un

and ∀i ∈ {1, . . . , n} : ui |= R.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Runs Are Words
States of the System

Executions Are Words

Regular
Expressions
The Idea

Syntax and Semantics

Limitations

Linear Temporal
Logic (LTL)
Propositional Logic

Temporal Logic

Conclusion
3-18

Expressiveness of Regular Expressions

Regular expressions describe regular languages:
I Every language described by a regular expression is a

regular language.
Proof: Structural induction on the syntax of regular
expressions.

I Every regular language can be described using a regular
expression.
Proof: Standard translation of deterministic finite
automata into regular expressions.
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Limitations

Regular expressions sometimes look more like a swear word
in a comic book than a specification of anything.

^[^\)]+$

Crash!
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Specifying Correctness Properties

I Specifications must be easy to understand:
Specification must be correct—otherwise verification
makes no sense at all.

I We need kind of negation:
It is often easier to specify the behaviour we do not
want.
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Another Idea

I A state of a system is a set of atomic propositions that
hold in this state.

I An execution of a system is a finite sequence of such
states.

Let’s use operators of
I propositional logic to describe properties of one state.
I temporal logic to describe the relationship of states.
I propositional logic to combine this.
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A Simple Analogy
I A state is like a day.
I The initial state is like today.
I The next state is like tomorrow.

s0 s1 s2 . . . s21

today tomorrow
the day
after

tomorrow
. . . in

21 days

Remember

I A day is a state in the execution.
I A day is a letter in the word over Σ = 2AP.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Runs Are Words
States of the System

Executions Are Words

Regular
Expressions
The Idea

Syntax and Semantics

Limitations

Linear Temporal
Logic (LTL)
Propositional Logic

Temporal Logic

Conclusion
3-24

Propositional Logic

Using propositional logic without temporal operators we
describe only the first state (today).

Example
Consider AP = {p, q, r, s} and an initial state s0 of an
execution w in which p and r holds. We then have

s0 s1 s2 . . . s21

{p, r}

w |= true w 6|= false
w |= p w |= p∧ r∨ q
w |= ¬ q ∧¬ s w 6|= q.
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Formula: ϕ

The formula ϕ holds for an execution if ϕ holds in the first
state s0 of that execution.

s0 s1 s2 . . . s21

ϕ
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Next: Xϕ

The formula Xϕ holds in state si if ϕ holds in state si+1.
If there is no state si+1 then Xϕ never holds.

s0 s1 s2 . . . s21

ϕ
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Weak Next: Xϕ

The formula Xϕ holds in state si if ϕ holds in state si+1.
If there is no state si+1 then Xϕ always holds.

s0 s1 s2 . . . s21

ϕ
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Globally: Gϕ

The formula Gϕ holds in state si if ϕ holds in all states sj
for j ≥ i.

s0 s1 s2 . . . s21

ϕ ϕ ϕ ϕ ϕ
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Finally: Fϕ

The formula Fϕ holds in state si if there is a state sj for
j ≥ i in which ϕ holds.

s0 s1 . . . s20 s21

ϕ
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Until: ϕUψ

The formula ϕUψ holds in state si if there is a state sj for
j ≥ i in which ψ holds and ϕ holds in all states sk for
i ≤ k < j.

s0 s1 . . . s20 s21

ϕ ϕ ϕ ψ

Notice that a state in which ϕ holds is not required in all
cases!
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Release: ϕRψ

The formula ϕRψ holds in state si if there is a state sj for
j ≥ i in which ϕ holds and ψ holds in all states sk for
i ≤ k ≤ j.
If there is no such state sj then the ϕRψ holds if ψ holds in
all states sk for k ≥ i.

s0 s1 . . . s20 s21

ψ ψ ψ ψ ∧ ϕ

or

s′0 s′1 . . . s′20 s′21

ψ ψ ψ ψ ψ
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Conclusion

1. The execution of a system is a word over the alphabet
Σ = 2AP where AP is the set of atomic propositions.

2. A correctness property is a language describing a set of
executions.

3. Regular expressions describe regular languages and
could be used to describe regular correctness properties.

4. Linear Temporal Logic (LTL) describes a subset of
regular languages but is much better suited to describe
correctness properties for runtime verification: Negation
and Conjunction of LTL allows often to express
correctness properties in a simple manner.



Chapter 4
LTL on Finite Words

Course “Runtime Verification”
M. Leucker & V. Stolz



Chapter 4
Learning Targets of Chapter “LTL on Finite
Words”.

1. Learn about LTL.
2. Understand the LTL syntax.
3. Understand the LTL semantics on finite words: FLTL.
4. See how RV can be implemented using FLTL and learn

about monitors for finite, terminated traces.
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Recall: Specify Correctness Properties

Observing Executions

Idea
Specify correctness
properties in Linear
Temporal Logic (LTL).

Commercial
Specify correctness
properties in Regular
Linear Temporal Logic
(RLTL).
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Recall: Specify Correctness Properties

Observing Executions Idea
Specify correctness
properties in Linear
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Specify correctness
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(RLTL).
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Syntax of LTL Formulae

Definition (Syntax of LTL Formulae)

Let p ∈ AP be an atomic proposition from a finite set of
atomic propositions AP. The set of LTL formulae is
inductively defined by the following grammar:

ϕ ::= true | p | ϕ∨ϕ | Xϕ | ϕUϕ | Fϕ |
false | ¬ p | ϕ∧ϕ | Xϕ | ϕRϕ | Gϕ |
¬ϕ
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Order of Operations

The operator precedence is needed to determine an
unambiguous derivation of an LTL formula if braces are left
out in nested expressions. The higher the rank of an
operator is the later it is derivated.

Braces only need to be added if an operator of lower or same
rank should be derivated later than the current one.

Example (operator precedence of arithmetic)

1. exponential operator: ••

2. multiplicative operators: ·, /
3. additive operators: +,−
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Order of Operations

Definition (operator precedence of LTL)

1. negation operator: ¬
2. unary temporal operators: X,X,G,F
3. binary temporal logic operators: U,R
4. conjunction operator: ∧
5. disjunction operator: ∨

Example
G ¬x ∨ ¬x U G y ∧ z
≡G (¬x)∨

((
(¬x) U (G y)

)
∧ z
)
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LTL for the Working Engineer?

Simple?
LTL is for theoreticians—but for practitioners?

SALT
Structured Assertion Language for Temporal Logic
⇒ Syntactic Sugar for LTL
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LTL for the Working Engineer?
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LTL is for theoreticians—but for practitioners?

SALT
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www.isp.uni-luebeck.de/salt

www.isp.uni-luebeck.de/salt
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Parts of Words

In the formal definition of LTL semantics we denote parts of
a word as follows:

Let w = a1a2 . . . an ∈ Σn be a finite word over the alphabet
Σ = 2AP and let i ∈ N with 1 ≤ i ≤ n be a position in this
word. Then

I |w| := n is the length of the word,
I wi = ai is the i-th letter of the word and
I wi = aiai+1 . . . an is the subword starting with letter i.
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FLTL Semantics

Definition (FLTL Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

w |= true
w |= p iff p ∈ w1

w |= ¬ p iff p 6∈ w1

w |= ¬ϕ iff w 6|= ϕ

w |= ϕ∨ψ iff w |= ϕ or w |= ψ

w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

LTL Syntax
LTL

SALT

FLTL Semantics
Semantics

Examples and Equivalences

Negation Normal Form

Monitor Function
for FLTL
The Idea

Definition

Conclusion
4-13

FLTL Semantics

Definition (FLTL Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

w |= Xϕ iff |w| > 1
and, for |w| > 1, w2 |= ϕ

w |= Xϕ iff |w| = 1
or, for |w| > 1, w2 |= ϕ
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FLTL Semantics

Definition (FLTL Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

w |= ϕUψ iff ∃i, 1 ≤ i ≤ |w| : (wi |= ψ

and ∀k, 1 ≤ k < i : wk |= ϕ)
w |= ϕRψ iff ∃i, 1 ≤ i ≤ |w| : (wi |= ϕ

and ∀k, 1 ≤ k ≤ i : wk |= ψ)
or ∀i, 1 ≤ i ≤ |w| : wi |= ψ
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FLTL Semantics

Definition (FLTL Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

w |= Fϕ iff ∃i, 1 ≤ i ≤ |w| : wi |= ϕ

w |= Gϕ iff ∀i, 1 ≤ i ≤ |w| : wi |= ϕ
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Finally and Globally Examples

Examples (Finally and Globally)

Consider words over the alphabet Σ = 2AP with
AP = {p, q}.

