Security analysis: The CORAS Approach

October 15, 2010

Ketil Stølen, SINTEF & UiO
What is CORAS?

- The CORAS process
 - A process for security risk analysis
- The CORAS language (diagrams)
 - A graphical language that supports the analysis process
 - Basis for communication, documentation and analysis
- The CORAS semantics
 - A schematic translation of any CORAS diagram into English
- The CORAS calculus
 - A set of rules for reasoning about diagrams
- The CORAS editor
 - A computerized tool supporting the drawing of diagrams
- The CORAS guideline
 - A guideline for best use of the language within the process
The CORAS process
The CORAS process

Risk analysis process based on the standard ISO 31000: Risk Management – Principles and Guidelines
Context identification

- Characterise target of analysis
 - What is the focus and scope of the analysis?
- Identify and value assets
 - Asset-driven risk analysis process
 - Business oriented, e.g. availability of services generating revenue
- Specify risk evaluation criteria
 - What losses can the client tolerate?
 - Similar to requirements in system development
Risk identification

- Identify threats to assets through structured brainstorming
 - Involves decision makers, users, developers, domain experts, risk analysis experts, etc. (typically 5-7 people)

- Identify vulnerabilities of assets
 - Questionnaires and checklists

Equipment physical security
- Is equipment properly physically protected against unauthorised access to data or loss of data?
- Are power supplies handled in a manner that prevents loss of data and ensures availability?
- …
Risk evaluation

- We cannot eliminate all risks
- Determine which risks need treatment
 - We need to know how serious they are so we can prioritise

- Risk level is determined based on analysis of the frequency and consequence of the unwanted incident
 - Quantitative values: e.g., loss of 1M€, 25% chance per year
 - Qualitative values: e.g., high, medium, low
Risk treatment

- Identify treatments for unaccepted risks
- Evaluate and prioritise different treatments
Elements of security risk analysis

- Identify Context
- Identify Risks
- Estimate Risk Level
- Evaluate Risks
- Treat Risks

Context

- Vulnerability
- Threat

Target

- Asset
- Unwanted Incident

Treatment

- Frequency
- Consequence
- Risk
The CORAS language (diagrams)
The CORAS security risk modeling language

- Key symbols:
The CORAS diagrams

- **Asset diagrams**
 Describes the focus of the analysis

- **Threat diagrams**
 Describes scenarios which may cause harm to the assets

- **Risk diagrams**
 Summarises the risks presented in threat diagrams

- **Treatment diagrams**
 Adds proposed treatments to threat diagrams

- **Treatment overview diagrams**
 Adds proposed treatments to risk diagrams
Identifying and documenting assets

- **Asset:** *Something to which a party assigns value and hence for which the party requires protection*
- The client specifies its assets and risk acceptance levels
- Difficult, - faults may jeopardize the whole analysis
 - wrong focus
 - wrong level of details

![Diagram with Analysis client, Product information, Budget, and Business contracts]
Identifying and documenting assets

- One may also specify other interested parties than the client
 - Different parties may have different assets
 - Two parties may assign value to the same parts or aspects (e.g. confidentiality), but possibly with different priority (asset value) and different protection requirements

- Possible to specify how assets can depend on other assets
 - company reputation
 - income

Harm to Confidentiality may result in harm to Data protection
Identifying and documenting threats and unwanted incidents in threat diagrams

- **Threat:** A potential cause of an unwanted incident
- **Unwanted incident:** An event that harms or reduces the value of an asset

<table>
<thead>
<tr>
<th>Threat</th>
<th>Unwanted incident</th>
<th>Asset damaged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus</td>
<td>Virus attack makes information unavailable</td>
<td>Business contracts</td>
</tr>
<tr>
<td>Virus</td>
<td>Virus attack makes information unavailable</td>
<td>Product information</td>
</tr>
<tr>
<td>Employee</td>
<td>Product information is accidentally published on the web</td>
<td>Product information</td>
</tr>
<tr>
<td>Insider</td>
<td>Competitor receives confidential information</td>
<td>Product information</td>
</tr>
<tr>
<td>Insider</td>
<td>Competitor receives confidential information</td>
<td>Budget</td>
</tr>
</tbody>
</table>
Identifying and documenting vulnerabilities and threat scenarios

