
1 Introduction to Semi-Supervised Learning

1.1 Supervised, Unsupervised, and Semi-Supervised Learning

In order to understand the nature of semi-supervised learning, it will be useful first

to take a look at supervised and unsupervised learning.

1.1.1 Supervised and Unsupervised Learning

Traditionally, there have been two fundamentally different types of tasks in machine

learning.

The first one is unsupervised learning. Let X = (x1, . . . , xn) be a set of n examplesunsupervised

learning (or points), where xi ∈ X for all i ∈ [n] := {1, . . . , n}. Typically it is assumed

that the points are drawn i.i.d. (independently and identically distributed) from

a common distribution on X. It is often convenient to define the (n × d)-matrix

X = (x⊤i )⊤i∈[n] that contains the data points as its rows. The goal of unsupervised

learning is to find interesting structure in the data X . It has been argued that the

problem of unsupervised learning is fundamentally that of estimating a density

which is likely to have generated X . However, there are also weaker forms of

unsupervised learning, such as quantile estimation, clustering, outlier detection,

and dimensionality reduction.

The second task is supervised learning. The goal is to learn a mapping fromsupervised

learning x to y, given a training set made of pairs (xi, yi). Here, the yi ∈ Y are called

the labels or targets of the examples xi. If the labels are numbers, y = (yi)
⊤

i∈[n]

denotes the column vector of labels. Again, a standard requirement is that the pairs

(xi, yi) are sampled i.i.d. from some distribution which here ranges over X × Y.

The task is well defined, since a mapping can be evaluated through its predictive

performance on test examples. When Y = R or Y = R
d (or more generally, when the

labels are continuous), the task is called regression. Most of this book will focus on

classification (there is some work on regression in chapter 23), i.e., the case where

y takes values in a finite set (discrete labels). There are two families of algorithms

for supervised learning. Generative algorithms try to model the class-conditionalgenerative

methods
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density p(x|y) by some unsupervised learning procedure.1 A predictive density can

then be inferred by applying Bayes theorem:

p(y|x) =
p(x|y)p(y)



Y
p(x|y)p(y)dy

. (1.1)

In fact, p(x|y)p(y) = p(x, y) is the joint density of the data, from which pairs

(xi, yi) could be generated. Discriminative algorithms do not try to estimate howdiscriminative

methods the xi have been generated, but instead concentrate on estimating p(y|x). Some

discriminative methods even limit themselves to modeling whether p(y|x) is greater

than or less than 0.5; an example of this is the support vector machine (SVM). It

has been argued that discriminative models are more directly aligned with the goal

of supervised learning and therefore tend to be more efficient in practice. These two

frameworks are discussed in more detail in sections 2.2.1 and 2.2.2.

1.1.2 Semi-Supervised Learning

Semi-supervised learning (SSL) is halfway between supervised and unsupervised

learning. In addition to unlabeled data, the algorithm is provided with some super-

vision information – but not necessarily for all examples. Often, this information

will be the targets associated with some of the examples. In this case, the datastandard setting

of SSL set X = (xi)i∈[n] can be divided into two parts: the points Xl := (x1, . . . , xl), for

which labels Yl := (y1, . . . , yl) are provided, and the points Xu := (xl+1, . . . , xl+u),

the labels of which are not known. This is “standard” semi-supervised learning as

investigated in this book; most chapters will refer to this setting.

Other forms of partial supervision are possible. For example, there may be

constraints such as “these points have (or do not have) the same target” (cf.

Abu-Mostafa, 1995). This more general setting is considered in chapter 5. TheSSL with

constraints different setting corresponds to a different view of semi-supervised learning: In

chapter 5, SSL is seen as unsupervised learning guided by constraints. In contrast,

most other approaches see SSL as supervised learning with additional information

on the distribution of the examples x. The latter interpretation seems to be more

in line with most applications, where the goal is the same as in supervised learning:

to predict a target value for a given xi. However, this view does not readily apply

if the number and nature of the classes are not known in advance but have to be

inferred from the data. In constrast, SSL as unsupervised learning with constraints

may still remain applicable in such situations.

A problem related to SSL was introduced by Vapnik already several decades ago:

so-called transductive learning. In this setting, one is given a (labeled) training settransductive

learning and an (unlabeled) test set. The idea of transduction is to perform predictions only

for the test points. This is in contrast to inductive learning, where the goal is toinductive learning

1. For simplicity, we are assuming that all distributions have densities, and thus we restrict

ourselves to dealing with densities.
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output a prediction function which is defined on the entire space X. Many methods

described in this book will be transductive; in particular, this is rather natural for

inference based on graph representations of the data. This issue will be addressed

again in section 1.2.4.