I {p}∅{q}∅ |= F q.

I {q}{q}{p, q}{q}{q} |= G q.

I ∅{p}{p, q}∅{q}∅{q} |= G F q.
I {p}∅{q}{p}{p, q}{p, q}{q} |= F G q.

I G Fϕ can be read as: For every state (globally) there
will be a state in the future (finally) in that ϕ holds.

I F Gϕ can be read as: There will be a state in the
future (finally) that ϕ holds in every state (globally).
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future (finally) that ϕ holds in every state (globally).
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future (finally) that ϕ holds in every state (globally).



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

LTL Syntax
LTL

SALT

FLTL Semantics
Semantics

Examples and Equivalences

Negation Normal Form

Monitor Function
for FLTL
The Idea

Definition

Conclusion
4-14

Finally and Globally Examples

Examples (Finally and Globally)

Consider words over the alphabet Σ = 2AP with
AP = {p, q}.

I {p}∅{q}∅ |= F q.
I {q}{q}{p, q}{q}{q} |= G q.

I ∅{p}{p, q}∅{q}∅{q} |= G F q.
I {p}∅{q}{p}{p, q}{p, q}{q} |= F G q.

I G Fϕ can be read as: For every state (globally) there
will be a state in the future (finally) in that ϕ holds.

I F Gϕ can be read as: There will be a state in the
future (finally) that ϕ holds in every state (globally).



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

LTL Syntax
LTL

SALT

FLTL Semantics
Semantics

Examples and Equivalences

Negation Normal Form

Monitor Function
for FLTL
The Idea

Definition

Conclusion
4-14

Finally and Globally Examples

Examples (Finally and Globally)

Consider words over the alphabet Σ = 2AP with
AP = {p, q}.

I {p}∅{q}∅ |= F q.
I {q}{q}{p, q}{q}{q} |= G q.

I ∅{p}{p, q}∅{q}∅{q} |= G F q.
I {p}∅{q}{p}{p, q}{p, q}{q} |= F G q.

I G Fϕ can be read as: For every state (globally) there
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I F Gϕ can be read as: There will be a state in the
future (finally) that ϕ holds in every state (globally).
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Practical Examples
In the following examples we consider these scopes:
everytime: all states
before ψ: all states before the first state in which ψ holds

(if there is such a state)
after ψ: all states after and including the first state in

which ψ holds
(if there is such a state)

Example (Absence)

The formula ϕ does not hold
everytime: G¬ϕ
before ψ: (Fψ)→(¬ϕUψ)
after ψ: G(ψ→(G¬ϕ))
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Practical Examples
In the following examples we consider these scopes:
everytime: all states
before ψ: all states before the first state in which ψ holds

(if there is such a state)
after ψ: all states after and including the first state in

which ψ holds
(if there is such a state)

Example (Existence)

The formula ϕ holds in the future
everytime: Fϕ
before ψ: G¬ψ ∨¬ψU(ϕ∧¬ψ)
after ψ: G¬ψ ∨F(ψ ∧Fϕ)
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Practical Examples
In the following examples we consider these scopes:
everytime: all states
before ψ: all states before the first state in which ψ holds

(if there is such a state)
after ψ: all states after and including the first state in

which ψ holds
(if there is such a state)

Example (Universality)

The formula ϕ holds
everytime: Gϕ

before ψ: (Fψ)→(ϕUψ)
after ψ: G(ψ→Gϕ)
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Equivalences

Definition (Equivalence of Formulae)

Let Σ = 2AP and ϕ and ψ be LTL formulae over AP. ϕ and
ψ are equivalent, denoted by ϕ ≡ ψ, iff

∀w ∈ Σ+ : w |= ϕ⇔ w |= ψ.

Globally and finally can easily be expressed using until and
release:

Fϕ ≡ true Uϕ

Gϕ ≡ false Rϕ
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De Morgan Rules

The negation can always be moved in front of the atomic
propositions using the dual operators:

De Morgan Rules of Propositional Logic

¬(ϕ∨ψ) ≡ ¬ϕ∧¬ψ
¬(ϕ∧ψ) ≡ ¬ϕ∨¬ψ
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De Morgan Rules

The negation can always be moved in front of the atomic
propositions using the dual operators:

De Morgan Rules of Temporal Logic

¬(ϕUψ) ≡ ¬ϕR¬ψ
¬(ϕRψ) ≡ ¬ϕU¬ψ
¬(Gϕ) ≡ F¬ϕ
¬(Fϕ) ≡ G¬ϕ
¬(Xϕ) ≡ X¬ϕ
¬(Xϕ) ≡ X¬ϕ
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Fixed Point Equations

The following fixed point equations can be used to step-wise
unwind until and release:

ϕUψ ≡ ψ ∨(ϕ∧X(ϕUψ))
ϕRψ ≡ ψ ∧(ϕ∨X(ϕRψ))

Consequently such fix point equations for globally and finally
are special cases of the above ones:

Gϕ ≡ ϕ∧X(Gϕ)
Fϕ ≡ ϕ∨X(Fϕ)
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Negation Normal Form (NNF)

Definition (Negation Normal Form (NNF))

An LTL formula ϕ is in Negation Normal Form (NNF) iff ¬
only occurs in front of atomic propositions p ∈ AP.

Lemma
For every LTL formula there exists an equivalent formula in
NNF.

Proof.
Recursively apply De Morgan rules of propositional logic and
De Morgan rules of temporal logic.
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Negation Normal Form (NNF)

Definition (Negation Normal Form (NNF))

An LTL formula ϕ is in Negation Normal Form (NNF) iff ¬
only occurs in front of atomic propositions p ∈ AP.

Lemma
For every LTL formula there exists an equivalent formula in
NNF.

Proof.
Recursively apply De Morgan rules of propositional logic and
De Morgan rules of temporal logic.
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The Idea

Build up a function that
I takes an LTL formula ϕ in NNF and a word w ∈ Σ+,
I performs recursion on the structure of ϕ
I returns true iff w |= ϕ.
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First Ideas

Let p ∈ AP be an atomic proposition and w ∈ Σ+ a word.

We then can evaluate
I true and false.
I ϕ∨ψ by evaluating ϕ, evaluating ψ

and computing ϕ∨ψ.
I p by checking if p ∈ w1.
I ¬ p by checking if p 6∈ w1.
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Further Ideas

What about next?
We can check if w |= Xϕ holds by omitting

I the first letter of w and
I the next operator

and checking if w2 |= ϕ holds.

What about until and release?
Use the already presented fixpoint equations and the above
ideas to evaluate conjunction, disjunction and next.

ϕUψ ≡ ψ ∨(ϕ∧X(ϕUψ))
ϕRψ ≡ ψ ∧(ϕ∨X(ϕRψ))
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Further Ideas

What about next?
We can check if w |= Xϕ holds by omitting

I the first letter of w and
I the next operator

and checking if w2 |= ϕ holds.

What about until and release?
Use the already presented fixpoint equations and the above
ideas to evaluate conjunction, disjunction and next.

ϕUψ ≡ ψ ∨(ϕ∧X(ϕUψ))
ϕRψ ≡ ψ ∧(ϕ∨X(ϕRψ))
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evlFLTL

Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic
proposition, w ∈ Σ+ a finite non-empty word, ϕ and ψ LTL
formulae and B2 = {>,⊥}.

We then define the function evlFLTL : Σ+ × LTL→ B2
inductively as follows:

evlFLTL(w, true) = >
evlFLTL(w, false) = ⊥

evlFLTL(w,ϕ∨ψ) = evlFLTL(w,ϕ) ∨ evlFLTL(w,ψ)
evlFLTL(w,ϕ∧ψ) = evlFLTL(w,ϕ) ∧ evlFLTL(w,ψ)

evlFLTL(w, p) = (p ∈ w1)
evlFLTL(w,¬ p) = (p 6∈ w1)
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evlFLTL

Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic
proposition, w ∈ Σ+ a finite non-empty word, ϕ and ψ LTL
formulae and B2 = {>,⊥}.