- **Vulnerability**: A weakness, flaw or deficiency that opens for, or may be exploited by, a threat to cause harm to or reduce the value of an asset

- **Threat scenario**: A chain or series of events that is initiated by a threat and that may lead to an unwanted incident

- Forces the participants to specify “why” incidents can happen (vulnerabilities) and “how” (threat scenarios)

- Impossible or wrong paths are likely to be discovered
Identifying and documenting likelihoods and consequences

- **Likelihood**: *The frequency or probability of something to occur*
- **Consequence**: *The impact of an unwanted incident on an asset in terms of harm or reduced asset value*
- Capturing the rationale for the likelihood estimates
Documenting risks

- **Risk**: The likelihood of an unwanted incident and its consequence for a specific asset
- Compared to the party’s risk acceptance levels
- Acceptable and non-acceptable risks are shown in a risk diagram
 - decision makers
 - planning treatments
 - communicating risks
Identifying and documenting risk treatments

- Risks that are **unacceptable** are evaluated to identify appropriate treatments
- Risks that are **acceptable** can be removed from the diagram
Identifying and documenting risk treatments

Risk treatment: An appropriate measure to reduce risk level

- Treatments are added where they should have effect
Example CORAS diagrams
Example asset diagram

- **Party**
 - Company

- **Indirect asset**
 - Company’s reputation

- **Harm relation**
 - Integrity of server [high]
 - Confidentiality of information [critical]
 - Availability of server [critical]

- **Asset**
Example threat diagram

- Hacker
- Initiates relation
- Unwanted incident
- Consequence
- Hacker gets access to server
- [unlikely]
- Confidentiality of information
- High
- Virus creates back door to server
- [possible]
- Integrity of server
- High
- Server is infected by computer virus
- [possible]
- Server goes down
- [unlikely]
- Availability of server
- High
- Vulnerability
- Threat
- Leads-to relation
- Low
- Threat scenario
- Influence
- Virus protection not up to date
- Impacts relation
- Computer virus
- Low
Example risk diagram

HA: Hacker gets access to server [unacceptable]

VB: Virus creates back door to server [unacceptable]

SD1: Server goes down [unacceptable]

SD2: Server goes down [acceptable]

Confidentiality of information

Integrity of server

Availability of server

Risk

Risk level

Hacker

Leads-to relation

Computer virus

Initiates relation

Roles and relationships in the risk diagram:

- **Hacker**: Represents an external threat that gains access to the server.
- **Virus**: Represents an internal threat that creates a back door to the server.
- **Server**: Represents the target of the risk assessment.
- **Confidentiality of Information**: Indicates a loss of confidentiality.
- **Integrity of Server**: Indicates a loss of integrity.
- **Availability of Server**: Indicates an unavailability of the server.

The diagram illustrates the flow of risk from an external hacker, through the installation of a virus, leading to the server being compromised and potentially going down, impacting confidentiality, integrity, and availability.
Example treatment diagram
Example treatment overview diagram

ICT

Exam

p

Overview

diagram
The CORAS semantics
Building a threat diagram (1)
Building a threat diagram (2)

Unwanted incident

Corruption of data

Data integrity

Employee

Initiates relation

Impacts relation
Building a threat diagram (3)
Building a threat diagram (4)

How do we interpret this diagram?
How do we interpret CORAS diagrams?