1.1.3 A Brief History of Semi-Supervised Learning

Probably the earliest idea about using unlabeled data in classification is self-

learning, which is also known as self-training, self-labeling, or decision-directedself-learning

learning. This is a wrapper-algorithm that repeatedly uses a supervised learning

method. It starts by training on the labeled data only. In each step a part of

the unlabeled points is labeled according to the current decision function; then

the supervised method is retrained using its own predictions as additional labeled

points. This idea has appeared in the literature already for some time (e.g., Scudder

(1965); Fralick (1967); Agrawala (1970)).

An unsatisfactory aspect of self-learning is that the effect of the wrapper depends

on the supervised method used inside it. If self-learning is used with empirical risk

minimization and 1-0-loss, the unlabeled data will have no effect on the solution

at all. If instead a margin maximizing method is used, as a result the decision

boundary is pushed away from the unlabeled points (cf. chapter 6). In other cases

it seems to be unclear what the self-learning is really doing, and which assumption

it corresponds to.

Closely related to semi-supervised learning is the concept of transductive

inference, or transduction, pioneered by Vapnik (Vapnik and Chervonenkis, 1974;transductive

inference Vapnik and Sterin, 1977). In contrast to inductive inference, no general decision rule

is inferred, but only the labels of the unlabeled (or test) points are predicted. An

early instance of transduction (albeit without explicitly considering it as a concept)

was already proposed by Hartley and Rao (1968). They suggested a combinatorial

optimization on the labels of the test points in order to maximize the likelihood of

their model.

It seems that semi-supervised learning really took off in the 1970s when the

problem of estimating the Fisher linear discriminant rule with unlabeled datamixture of

Gaussians was considered (Hosmer, 1973; McLachlan, 1977; O’Neill, 1978; McLachlan and

Ganesalingam, 1982). More precisely, the setting was in the case where each class-

conditional density is Gaussian with equal covariance matrix. The likelihood of

the model is then maximized using the labeled and unlabeled data with the help

of an iterative algorithm such as the expectation-maximization (EM) algorithm

(Dempster et al., 1977). Instead of a mixture of Gaussians, the use of a mixture

of multinomial distributions estimated with labeled and unlabeled data has been

investigated in (Cooper and Freeman, 1970).

Later, this one component per class setting has been extended to several com-

ponents per class (Shahshahani and Landgrebe, 1994) and further generalized by

Miller and Uyar (1997).

Learning rates in a probably approximately correct (PAC) framework (Valiant,
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1984) have been derived for the semi-supervised learning of a mixture of twotheoretical

analysis Gaussians by Ratsaby and Venkatesh (1995). In the case of an identifiable mixture,

Castelli and Cover (1995) showed that with an infinite number of unlabeled points,

the probability of error has an exponential convergence (w.r.t. the number of labeled

examples) to the Bayes risk. Identifiable means that given P (x), the decomposition

in


y P (y)P (x|y) is unique. This seems a relatively strong assumption, but it is

satisfied, for instance, by mixtures of Gaussians. Related is the analysis in (Castelli

and Cover, 1996) in which the class-conditional densities are known but the class

priors are not.

Finally, the interest in semi-supervised learning increased in the 1990s, mostlytext applications

due to applications in natural language problems and text classification (Yarowsky,

1995; Nigam et al., 1998; Blum and Mitchell, 1998; Collins and Singer, 1999;

Joachims, 1999).

Note that, to our knowledge, Merz et al. (1992) were the first to use the term

“semi-supervised” for classification with both labeled and unlabeled data. It has

in fact been used before, but in a different context than what is developed in this

book; see, for instance, (Board and Pitt, 1989).

1.2 When Can Semi-Supervised Learning Work?

A natural question arises: is semi-supervised learning meaningful? More precisely:

in comparison with a supervised algorithm that uses only labeled data, can one

hope to have a more accurate prediction by taking into account the unlabeled

points? As you may have guessed from the size of the book in your hands, in

principle the answer is “yes.” However, there is an important prerequisite: that the

distribution of examples, which the unlabeled data will help elucidate, be relevant

for the classification problem.

In a more mathematical formulation, one could say that the knowledge on p(x)

that one gains through the unlabeled data has to carry information that is useful

in the inference of p(y|x). If this is not the case, semi-supervised learning will not

yield an improvement over supervised learning. It might even happen that using

the unlabeled data degrades the prediction accuracy by misguiding the inference;

this effect is investigated in detail in chapter 4.

One should thus not be too surprised that for semi-supervised learning to work,

certain assumptions will have to hold. In this context, note that plain supervised

learning also has to rely on assumptions. In fact, chapter 22 discusses a way ofsmoothness

assumption formalizing assumptions of the kind given below within a PAC-style framework.