We then define the function evlFLTL : Σ+ × LTL→ B2
inductively as follows:

evlFLTL(w,ϕUψ) = evlFLTL(w,ψ ∨(ϕ∧X(ϕUψ)))
evlFLTL(w,ϕRψ) = evlFLTL(w,ψ ∧(ϕ∨X(ϕRψ)))

evlFLTL(w,Fϕ) = evlFLTL(w,ϕ∨X Fϕ)
evlFLTL(w,Gϕ) = evlFLTL(w,ϕ∧X Gϕ)
evlFLTL(w,Xϕ) = (|w| > 1) ∧ evlFLTL(w2, ϕ)
evlFLTL(w,Xϕ) = (|w| = 1) ∨ evlFLTL(w2, ϕ)
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Conclusion

1. The LTL operations negation, disjunction, until and
next are enough to gain the full expressiveness of LTL.

2. If you add the dual operators every LTL formula has a
negation normal form (NNF).

3. The fix point equations can be used to step-wise
unwind until and release using next and weak next.

4. evlFLTL is as inductively defined function that answers
the question if a given finite non-empty word models a
correctness property given as an LTL formula in NNF
and can easily be implemented recursively.
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Chapter 5
Learning Targets of Chapter “Impartial Runtime
Verification”.

1. Understand the idea of impartiality and why we want to
use impartial evaluation of LTL formulae.

2. Learn the basics of truth domains and lattices.
3. Understand the four-valued LTL semantics on finite

words: FLTL4.
4. See how impartial RV can be implemented using FLTL4

and learn about automata based monitors for finite,
non-completed traces.
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Words Aren’t Terminated—
They Are Growing

I In the last chapters we considered
finite terminated words.

I A monitor for RV does not get a formula
and a finite terminated word.

I A monitor for RV gets a formula
and one letter after another.

I With every new system state
the monitor gets one more letter.
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Examples of Evaluating Growing Words
Consider

I the alphabet Σ = 2AP where AP = {p, q},
I the properties ϕ = G p and ϕ′ = F p and
I words w and w′ growing with every new state.

Lets watch monitors for RV at work:
w = {p, q}

{p} {q} {p}

w |= ϕ

w |= ϕ

w 6|= ϕ

w 6|= ϕ

w′ = {q} {q} {p, q} {p}

w′ 6|= ϕ′

w′ 6|= ϕ′

w′ |= ϕ′

w′ |= ϕ′
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Examples of Evaluating Growing Words
Consider

I the alphabet Σ = 2AP where AP = {p, q},
I the properties ϕ = G p and ϕ′ = F p and
I words w and w′ growing with every new state.

Lets watch monitors for RV at work:
w = {p, q} {p}

{q} {p}

w |= ϕ

w |= ϕ

w 6|= ϕ

w 6|= ϕ

w′ = {q} {q} {p, q} {p}

w′ 6|= ϕ′

w′ 6|= ϕ′

w′ |= ϕ′

w′ |= ϕ′
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I the properties ϕ = G p and ϕ′ = F p and
I words w and w′ growing with every new state.

Lets watch monitors for RV at work:
w = {p, q} {p} {q}
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w |= ϕ
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w |= ϕ

w 6|= ϕ

w 6|= ϕ

w′ = {q} {q} {p, q}

{p}

w′ 6|= ϕ′

w′ 6|= ϕ′

w′ |= ϕ′

w′ |= ϕ′
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Impartiality

Be Impartial!

I go for a final verdict (> or ⊥) only if you really know
I be a rational being: stick to your word

Definition (Impartiality)

Impartiality requires that a finite trace is not evaluated to
true or, respectively false, if there still exists an (possibly
infinite) continuation leading to another verdict.
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Semantic Function

Definition (Semantic Function)

The semantic function

semk : Σ+ × LTL→ Bk

maps a word w ∈ Σ+ and a an LTL formula ϕ to a logic
value b ∈ Bk.

We use Jw |= ϕKk = b instead of semk(w,ϕ) = b.
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Semantic Function for FLTL

I We defined the FLTL semantics as relation w |= ϕ
between a word w ∈ Σ+ and an LTL formula ϕ.

I This can be interpreted as semantic function

sem2 : Σ+ × LTL→ B2,

sem2(w,ϕ) = Jw |= ϕK2 :=
{
> if w |= ϕ

⊥ else.
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Impartiality

Definition (Impartial Semantics)

Let Σ = 2AP be an alphabet, w ∈ Σ+ a word and ϕ an LTL
formula. A semantic function is called impartial iff for all
u ∈ Σ∗

Jw |= ϕK = > implies Jwu |= ϕK = >
Jw |= ϕK = ⊥ implies Jwu |= ϕK = ⊥.

Target
Create monitors which only answer > or ⊥ if the result
keeps stable for a growing word.
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We Need Multiple Values

FLTL semantics are not impartial:

w = {a}, ϕ = G a and wu = {a}{b}

is a counterexample for

Jw |= ϕK = > implies Jwu |= ϕK = >.

Impartiality implies multiple values
Every two-valued logic is not impartial.

I Impartiality forbids switching from > to ⊥ and vice
versa.

I Therefore we need more logic values than > and ⊥.
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Lattice

Definition (Lattice)

A lattice is a partially ordered set (L,v) where for each
x, y ∈ L, there exists
1. a unique greatest lower bound (glb), which is called the

meet of x and y, and is denoted with x u y, and
2. a unique least upper bound (lub), which is called the

join of x and y, and is denoted with x t y.

If the ordering relation v is obvious
we denote the lattice with the set L.
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Finite Lattice

Definition (Finite Lattice)

A lattice (L,v) is called finite iff L is finite.

Every non-empty finite lattice has two well-defined unique
elements:

I A least element, called bottom, denoted with ⊥ and
I a greatest element, called top, denoted with >.
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Hasse diagram

I Hasse diagrams are used
to represent a finite
partially ordered set.

I Each element of the set
is represented as a vertex
in the plane.

I For all x, y ∈ L where
x v y but no z ∈ L
exists where x v z v y a
line that goes upward
from x to y is drawn.

Example
Hasse diagram for
B2 = {⊥,>}
with ⊥ v >:

>

⊥
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Example Lattices

>

⊥

B2: >

(>,⊥) (⊥,>)

⊥

B2×2:

>

(>,>,⊥) (>,⊥,>) (⊥,>,>)

(>,⊥,⊥) (⊥,>,⊥) (⊥,⊥,>)

⊥

B2×2×2:
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Example Lattices II

>

⊥

B2: >

?

⊥

B3: >

>p

⊥p

⊥

B4:
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Distributive Lattices

Definition (Distributive Lattices)

A lattice (L,v) is called a distributive lattice iff we have for
all elements x, y, z ∈ L

x u (y t z) = (x u y) t (x u z) and
x t (y u z) = (x t y) u (x t z).
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De Morgan Lattice

Definition (De Morgan Lattice)

A distributive lattice (L,v) is called a De Morgan lattice iff
every element x ∈ L has a unique dual element x, such that

x = x and x v y implies y v x.
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Boolean Lattice

Definition (Boolean Lattice)

A De Morgan lattice is called Boolean lattice iff for every
element x and its dual element x we have

x t x = > and x u x = ⊥.

Every Boolean lattice has 2n elements for some n ∈ N.
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Truth Domain

Definition (Truth Domain)

A Truth Domain is a finite De Morgan Lattice.

Examples (Truth Domains)

The following lattices are all Truth Domains:
I B2 = {>,⊥} with ⊥ v > and
> = ⊥ and ⊥ = >.

I B3 = {>, ?,⊥} with ⊥ v ? v > and
> = ⊥, ? = ? and ⊥ = >.

I B4 = {>,>p,⊥p,⊥} with ⊥ v ⊥p v >p v > and
> = ⊥, >p = ⊥p, ⊥p = >p and ⊥ = >.
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Examples of Impartial LTL Semantics

I We want to create impartial four-valued semantics for
LTL on finite, non-completed words

I using the truth domain (B4,v).

Examples (FLTL vs. FLTL4)

The indices 2 and 4 denote FLTL resp. FLTL4.
J∅ |= X aK2 = ⊥ J∅ |= X aK4 = ⊥p

J∅∅ |= X aK2 = ⊥ J∅∅ |= X aK4 = ⊥
J∅{a} |= X aK2 = > J∅{a} |= X aK4 = >

J∅ |= X aK2 = > J∅ |= X aK4 = >p

J∅∅ |= X aK2 = ⊥ J∅∅ |= X aK4 = ⊥
J∅{a} |= X aK2 = > J∅{a} |= X aK4 = >
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How To Create Impartial LTL Semantics?

At the end of the word
I X evaluates to ⊥p instead of ⊥ and
I X evaluates to >p instead of >.

Idea of •p: Semantics if the word ends here.

Fulfilling the introduced equivalences and fix point equations
we get at the end of the word:

I U evaluates to ⊥p instead of ⊥,
I R evaluates to >p instead of >,
I F evaluates to ⊥p instead of ⊥ and
I G evaluates to >p instead of >.

