Appendix E. Lagrange Multipliers

Lagrange multipliers, also sometimes called undetermined multipliers, are used to find the stationary points of a function of several variables subject to one or more constraints.

Consider the problem of finding the maximum of a function $f\left(x_{1}, x_{2}\right)$ subject to a constraint relating x_{1} and x_{2}, which we write in the form

$$
\begin{equation*}
g\left(x_{1}, x_{2}\right)=0 \tag{E.1}
\end{equation*}
$$

One approach would be to solve the constraint equation (E.1) and thus express x_{2} as a function of x_{1} in the form $x_{2}=h\left(x_{1}\right)$. This can then be substituted into $f\left(x_{1}, x_{2}\right)$ to give a function of x_{1} alone of the form $f\left(x_{1}, h\left(x_{1}\right)\right)$. The maximum with respect to x_{1} could then be found by differentiation in the usual way, to give the stationary value x_{1}^{\star}, with the corresponding value of x_{2} given by $x_{2}^{\star}=h\left(x_{1}^{\star}\right)$.

One problem with this approach is that it may be difficult to find an analytic solution of the constraint equation that allows x_{2} to be expressed as an explicit function of x_{1}. Also, this approach treats x_{1} and x_{2} differently and so spoils the natural symmetry between these variables.

A more elegant, and often simpler, approach is based on the introduction of a parameter λ called a Lagrange multiplier. We shall motivate this technique from a geometrical perspective. Consider a D-dimensional variable \mathbf{x} with components x_{1}, \ldots, x_{D}. The constraint equation $g(\mathbf{x})=0$ then represents a $(D-1)$-dimensional surface in \mathbf{x}-space as indicated in Figure E.1.

We first note that at any point on the constraint surface the gradient $\nabla g(\mathbf{x})$ of the constraint function will be orthogonal to the surface. To see this, consider a point \mathbf{x} that lies on the constraint surface, and consider a nearby point $\mathbf{x}+\boldsymbol{\epsilon}$ that also lies on the surface. If we make a Taylor expansion around \mathbf{x}, we have

$$
\begin{equation*}
g(\mathbf{x}+\boldsymbol{\epsilon}) \simeq g(\mathbf{x})+\boldsymbol{\epsilon}^{\mathrm{T}} \nabla g(\mathbf{x}) \tag{E.2}
\end{equation*}
$$

Because both \mathbf{x} and $\mathbf{x}+\boldsymbol{\epsilon}$ lie on the constraint surface, we have $g(\mathbf{x})=g(\mathbf{x}+\boldsymbol{\epsilon})$ and hence $\boldsymbol{\epsilon}^{\mathrm{T}} \nabla g(\mathbf{x}) \simeq 0$. In the limit $\|\boldsymbol{\epsilon}\| \rightarrow 0$ we have $\boldsymbol{\epsilon}^{\mathrm{T}} \nabla g(\mathbf{x})=0$, and because $\boldsymbol{\epsilon}$ is

E. LAGRANGE MULTIPLIERS

Figure E. 1 A geometrical picture of the technique of Lagrange multipliers in which we seek to maximize a function $f(\mathbf{x})$, subject to the constraint $g(\mathbf{x})=0$. If \mathbf{x} is D dimensional, the constraint $g(\mathbf{x})=0$ corresponds to a subspace of dimensionality $D-1$, indicated by the red curve. The problem can be solved by optimizing the Lagrangian function $L(\mathbf{x}, \lambda)=f(\mathbf{x})+\lambda g(\mathbf{x})$.

then parallel to the constraint surface $g(\mathbf{x})=0$, we see that the vector ∇g is normal to the surface.

Next we seek a point \mathbf{x}^{\star} on the constraint surface such that $f(\mathbf{x})$ is maximized. Such a point must have the property that the vector $\nabla f(\mathbf{x})$ is also orthogonal to the constraint surface, as illustrated in Figure E.1, because otherwise we could increase the value of $f(\mathbf{x})$ by moving a short distance along the constraint surface. Thus ∇f and ∇g are parallel (or anti-parallel) vectors, and so there must exist a parameter λ such that

$$
\begin{equation*}
\nabla f+\lambda \nabla g=0 \tag{E.3}
\end{equation*}
$$

where $\lambda \neq 0$ is known as a Lagrange multiplier. Note that λ can have either sign.
At this point, it is convenient to introduce the Lagrangian function defined by

$$
\begin{equation*}
L(\mathbf{x}, \lambda) \equiv f(\mathbf{x})+\lambda g(\mathbf{x}) \tag{E.4}
\end{equation*}
$$

The constrained stationarity condition (E.3) is obtained by setting $\nabla_{\mathbf{x}} L=0$. Furthermore, the condition $\partial L / \partial \lambda=0$ leads to the constraint equation $g(\mathbf{x})=0$.

Thus to find the maximum of a function $f(\mathbf{x})$ subject to the constraint $g(\mathbf{x})=0$, we define the Lagrangian function given by (E.4) and we then find the stationary point of $L(\mathbf{x}, \lambda)$ with respect to both \mathbf{x} and λ. For a D-dimensional vector \mathbf{x}, this gives $D+1$ equations that determine both the stationary point \mathbf{x}^{\star} and the value of λ. If we are only interested in \mathbf{x}^{\star}, then we can eliminate λ from the stationarity equations without needing to find its value (hence the term 'undetermined multiplier').