In order to answer this question, we have

- Formulated a textual syntax
 - Defined by Extended BNF grammars
- Defined a structured semantics
 - STEP 1: Translation of a diagram into its textual representation
 - STEP 2: Translation of the textual representation into its meaning as a paragraph in English
Success criteria we defined for the CORAS semantics

- The semantics should be modular
- The translation should be easy to perform
- The resulting English sentences should be easily understandable
- The translation should be possible to automate
- It should be possible to translate any diagram
Semantics of the impact relation

\[\text{[[ui]] := Unwanted incident } ui \text{ occurs with undefined likelihood.} \]
\[\text{[[a]] := a is a direct asset.} \]
\[\text{[[ui } \xrightarrow{c} a \text{]] := } ui \text{ impacts } a \text{ [[c]].} \]
\[\text{[[c]] := with consequence } c \text{.} \]
Semantics of the initiate relation

[[ts(l₁)]] := Threat scenario ts occurs [[l₁]].
[[ui(l₂)]] := Unwanted incident ui occurs [[l₂]].

[[v]] := vulnerability v
[[l]] := with likelihood l

[[ts \xrightarrow[v]{l₃} ui]] := ts leads to ui with [[l₃]], due to [[v]].
An example

Threat scenario *Servers infected by malicious code* occurs with likelihood *1 per 10 years*.

Threat scenario *Malicious code traffic jams network* occurs with likelihood *1 per year*.

Threat scenario *Application servers malfunctioning* occurs with likelihood *1 per 5 years*.

Servers infected by malicious code leads to *Application servers malfunctioning* with likelihood *0.5*.

Malicious code traffic jams network leads to *Application servers malfunctioning* with likelihood *0.1*.
The CORAS calculus
Initiates rule

- For threat t and scenario/incident e related by the initiates relation, we have:

$$
\frac{t \xrightarrow{p} e}{(t \sqcap\downarrow e)(p)}
$$

- $t \sqcap\downarrow e$ can be understood as the instances of scenario/incident e that are initiated by threat t, in other words $t \sqcap\downarrow e$ is a subset of e
Leads-to rule

- For the scenarios/incidents \(e_1 \) and \(e_2 \) related by the leads-to relation, we have:

\[
\frac{e_1(p) \quad e_1 \overset{l}{\rightarrow} e_2}{(e_1 \sqcap e_2)(p \cdot l)}
\]

- \(e_1 \sqcap e_2 \) can be understood as the subset of the scenarios/incidents \(e_2 \) that are preceded by \(e_1 \); note that this means that \(\sqcap \) is not commutative.
Mutually exclusive vertices rule

- If the scenarios/incidents e_1 and e_2 are mutually exclusive, we have:

$$\frac{e_1(p_1) \cdot e_2(p_2)}{(e_1 \sqcup e_2)(p_1 + p_2)}$$

- $e_1 \sqcup e_2$ denotes all instances of e_1 and e_2
Independent vertices rule

- If the scenarios/incidents e_1 and e_2 are statistically independent, we have:

$$
\frac{e_1(p_1) \cdot e_2(p_2)}{(e_1 \biguplus e_2)(p_1 + p_2 - p_1 \cdot p_2)}
$$
Consistency checking of likelihoods

1 per 10 years x 0.5 = 1 per 20 years = 0.05
1 per year x 0.1 = 1 per 10 years = 0.1

Given that the events are statistically independent, we may calculate a minimum for the end node:

$$1 - (1 - 0.05)(1 - 0.1) = 0.145$$

1 per 5 years = 0.2 > 0.145

If the events had been mutually exclusive the minimum would have been 0.05 + 0.1 = 0.15
The CORAS editor
Getting Started

- **Installation**
 - Make sure you have Java installed.
 - Create a suitable folder, e.g. C:\CORAS-TOOL. In the following we refer to this as <Your folder>.
 - Extract the zip-file corastool_deployment.zip into <Your folder>.

- **Starting the CORAS tool**
 - Go to the folder <Your folder>\eclipse and double click on Coras.exe.
 - You are now ready to use the CORAS tool.