Idea of •p: Semantics if the word ends here or
goes on like this forever.
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Properties of (B4,v)

I (B4,v) is no Boolean Lattice.
I Some equivalences in FLTL do not hold in FLTL4.

For any LTL formula ϕ using FLTL semantics we have
ϕ∨¬ϕ ≡2 true and ϕ∧¬ϕ ≡2 false .

Examples (FLTL vs. FLTL4)

For any w ∈ Σ+ and a ∈ Σ we have
Jw |= G a∨¬G aK2 = > Jw |= G a∨¬G aK4 = >p

Jw |= F a∧¬F aK2 = ⊥ Jw |= F a∧¬F aK4 = ⊥p
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FLTL4 Semantics

Definition (FLTL4 Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

Jw |= trueK4 = >
Jw |= falseK4 = ⊥

Jw |= pK4 =
{
> if p ∈ w1

⊥ if p 6∈ w1

Jw |= ¬ pK4 =
{
> if p 6∈ w1

⊥ if p ∈ w1
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FLTL4 Semantics

Definition (FLTL4 Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

Jw |= ¬ϕK4 = Jw |= ϕK4

Jw |= ϕ∨ψK4 = Jw |= ϕK4 t Jw |= ψK4

Jw |= ϕ ∧ ψK4 = Jw |= ϕK4 u Jw |= ψK4
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FLTL4 Semantics

Definition (FLTL4 Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

Jw |= XϕK4 =
{

Jw2 |= ϕK4 if |w| > 1
⊥p else

Jw |= XϕK4 =
{

Jw2 |= ϕK4 if |w| > 1
>p else
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FLTL4 Semantics

Definition (FLTL4 Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

Jw |= ϕUψK4

=

 ⊔
1≤i≤|w|

Jwi |= ψK4 u
l

1≤j<i
Jwj |= ϕK4


t

⊥p u l

1≤i≤|w|
Jwi |= ϕK4
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FLTL4 Semantics

Definition (FLTL4 Semantics)

Let ϕ,ψ be LTL formulae and let w ∈ Σ+ be a finite word.
Then the semantics of ϕ with respect to w is inductively
defined as follows:

Jw |= FϕK4 = ⊥p t
⊔

1≤i≤|w|
Jwi |= ϕK4

Jw |= GϕK4 = >p u
l

1≤i≤|w|
Jwi |= ϕK4
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Equivalences

Definition (Equivalence of Formulae)

Let Σ = 2AP and ϕ and ψ be LTL formulae over AP. ϕ and
ψ are equivalent, denoted by ϕ ≡ ψ, iff

∀w ∈ Σ+ : Jw |= ϕK = Jw |= ψK.

The equivalences described in the previous chapter are still
valid using the semantic function of FLTL4.
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Monitor Function

Left-to-right!
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The Idea

Build up a monitor function for evaluating each subsequent
letter of non-completed words.

Such a function
I takes an LTL formula ϕ in NNF and a letter a ∈ Σ,
I performs (not recursive) formula rewriting (progression)

and
I returns Ja |= ϕK4 and a new LTL formula ϕ′ that the

next letter has to fulfill.
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The Idea of Progression
I Compute only the semantics of the first letter and let

someone else do the rest.
I Rewrite the LTL formula to keep track of what is done

and what still needs to be checked.
I Thanks to the impartial semantics we don’t need to

know the whole word to compute a valid semantics.

Examples
Let w ∈ Σ+ be a word and a ∈ Σ a letter.

I We can compute Jw |= X aK4 by doing nothing and
letting someone else check Jw2 |= aK4.

I We can compute Jw |= aK4 by checking a ∈ w1.
Then the LTL formula is over. This is denoted by true
or false as new formula.
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Further Ideas

We know how to evaluate
I atomic propositions,
I positive operators of propositional logic (∧,∨) and
I next-formulas.

That’s it thanks to
I equivalences for G and F,
I De Morgan rules of propositional and temporal logic for

negation (¬) and
I and fixed point equations for U and R.
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evlFLTL4

Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic
proposition, a ∈ Σ a letter, and ϕ and ψ LTL formulae.

We then define the function
evlFLTL4 : Σ× LTL→ B4 × LTL inductively as follows:

evlFLTL4(a, true) = (>, true)
evlFLTL4(a, false) = (⊥, false)

evlFLTL4(a, p) =
{

(>, true) if p ∈ a
(⊥, false) else

evlFLTL4(a,¬ p) =
{

(⊥, false) if p ∈ a
(>, true) else
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evlFLTL4

Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic
proposition, a ∈ Σ a letter, and ϕ and ψ LTL formulae.

We then define the function
evlFLTL4 : Σ× LTL→ B4 × LTL inductively as follows:

evlFLTL4(a, ϕ∨ψ) = (vϕ t vψ, ϕ′ ∨ψ′), where
(vϕ, ϕ′) = evlFLTL4(a, ϕ) and
(vψ, ψ′) = evlFLTL4(a, ψ)

evlFLTL4(a, ϕ∧ψ) = (vϕ u vψ, ϕ′ ∧ψ′), where
(vϕ, ϕ′) = evlFLTL4(a, ϕ) and
(vψ, ψ′) = evlFLTL4(a, ψ)
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evlFLTL4

Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic
proposition, a ∈ Σ a letter, and ϕ and ψ LTL formulae.

We then define the function
evlFLTL4 : Σ× LTL→ B4 × LTL inductively as follows:

evlFLTL4(a,Xϕ) = (⊥p, ϕ)
evlFLTL4(a,Xϕ) = (>p, ϕ)

evlFLTL4(a, ϕUψ) = evlFLTL4(a, ψ ∨(ϕ∧X(ϕUψ)))
evlFLTL4(a, ϕRψ) = evlFLTL4(a, ψ ∧(ϕ∨X(ϕRψ)))

evlFLTL4(a,Fϕ) = evlFLTL4(a, ϕ∨X Fϕ)
evlFLTL4(a,Gϕ) = evlFLTL4(a, ϕ∧X Gϕ)
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Examples

Example (Impartial Evaluation of Globally)

Consider w = {a}{a}∅. First letter:
evlFLTL4({a},G a) = evlFLTL4({a}, a∧X G a)

= (v1 u v2, ϕ1 ∧ϕ2)
= (> u>p, true∧G a)
= (>p,G a)

where (v1, ϕ1) = evlFLTL4({a}, a) = (>, true)
(v2, ϕ2) = evlFLTL4({a},X G a) = (>p,G a).

Next letters:
I evlFLTL4({a},G a) = (>p,G a)
I evlFLTL4(∅,G a) = (⊥, false)
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Examples

Example (Impartial Evaluation of Finally)

Consider w = ∅∅{a}. First letter:
evlFLTL4(∅,F a) = evlFLTL4(∅, a∨X F a)

= (v1 t v2, ϕ1 ∨ϕ2)
= (⊥ t⊥p, false∨F a)
= (⊥p,F a)

where (v1, ϕ1) = evlFLTL4(∅, a) = (⊥, false)
(v2, ϕ2) = evlFLTL4(∅,X F a) = (⊥p,F a).

Next letters:
I evlFLTL4(∅,F a) = (⊥p,F a)
I evlFLTL4({a},F a) = (>, true)



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Truth Domains
Motivation

Definition

Four-Valued LTL
Semantics:
FLTL4
Definition

Monitor Function

Conclusion

5-33

Automata-theoretic Approach

Further Topics

I Alternating vs. non-deterministic vs. deterministic
machines.

I Complexity of the translations.
I Size vs. power.
I State sequence for an input word.
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Automata-theoretic Approach
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Conclusion

1. Every two-valued logic is not impartial. Impartiality
implies multiple values.

2. We use the distributive De Morgan lattice
B4 = {⊥,⊥p,>p,>} in the impartial FLTL4 semantics.

3. At the end of the word X evaluates to ⊥p and X
evaluates to >p.

4. evlFLTL4 performs formula rewriting (progression) for
an LTL formula and one letter.

5. evlFLTL4 can be used to describe the transition
function of an alternating mealy machine using the
subformulae as states.

6. Such an alternating mealy machine can be translated
into a deterministic mealy machine using the fact that
equivalent positive combinations of states leads to the
same next states and output.
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Chapter 6
Learning Targets of Chapter “Anticipatory LTL
Semantics”.