As a simple example, suppose we wish to find the stationary point of the function $f\left(x_{1}, x_{2}\right)=1-x_{1}^{2}-x_{2}^{2}$ subject to the constraint $g\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-1=0$, as illustrated in Figure E.2. The corresponding Lagrangian function is given by

$$
\begin{equation*}
L(\mathbf{x}, \lambda)=1-x_{1}^{2}-x_{2}^{2}+\lambda\left(x_{1}+x_{2}-1\right) \tag{E.5}
\end{equation*}
$$

The conditions for this Lagrangian to be stationary with respect to x_{1}, x_{2}, and λ give the following coupled equations:

$$
\begin{array}{r}
-2 x_{1}+\lambda=0 \\
-2 x_{2}+\lambda=0 \\
x_{1}+x_{2}-1=0 . \tag{E.8}
\end{array}
$$

Figure E. 2 A simple example of the use of Lagrange multipliers in which the aim is to maximize $f\left(x_{1}, x_{2}\right)=$ $1-x_{1}^{2}-x_{2}^{2}$ subject to the constraint $g\left(x_{1}, x_{2}\right)=0$ where $g\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-1$. The circles show contours of the function $f\left(x_{1}, x_{2}\right)$, and the diagonal line shows the constraint surface $g\left(x_{1}, x_{2}\right)=0$.

Solution of these equations then gives the stationary point as $\left(x_{1}^{\star}, x_{2}^{\star}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$, and the corresponding value for the Lagrange multiplier is $\lambda=1$.

So far, we have considered the problem of maximizing a function subject to an equality constraint of the form $g(\mathbf{x})=0$. We now consider the problem of maximizing $f(\mathbf{x})$ subject to an inequality constraint of the form $g(\mathbf{x}) \geqslant 0$, as illustrated in Figure E.3.

There are now two kinds of solution possible, according to whether the constrained stationary point lies in the region where $g(\mathbf{x})>0$, in which case the constraint is inactive, or whether it lies on the boundary $g(\mathbf{x})=0$, in which case the constraint is said to be active. In the former case, the function $g(\mathbf{x})$ plays no role and so the stationary condition is simply $\nabla f(\mathbf{x})=0$. This again corresponds to a stationary point of the Lagrange function (E.4) but this time with $\lambda=0$. The latter case, where the solution lies on the boundary, is analogous to the equality constraint discussed previously and corresponds to a stationary point of the Lagrange function (E.4) with $\lambda \neq 0$. Now, however, the sign of the Lagrange multiplier is crucial, because the function $f(\mathbf{x})$ will only be at a maximum if its gradient is oriented away from the region $g(\mathbf{x})>0$, as illustrated in Figure E.3. We therefore have $\nabla f(\mathbf{x})=-\lambda \nabla g(\mathbf{x})$ for some value of $\lambda>0$.

For either of these two cases, the product $\lambda g(\mathbf{x})=0$. Thus the solution to the

Figure E. 3 Illustration of the problem of maximizing $f(\mathbf{x})$ subject to the inequality constraint $g(\mathbf{x}) \geqslant 0$.

problem of maximizing $f(\mathbf{x})$ subject to $g(\mathbf{x}) \geqslant 0$ is obtained by optimizing the Lagrange function (E.4) with respect to x and λ subject to the conditions

$$
\begin{align*}
g(\mathbf{x}) & \geqslant 0 \tag{E.9}\\
\lambda & \geqslant 0 \tag{E.10}\\
\lambda g(\mathbf{x}) & =0 \tag{E.11}
\end{align*}
$$

These are known as the Karush-Kuhn-Tucker (KKT) conditions (Karush, 1939; Kuhn and Tucker, 1951).

Note that if we wish to minimize (rather than maximize) the function $f(\mathbf{x})$ subject to an inequality constraint $g(\mathbf{x}) \geqslant 0$, then we minimize the Lagrangian function $L(\mathbf{x}, \lambda)=f(\mathbf{x})-\lambda g(\mathbf{x})$ with respect to \mathbf{x}, again subject to $\lambda \geqslant 0$.

Finally, it is straightforward to extend the technique of Lagrange multipliers to the case of multiple equality and inequality constraints. Suppose we wish to maximize $f(\mathbf{x})$ subject to $g_{j}(\mathbf{x})=0$ for $j=1, \ldots, J$, and $h_{k}(\mathbf{x}) \geqslant 0$ for $k=1, \ldots, K$. We then introduce Lagrange multipliers $\left\{\lambda_{j}\right\}$ and $\left\{\mu_{k}\right\}$, and then optimize the Lagrangian function given by

$$
\begin{equation*}
L\left(\mathbf{x},\left\{\lambda_{j}\right\},\left\{\mu_{k}\right\}\right)=f(\mathbf{x})+\sum_{j=1}^{J} \lambda_{j} g_{j}(\mathbf{x})+\sum_{k=1}^{K} \mu_{k} h_{k}(\mathbf{x}) \tag{E.12}
\end{equation*}
$$

subject to $\mu_{k} \geqslant 0$ and $\mu_{k} h_{k}(\mathbf{x})=0$ for $k=1, \ldots, K$. Extensions to constrained functional derivatives are similarly straightforward. For a more detailed discussion of the technique of Lagrange multipliers, see Nocedal and Wright (1999).