1. Understand that LTL semantics can be defined over
infinite words as well.

2. Understand the difference of LTL over finite and infinite
words.

3. Recall anticipation and understand why impartiality is
not enough to build good monitors.

4. Get used to the three-valued sematics for LTL.
5. Understand the concept of safety and co-safety

properties and get an idea of monitorable properties.
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Need of LTL on Infinite Words in RV?

Impartiality Say > or ⊥ only if you are sure.
Anticipation Say > or ⊥ once you can be sure.

We want do define impartial LTL semantics:
I Say > if every infinite continuation evaluates to >.
I Say ⊥ if every infinite continuation evaluates to ⊥.
I Otherwise say ?.

We Need LTL on Infinite Words

I Impartial LTL semantics will be based on infinite
continuations.

I Properties of infinite continuations cannot be expressed
using LTL on finite words.
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Infinite Words
I An infinite word w is an infinite sequence over the

alphabet Σ = 2AP.
I w can be interpreted as function w : N\{0} → Σ.
I w can be interpreted as concatenation of many finite

and one infinite words.

Examples (Infinite Words)

Consider the alphabet Σ = 2AP with AP = {p, q}.
I {p}ω denotes the infinite word where every letter is {p}

and can be interpreted as w(i) = {p} for all i ≥ 1.
I ∅({q}{p})ω can be interpreted as

w(i) =


∅ if i = 1
{q} if i ≡ 0 mod 2
{p} else
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Finally and Globally Examples

Examples (Finally and Globally)

Consider infinite words over the alphabet Σ = 2AP with
AP = {p, q}.

I {p}∅{q}∅ω |= F q.

I {q}{q}({p, q}{q})ω |= G q.

I (∅{p}{p, q}∅)ω |= G F q.
I {p}∅{q}{p}({p, q}{q})ω |= F G q.
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Parts of Infinite Words

In the formal definition of LTL semantics we denote parts of
a word as follows:

Let w = a1a2a3 . . . ∈ Σω be an infinite word over the
alphabet Σ = 2AP and let i ∈ N with i ≥ 1 be a position in
this word. Then

I wi = ai is the i-th letter of the word,
I w(i) = a1a2 . . . ai is the prefix of w of length i and
I wi is the subword of w s. t. w = w(i−1)wi.
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LTL Semantics on Infinite Words

Definition (LTL Semantics on Infinite Words)

Let ϕ,ψ be LTL formulae and let w ∈ Σω be an infinite
word. Then the semantics of ϕ with respect to w is
inductively defined as follows:

w |= true
w |= p iff p ∈ w1

w |= ¬ p iff p 6∈ w1

w |= ¬ϕ iff w 6|= ϕ

w |= ϕ∨ψ iff w |= ϕ or w |= ψ

w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
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LTL Semantics on Infinite Words

Definition (LTL Semantics on Infinite Words)

Let ϕ,ψ be LTL formulae and let w ∈ Σω be an infinite
word. Then the semantics of ϕ with respect to w is
inductively defined as follows:

w |= Xϕ iff w2 |= ϕ

w |= Xϕ iff w2 |= ϕ
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LTL Semantics on Infinite Words

Definition (LTL Semantics on Infinite Words)

Let ϕ,ψ be LTL formulae and let w ∈ Σω be an infinite
word. Then the semantics of ϕ with respect to w is
inductively defined as follows:

w |= ϕUψ iff ∃i ≥ 1 : (wi |= ψ

and ∀k, 1 ≤ k < i : wk |= ϕ)
w |= ϕRψ iff ∃i ≥ 1 : (wi |= ϕ

and ∀k, 1 ≤ k ≤ i : wk |= ψ)
or ∀i ≥ 1 : wi |= ψ
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LTL Semantics on Infinite Words

Definition (LTL Semantics on Infinite Words)

Let ϕ,ψ be LTL formulae and let w ∈ Σω be an infinite
word. Then the semantics of ϕ with respect to w is
inductively defined as follows:

w |= Fϕ iff ∃i ≥ 1 : wi |= ϕ

w |= Gϕ iff ∀i ≥ 1 : wi |= ϕ
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Semantic Function for LTL on Infinite
Words

I We defined the LTL semantics on infinite words as
relation w |= ϕ between a word w ∈ Σω and a LTL
formula ϕ.

I This can be interpreted as semantic function

semω : Σω × LTL→ B2,

semω(w,ϕ) = Jw |= ϕKω :=
{
> if w |= ϕ

⊥ else.
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Languages Defined by LTL Formulae

The set of models of an LTL formula ϕ defines a language
L(ϕ) ⊆ Σω of infinite words over Σ = 2AP as follows:

L(ϕ) = {w ∈ Σω | Jw |= ϕKω = >}.
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Equivalences

Weak Next
Let w ∈ Σω be an infinite word.

I w has no last character.
I For every position i ≥ 1 the word wi ∈ Σω is infinite.
I X and X have the same semantics.

The De Morgan rules, equivalences for G and F and the
fixed point equations for U and R are still valid.
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Finite and Infinite Semantics

Examples (Globally and Finally)

I We know
J{p}({p}{q})ω |= F qKω = >

from
J{p}{p}{q} |= F qK4 = >.

I We know
J{p}({p}{q})ω |= G pKω = ⊥

from
J{p}{p}{q} |= G pK4 = ⊥.
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Finite and Infinite Semantics

Examples (Until)

I We know
J{p}({p}{q})ω |= pU qKω = >

from
J{p}{p}{q} |= pU qK4 = >.

I We know

(

J{p}∅{q}ω |= pU qKω = ⊥

)

from
J{p}∅ |= pU qK4 = ⊥.
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Anticipation

Be Anticipatory

I go for a final verdict (> or ⊥) once you really know
I do not delay the decision

Definition (Anticipation)

Anticipation requires that once every (possibly infinite)
continuation of a finite trace leads to the same verdict, then
the finite trace evaluates to this very same verdict.
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FLTL4 is Not Anticipatory

Example (Next Operator)

We have
J{p} |= X X falseK4 = ⊥p

J{p}{p} |= X X falseK4

= J{p} |= X falseK4 = ⊥p

J{p}{p}{p} |= X X falseK4

= J{p}{p} |= X falseK4

= J{p} |= falseK4 = ⊥,

but it would be anticipatory to have
J{p} |= X X falseK3 = ⊥.
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FLTL4 is Not Anticipatory

Example (Globally and Finally Operator)

We have
Jw |= G trueK4 = Jw |= false R trueK4 = >p and
Jw |= F falseK4 = Jw |= true U falseK4 = ⊥p

but it would be anticipatory to have
Jw |= G trueK3 = > and
Jw |= F falseK3 = ⊥.
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Impartial Anticipation

I Define LTL semantics for finite, non-terminated words.
I The set of all infinite continuations of a finite word

contains only infinite words.
I Define semantics for finite words based on semantics of

these infinite continuations.
I If the semantic function yields the same verdict for all

infinite continuations use that verdict.
I Combine >p and ⊥p to a common ? for the other cases.
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Anticipatory Three-Valued LTL Semantics

Definition (LTL3 Semantics)

Let ϕ be an LTL formula and let u ∈ Σ∗ be a finite word.
Then the semantics of ϕ with respect to u is defined as
follows:

Ju |= ϕK3 =


> if ∀w ∈ Σω : Juw |= ϕKω = >
⊥ if ∀w ∈ Σω : Juw |= ϕKω = ⊥
? else.
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Example

Consider ϕ = G(p→F false) and ∅{q}{p}∅ ∈ Σ∗ for
Σ = 2AP and AP = {p, q}. We then have

I J∅ |= ϕK3 =?
I J∅{q} |= ϕK3 =?
I J∅{q}{p} |= ϕK3 = ⊥
I J∅{q}{p}∅ |= ϕK3 = ⊥

I J∅{q}{p}u |= ϕK3 = ⊥ for all u ∈ Σ∗
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Example

Consider ϕ = G(p→F false) and ∅{q}{p}∅ ∈ Σ∗ for
Σ = 2AP and AP = {p, q}. We then have
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Possible Verdicts of LTL Formulae

Consider a word w ∈ Σ∗ for Σ = 2AP and propositions
p, q ∈ AP. We then have

I Jw |= pU qK3 ∈ {>, ?,⊥}
I Jw |= pR qK3 ∈ {>, ?,⊥}

I Jw |= F pK3 ∈ {>, ?}
I Jw |= G pK3 ∈ {?,⊥}
I Jw |= G F pK3 = ?
I Jw |= F G pK3 = ?
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Monitorability
When Does Anticipation Help?
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The Good, The Bad and The Ugly

Definition (Good, Bad and Ugly Prefixes)

Given a language L ⊆ Σω of infinite words over Σ we call a
finite word u ∈ Σ∗

I a good prefix for L if ∀w ∈ Σω : uw ∈ L,
I a bad prefix for L if ∀w ∈ Σω : uw 6∈ L and
I an ugly prefix for L if ∀v ∈ Σ∗ : uv is neither a good

prefix nor a bad prefix.
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Examples for Good, Bad and Ugly

Examples (The Good, The Bad and The Ugly)

I {p}{q} is a good prefix for L(F q).
I {p}{q}{p} is a good prefix for L(F q).
I {p}{q} is a bad prefix for L(G p).
I every w ∈ Σ∗ is an ugly prefix for L(G F p).
I {p} is an ugly prefix for L(p→G F p).
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LTL3 indentifies good/bad prefixes

Given an LTL formula ϕ and a finite word u ∈ Σ∗, then

Ju |= ϕK3 =


> if u is a good prefix for L(ϕ)
⊥ if u is a bad prefix for L(ϕ)
? otherwise
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The Idea of Saftey and Co-Safety

Safety Properties assert that nothing bad happens.
Such a property is violated iff something bad
happens after finitely many steps.
(→ A bad prefix exists.)

Co-Safety Properties assert that something good happens.
Such a property is fulfilled iff something good
happens after finitely many steps.
(→ A good prefix exists.)
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(Co-)Safety Languages and Properties

Definition ((Co-)Safety Languages)

A language L ⊆ Σω is called
I a safety language if for all w 6∈ L there is a prefix
u ∈ Σ∗ of w which is a bad prefix for L.

I a co-safety language if for all w ∈ L there is a prefix
u ∈ Σ∗ of w which is a good prefix for L.

Definition ((Co-)Safety Properties)

An LTL formula ϕ is called
I a safety property if its set of models L(ϕ) is a safety

language.
I a co-safety property if its set of models L(ϕ) is a

co-safety language.
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Examples

Consider propositions p, q ∈ AP.

Formula Safety Co-Safety
G p
F p
X p
G F p
F G p
X p∨G F p
pU q
pR q
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Examples

Consider propositions p, q ∈ AP.

Formula Safety Co-Safety
G p 4 8

F p
X p
G F p
F G p
X p∨G F p
pU q
pR q
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Examples

Consider propositions p, q ∈ AP.

Formula Safety Co-Safety
G p 4 8

F p 8 4

X p
G F p
F G p
X p∨G F p
pU q
pR q



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

LTL on Infinite
Words
Semantics

Equivalences and Examples

Anticipatory LTL
Semantics: LTL3
Anticipation

Definition

Examples

Monitorable
Properties
(Co-)Safety

Examples

Monitorability

Conclusion
6-28

Examples

Consider propositions p, q ∈ AP.

Formula Safety Co-Safety
G p 4 8

F p 8 4

X p 4 4

G F p
F G p
X p∨G F p
pU q
pR q
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Examples

Consider propositions p, q ∈ AP.

Formula Safety Co-Safety
G p 4 8

F p 8 4

X p 4 4

G F p 8 8

F G p
X p∨G F p
pU q
pR q



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

LTL on Infinite
Words
Semantics

Equivalences and Examples

Anticipatory LTL
Semantics: LTL3
Anticipation

Definition

Examples

Monitorable
Properties
(Co-)Safety

Examples

Monitorability

Conclusion
6-28

Examples

Consider propositions p, q ∈ AP.

Formula Safety Co-Safety
G p 4 8

F p 8 4

X p 4 4

G F p 8 8

F G p 8 8

X p∨G F p
pU q
pR q



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

LTL on Infinite
Words
Semantics

Equivalences and Examples

Anticipatory LTL
Semantics: LTL3
Anticipation

Definition

Examples

Monitorable
Properties
(Co-)Safety

Examples

Monitorability

Conclusion
6-28

Examples

Consider propositions p, q ∈ AP.

Formula Safety Co-Safety
G p 4 8

F p 8 4

X p 4 4

G F p 8 8

F G p 8 8

X p∨G F p 8 8

pU q
pR q



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

LTL on Infinite
Words
Semantics

Equivalences and Examples

Anticipatory LTL
Semantics: LTL3
Anticipation

Definition

Examples

Monitorable
Properties
(Co-)Safety

Examples

Monitorability

Conclusion
6-28

Examples

Consider propositions p, q ∈ AP.

Formula Safety Co-Safety
G p 4 8

F p 8 4

X p 4 4

G F p 8 8

F G p 8 8

X p∨G F p 8 8

pU q 8 4

pR q



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

LTL on Infinite
Words
Semantics

Equivalences and Examples

Anticipatory LTL
Semantics: LTL3
Anticipation

Definition

Examples

Monitorable
Properties
(Co-)Safety

Examples

Monitorability

Conclusion
6-28

Examples

Consider propositions p, q ∈ AP.

Formula Safety Co-Safety
G p 4 8

F p 8 4

X p 4 4

G F p 8 8

F G p 8 8

X p∨G F p 8 8

pU q 8 4

pR q 4 8



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

LTL on Infinite
Words
Semantics

Equivalences and Examples

Anticipatory LTL
Semantics: LTL3
Anticipation

Definition

Examples

Monitorable
Properties
(Co-)Safety

Examples

Monitorability

Conclusion
6-29

Details on The Examples

I pU q is not a safety property, because
{p}ω 6|= pU q, but
there is no bad prefix.

I pU q is a co-safety property, because
every infinite word w ∈ Σω with w |= pU q
must contain the releasing q in a finite prefix.

I pR q is not a co-safety property, because
{q}ω |= pR q, but
there is no good prefix.

I pR q is a safety property, because
every infinite word w ∈ Σω with w 6|= pR q
must contain the violating absence of q in a finite prefix.
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Monitorability

Definition (Monitorable Languages)

A language L ⊆ Σω is called monitorable iff L has no ugly
prefix.

Definition (Monitorable Properties)

An LTL formula ϕ is called monitorable iff its set of models
L(ϕ) is monitorable.
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Monitorable Properties

Safety Properties

∃ ∀

Co-Safety Properties

∃ ∀

Remark
Safety and Co-Safety Properties are monitorable.
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Co-Safety Properties
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Remark
Safety and Co-Safety Properties are monitorable.
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Safety- and Co-Safety-Properties

Theorem
The class of monitorable properties

I comprises safety- and co-safety properties, but
I is strictly larger than their union.
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Safety- and Co-Safety-Properties

Proof.
Consider AP = {p, q, r} and ϕ = ((p∨ q) U r)∨G p.

I {p}ω |= ϕ without good prefix,
therefore ϕ is not a co-safety property.

I {q}ω 6|= ϕ without bad prefix,
therefore ϕ is not a safety property.

I Every finite word u ∈ Σ∗ that is not a bad prefix
can become a good prefix by appending {r}.

I Every finite word u ∈ Σ∗ that is not a good prefix
can become a bad prefix by appending ∅.

I No ugly prefix exists as every prefix
is either good, bad or can become good or bad
by appending {r} or ∅.
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Safety- and Co-Safety-Properties

Proof by Another Counterexample.
Consider AP = {p, q} and ϕ = F p∨G q.

I {q}ω |= ϕ without good prefix,
therefore ϕ is not a co-safety property.

I ∅ω 6|= ϕ without bad prefix,
therefore ϕ is not a safety property.

I Every finite word u ∈ Σ∗ that is not a bad prefix
can become a good prefix by appending {p}.

I No ugly prefix exists as every prefix
is either bad or can become good by appending {p}.
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Conclusion

1. In the semantics for LTL on infinite words there is no
difference between X and X.

2. The semantics LTL3 for finite, non-terminated words is
defined based on the LTL semantics for infinite words
on the lattice B3 = {>, ?,⊥}.

3. FLTL4 is not anticipatory, LTL3 is.
4. Jw |= ϕK3 is > for all good prefixes of L(ϕ), ⊥ for all

bad prefixes of L(ϕ) and ? for all ugly prefixes of L(ϕ).
5. The class of monitorable properties comprises safety-

and co-safety properties, but is strictly larger than their
union.
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Chapter 7
Learning Targets of Chapter “LTL with a Predic-
tive Semantics”.

1. Understand how the underlying program to monitor
could be taken into account.

2. Understand how to build a corresponding monitor
synthesis procedure.
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Predictive Semantics
Motivation
Definition

Monitoring LTLP4
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Fusing model checking and runtime
verification

LTL with a predictive semantics
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Recall anticipatory LTL semantics

The truth value of a LTL3 formula ϕ with respect to u,
denoted by Ju |= ϕK, is an element of B3 defined by

Ju |= ϕK =


> if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? otherwise.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Predictive
Semantics
Motivation

Definition

Monitoring
LTLP

4

Conclusion

7-7

Applied to the Empty Word

Empty word ε
Jε |= ϕKP = >

iff ∀σ ∈ Σω with εσ ∈ P : εσ |= ϕ
iff L(P) |= ϕ

RV more difficult than MC?
Then runtime verification implicitly answers model checking
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Abstraction

An over-abstraction or and over-approximation of a program
P is a program P̂ such that L(P) ⊆ L(P̂) ⊆ Σω.
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Predictive Semantics

Definition (Predictive Semantics of LTL)

Let P be a program and let P̂ be an over-approximation of
P. Let u ∈ Σ∗ denote a finite trace. The truth value of u
and an LTL formula ϕ with respect to P̂, denoted by
Ju |= ϕKP̂ ∈ B¿

4 = {⊥,>, ?, ¿}, and defined as follows:

Ju |= ϕKP̂ =



> if u ∈ω L(P̂) ∧ ∀w ∈ Σω :
uw ∈ L(P̂)⇒ Juw |= ϕKω = >

⊥ if u ∈ω L(P̂) ∧ ∀w ∈ Σω :
uw ∈ L(P̂)⇒ Juw |= ϕKω = ⊥

? if ∃w,w′ ∈ Σω : uw, uw′ ∈ L(P̂) ∧
Juw |= ϕKω = > ∧ Juw′ |= ϕKω = ⊥

¿ if u /∈ω L(P̂)

We use LTLP4 to indicate LTL with predictive semantics.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Predictive
Semantics
Motivation

Definition

Monitoring
LTLP

4

Conclusion

7-10

Properties of Predictive Semantics

Remark
Let P̂ be an over-approximation of a program P over Σ,
u ∈ Σ∗, and ϕ ∈ LTL.

I Model checking is more precise than RV with the
predictive semantics:

P |= ϕ implies Ju |= ϕKP̂ ∈ {>, ?}
I RV has no false negatives:

Ju |= ϕKP̂ = ⊥ implies P 6|= ϕ

I The predictive semantics of an LTL formula is more
precise than LTL3:

Ju |= ϕK3 = > implies Ju |= ϕKP̂ = >
Ju |= ϕK3 = ⊥ implies Ju |= ϕKP̂ = ⊥

The reverse directions are in general not true.
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Conclusion

1. LTLP4 only considers extensions of the current word
leading to executions of an over-abstraction P̂ of the
underlying program P.

2. We introduced the new value ¿ of the output alphabet
indicating that the current execution has left the
over-abstraction.

3. The use of an over-abstraction is the tradeoff between
model checking and runtime verification as the use of
the program P itself would implicitly solve the model
checking problem.
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Chapter 8
Learning Targets of Chapter “Runtime Verifica-
tion Summary”.

1. Understand that FLTL, FLTL4 and LTL on infinite
words share a very similar semantics.

2. Understand that LTL3 and LTLP4 are defined with
respect to existing semantics.

3. Understand the difference of propositions and events.
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LTL Semantics

We know the following LTL semantics
FLTL LTL on finite, completed words

FLTL4 impartial LTL on finite, non-completed words
LTL LTL on infinite words

LTL3 anticipatory LTL on finite, non-completed
words

LTLP4 anticipatory LTL on finite, non-completed
words with respect to an over-abstraction of a
program P

I FLTL, FLTL4 and LTL have very similar semantics
with a big common part

I LTL3 and LTLP4 are defined based on LTL
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The Common Parts of LTL Semantics
Let AP be a finite set of atomic propositions, Σ = 2AP,
p ∈ AP, ϕ,ψ LTL formulae, and w ∈ Σ∞ a (finite or
infinite) word. The the common part of the LTL semantics
FLTL, FLTL4 and LTL (indicated by L) of an LTL formula
with respect to w is inductively defined as follows:

Boolean Constants

Jw |= trueKL = >
Jw |= falseKL = ⊥

Boolean Combinations

Jw |= ¬ϕKL = Jw |= ϕKL
Jw |= ϕ ∨ ψKL = Jw |= ϕKL t Jw |= ψKL
Jw |= ϕ ∧ ψKL = Jw |= ϕKL u Jw |= ψKL
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The Common Parts of LTL Semantics
Let AP be a finite set of atomic propositions, Σ = 2AP,
p ∈ AP, ϕ,ψ LTL formulae, and w ∈ Σ∞ a (finite or
infinite) word. The the common part of the LTL semantics
FLTL, FLTL4 and LTL (indicated by L) of an LTL formula
with respect to w is inductively defined as follows:

Atomic Propositions

Jw |= pKL =
{
> if p ∈ w1

⊥ if p /∈ w1

Local Temporal Operators

Jw |= XϕKL = defined dependent of L later
Jw |= XϕKL = defined dependent of L later
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The Common Parts of LTL Semantics
Let AP be a finite set of atomic propositions, Σ = 2AP,
p ∈ AP, ϕ,ψ LTL formulae, and w ∈ Σ∞ a (finite or
infinite) word. The the common part of the LTL semantics
FLTL, FLTL4 and LTL (indicated by L) of an LTL formula
with respect to w is inductively defined as follows:

Fixed Point Operators

Jw |= ϕUψKL =


> if ∃i, 1 ≤ i ≤ |w| : (Jwi |= ψKL = >

and ∀k, 1 ≤ k < i : Jwk |= ϕKL = >)
defined dependent of L later else

Jw |= ϕRψKL = Jw |= ¬ϕU¬ψKL
Jw |= FϕKL = Jw |= true UϕKL
Jw |= GϕKL = Jw |= false RϕKL
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LTL on Finite, Terminated Words
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FLTL: LTL on Finite, Completed Words

Let ϕ be an LTL formual. We then define the semantics of
FLTL by extending the common LTL semantics of an LTL
formula with respect to w ∈ Σ∗ as follows:

Local Temporal Operators

Jw |= XϕK2 =
{

Jw2 |= ϕK2 if |w| > 1
⊥ else

Jw |= XϕK2 =
{

Jw2 |= ϕK2 if |w| > 1
> else
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FLTL: LTL on Finite, Completed Words

Let ϕ be an LTL formual. We then define the semantics of
FLTL by extending the common LTL semantics of an LTL
formula with respect to w ∈ Σ∗ as follows:

Fixed Point Operator Until

Jw |= ϕUψK2 =


> if ∃i, 1 ≤ i ≤ |w| : (Jwi |= ψK2 = >

and ∀k, 1 ≤ k < i : Jwk |= ϕK2 = >)
⊥ else
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Monitor Function For FLTL

The function

evlFLTL : Σ+ × LTL→ B2

takes a finite completed word w ∈ Σ+ and
an LTL formula ϕ and
returns Jw |= ϕK2.

evlFLTL evaluates recursively
I boolean constants, combinations and atomic

propisitions directly,
I the next operator by omitting the first letter of the word

and
I the fixed point operators using their fixed point

equations.
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FLTL4: LTL on Finite, Non-Completed
Words

Let ϕ be an LTL formual. We then define the semantics of
FLTL4 by extending the common LTL semantics of an LTL
formula with respect to w ∈ Σ∗ as follows:

Local Temporal Operators

Jw |= XϕK4 =
{

Jw2 |= ϕK4 if |w| > 1
⊥p else

Jw |= XϕK4 =
{

Jw2 |= ϕK4 if |w| > 1
>p else
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FLTL4: LTL on Finite, Non-Completed
Words

Let ϕ be an LTL formual. We then define the semantics of
FLTL4 by extending the common LTL semantics of an LTL
formula with respect to w ∈ Σ∗ as follows:

Fixed Point Operator Until

Jw |= ϕUψK4

=

 ⊔
1≤i≤|w|

Jwi |= ψK4 u
l

1≤j<i
Jwj |= ϕK4


t

⊥p u l

1≤i≤|w|
Jwi |= ϕK4
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Monitor Function for FLTL4

The function

evlFLTL4 : Σ× LTL→ B4 × LTL

takes a letter a ∈ Σ of a finite non-completed word and
an LTL formula ϕ and
returns Ja |= ϕK4 and a new LTL formula ϕ′.

evlFLTL4
I is based on the ideas of evlFLTL, but
I performs (not recursive) formula rewriting (progression)

and
I can be used as transition function of an AMM.
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Monitor For FLTL4

The monitor AMMMϕ = (Σ, Q, q0,Γ, δ) of the LTL
formula ϕ consists of

I the input alphabet Σ = 2AP,
I the states Q containing all subformulae of ϕ,
I the initial state q0 = ϕ,
I the output alphabet Γ = B4 = {⊥,⊥p,>p,>} and
I the transition function δ = evlFLTL4,

where boolean combinations are interpreted over
B+(Q).

Such an AMM can be translated into an MM using
conjunctive or disjunctive normal forms as new states.
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LTL: LTL on Infinite Words

Let ϕ be an LTL formual. We then define the semantics
LTL by extending the common LTL semantics of an LTL
formula with respect to w ∈ Σω as follows:

Local Temporal Operators

Jw |= XϕKω = Jw |= XϕKω = Jw2 |= ϕKω
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LTL: LTL on Infinite Words

Let ϕ be an LTL formual. We then define the semantics
LTL by extending the common LTL semantics of an LTL
formula with respect to w ∈ Σω as follows:

Fixed Point Operator Until

Jw |= ϕUψKω =


> if ∃i, 1 ≤ i : (Jwi |= ψKω = >

and ∀k, 1 ≤ k < i : Jwk |= ϕKω = >)
⊥ else
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Monitor For LTL
The monitor ABA Aϕ = (Σ, Q, q0, δ, F ) of the LTL formula
ϕ consists of

I the input alphabet Σ = 2AP,
I the states Q containing all subformulae of ϕ,
I the initial state q0 = ϕ,
I the transition function δ,

that performs progression like evlFLTL4, and
I the set F of accepting states,

that contains all subformulae searching a greatest
fixpoint.

Such an ABA can be translated into an BA using a power
set construction where every state consists of two sets of
states: All states from paths where we already saw an
accepting states and states from paths where we still need to
see an accepting state.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Impartial RV
Common LTL Semantics

RV on Finite, Terminated
Executions

Impartial RV on Finite,
Non-Terminated Words

Anticipatory RV
LTL on Infinite Words

Anticipatory RV on Finite,
Non-Terminated Words

Other LTL
Semantics
Events vs. Propositions

Further Topics

Conclusion
8-16

LTL3: LTL on Finite, Non-Completed
Words

Let ϕ be an LTL formual. We then define the semantics
LTL3 of an LTL formula with respect to w ∈ Σ∗ based on
the LTL semantics as follows:

Ju |= ϕK3 =


> if ∀σ ∈ Σω : Jwσ |= ϕKω = >
⊥ if ∀σ ∈ Σω : Jwσ |= ϕKω = ⊥
? else.
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Monitor For LTL3

The monitor FSMMϕ = Ãϕ × Ã¬ϕ of the LTL formula ϕ
consists of

I the DFA Ãϕ computed from the LTL monitor
Aϕ = (Σ, Qϕ, ϕ, δϕ, Fϕ) via the emptiness per state
function,

I the DFA Ã¬ϕ computed from the LTL monitor
A¬ϕ = (Σ, Q¬ϕ,¬ϕ, δ¬ϕ, F¬ϕ) via the emptiness per
state function and

I the labeling function λ : Q→ B3 that prints
I > if Ãϕ is in a rejecting state
I ⊥ if Ã¬ ϕ is in a rejecting state
I ? if both are in accepting states.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Impartial RV
Common LTL Semantics

RV on Finite, Terminated
Executions

Impartial RV on Finite,
Non-Terminated Words

Anticipatory RV
LTL on Infinite Words

Anticipatory RV on Finite,
Non-Terminated Words

Other LTL
Semantics
Events vs. Propositions

Further Topics

Conclusion
8-18

LTLP4 : Predictive LTL on Finite,
Non-Completed Words

Let ϕ be an LTL formual and P a program. We then define
the semantics LTLP3 of an LTL formula with respect to
w ∈ Σ∗ and and an over-approximation P̂ of P based on the
LTL semantics as follows:

Ju |= ϕKP̂ =



> if u ∈ω L(P̂) ∧ ∀w ∈ Σω :
uw ∈ L(P̂)⇒ Juw |= ϕKω = >

⊥ if u ∈ω L(P̂) ∧ ∀w ∈ Σω :
uw ∈ L(P̂)⇒ Juw |= ϕKω = ⊥

? if ∃w,w′ ∈ Σω : uw, uw′ ∈ L(P̂) ∧
Juw |= ϕKω = > ∧ Juw′ |= ϕKω = ⊥

¿ if u /∈ω L(P̂)
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LTL With Propositions

So far we always used
I a set AP of atomic propositions and
I an alphabet Σ = 2AP.

An LTL formula consisting of an atomic proposition p ∈ AP
gets evaluated with respect to a word w ∈ Σ∞ as follows:

Jw |= pKL =
{
> if p ∈ w1

⊥ if p /∈ w1
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LTL With Events

We now consider
I a set EV of events and
I an alphabet Σ = EV.

An LTL formula consisting of an event e ∈ EV then gets
evaluated with respect to a word w ∈ Σ∞ as follows:

Jw |= eKL =
{
> if e = w1

⊥ if e 6= w1
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Propositions vs. Events

Propositions
I A state consist of

a set of propisitions.
I A word w ∈ (2AP)ω is

a sequence of states.
I The formula p∧ q

requires that p and q
hold in the current
state and therefore
can be fulfilled.

Events
I A state consist of

one event.
I A word w ∈ (EV)ω is

a sequence of events.
I The formula p∧ q

requires that the current
state is p and q
and therefore cannot
be fulfilled for p 6= q!
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LTL With Past
Sometimes it makes things easier to look back

Consider the property “Every alarm is due to a fault”
expressed in LTL as follows:

fault R(¬ alarm∨ fault)

Using the past operator once (finally in past) O this can be
expressed more intuitive as follows:

G(alarm→O fault)

I Monitor Generation for LTL with past uses two-way
automata.

I LTL with past is kind of syntactic sugar as it is not
more expressive than future LTL.
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Regular LTL
Adding the Power of Regular Expressions to the Elegance of LTL

Consider the property “p holds in every other state” for a
proposition p ∈ AP expressed as language as follows:

(Σ ◦ {p})∗

I LTL can express exactly the star-free languages.
I This property cannot be expressed in LTL.

The property “ϕ holds in every other state” for an RLTL
formula ϕ can be expressed as

ϕ
∣∣(Σ ◦ Σ)

〉
∅

using the ternary weak power operator •|•〉• with a delay of
two states expressed as language Σ ◦ Σ.
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Parameterized LTL

Consider the LTL formula G(close→X G(¬write)) that
prohibits writing to the closed resource.

Such formula would fail on an execution with two (or more)
resources c1 and c2:

open(c1); open(c2);
write(c2);
close(c2);
write(c1); // fail
close(c1);

We could solve this problem by allowing free variables in LTL
formulas. For example G(close(c)→X G(¬write(c))) is
parametric in c.
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LTL With Modulo Constraints
Consider a set VAR of integer variables. We then define
LTL semantics with respect to infinite sequences of
valuations for VAR taking their values in Z/nZ.

Example

ϕ := G(Xx = x)

requires that x ∈ VAR evaluates in every state to the same
value as in the next state (in all states).

Models of such LTL formulas are words w ∈ (Z/nZ)ω:
I (12)ω |= ϕ,

because x is always 12.
I (12; 13)ω 6|= ϕ,

because x alternates between 12 and 13.



Runtime
Verification

M. Leucker &
V. Stolz

Targets & Outline

Impartial RV
Common LTL Semantics

RV on Finite, Terminated
Executions

Impartial RV on Finite,
Non-Terminated Words

Anticipatory RV
LTL on Infinite Words

Anticipatory RV on Finite,
Non-Terminated Words

Other LTL
Semantics
Events vs. Propositions

Further Topics

Conclusion
8-27

Conclusion

1. FLTL, FLTL4 and LTL share common semantics for
boolean constants, boolean combinations, atomic
propositions and fixed point operators defined using
dualization or simplification.

2. We only need to define the semantics of next, weak
next and until to specify the semantics of FLTL,
FLTL4 and LTL using the common semantics.

3. LTL3 and LTLP4 are defined based on LTL.
4. Sometimes it make sense to define LTL semantics using

events as states instead of sets of propositions.
5. There are very many extensions of LTL and runtime

verification not covered (and many not even mentioned)
in this course.
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