One of the most popular such assumptions can be formulated as follows.
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Smoothness assumption of supervised learning:2 If two points x1, x2 are close, then

so should be the corresponding outputs y1, y2.

Clearly, without such assumptions, it would never be possible to generalize from

a finite training set to a set of possibly infinitely many unseen test cases.

1.2.1 The Semi-Supervised Smoothness Assumption

We now propose a generalization of the smoothness assumption that is useful

for semi-supervised learning; we thus call it the “semi-supervised smoothness

assumption”. While in the supervised case according to our prior beliefs the output

varies smoothly with the distance, we now also take into account the density of

the inputs. The assumption is that the label function is smoother in high-densitysemi-supervised

smoothness

assumption

regions than in low-density regions:

Semi-supervised smoothness assumption: If two points x1, x2 in a high-density region

are close, then so should be the corresponding outputs y1, y2.

Note that by transitivity, this assumption implies that if two points are linked by

a path of high density (e.g., if they belong to the same cluster), then their outputs

are likely to be close. If, on the other hand, they are separated by a low-density

region, then their outputs need not be close.

Note that the semi-supervised smoothness assumption applies to both regression

and classification. In the next section, we will show that in the case of classification,

it reduces to assumptions commonly used in SSL. At present, it is less clear how

useful the assumption is for regression problems. As an alternative, chapter 23

proposes a way to use unlabeled data for model selection that applies to both

regression and classification.

1.2.2 The Cluster Assumption

Suppose we knew that the points of each class tended to form a cluster. Then thecluster

assumption unlabeled data could aid in finding the boundary of each cluster more accurately:

one could run a clustering algorithm and use the labeled points to assign a class

to each cluster. That is in fact one of the earliest forms of semi-supervised learning

(see chapter 2). The underlying, now classical, assumption may be stated as follows:

Cluster assumption: If points are in the same cluster, they are likely to be of the

same class.

This assumption may be considered reasonable on the basis of the sheer existence

2. Strictly speaking, this assumption only refers to continuity rather than smoothness;

however, the term smoothness is commonly used, possibly because in regression estimation

y is often modeled in practice as a smooth function of x.
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of classes: if there is a densly populated continuum of objects, it may seem unlikely

that they were ever distinguished into different classes.

Note that the cluster assumption does not imply that each class forms a single,

compact cluster: it only means that, usually, we do not observe objects of two

distinct classes in the same cluster.

The cluster assumption can easily be seen as a special case of the above-proposed

semi-supervised smoothness assumption, considering that clusters are frequently

defined as being sets of points that can be connected by short curves which traverse

only high-density regions.

The cluster assumption can be formulated in an equivalent way:low density

separation
Low density separation: The decision boundary should lie in a low-density region.

The equivalence is easy to see: A decision boundary in a high-density region

would cut a cluster into two different classes; many objects of different classes in

the same cluster would require the decision boundary to cut the cluster, i.e., to go

through a high-density region.

Although the two formulations are conceptually equivalent, they can inspire

different algorithms, as we will argue in section 1.3. The low-density version

also gives additional intuition why the assumption is sensible in many real-world

problems. Consider digit recognition, for instance, and suppose that one wants to

learn how to distinguish a handwritten digit “0” against digit “1”. A sample point

taken exactly from the decision boundary will be between a 0 and a 1, most likely

a digit looking like a very elongated zero. But the probability that someone wrote

this “weird” digit is very small.

1.2.3 The Manifold Assumption

A different but related assumption that forms the basis of several semi-supervised

learning methods is the manifold assumption:manifold

assumption
Manifold assumption: The (high-dimensional) data lie (roughly) on a low-dimensional

manifold.

How can this be useful? A well-known problem of many statistical methods and

learning algorithms is the so-called curse of dimensionality (cf. section 11.6.2). It iscurse of

dimensionality related to the fact that volume grows exponentially with the number of dimensions,

and an exponentially growing number of examples is required for statistical tasks

such as the reliable estimation of densities. This is a problem that directly affects

generative approaches that are based on density estimates in input space. A related

problem of high dimensions, which may be more severe for discriminative methods,

is that pairwise distances tend to become more similar, and thus less expressive.

If the data happen to lie on a low-dimensional manifold, however, then the

learning algorithm can essentially operate in a space of corresponding dimension,

thus avoiding the curse of dimensionality.

As above, one can argue that algorithms working with manifolds may be seen
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as approximately implementing the semi-supervised smoothness assumption: such

algorithms use the metric of the manifold for computing geodesic distances. If we

view the manifold as an approximation of the high-density regions, then it becomes

clear that in this case, the semi-supervised smoothness assumption reduces to the

standard smoothness assumption of supervised learning, applied on the manifold.

Note that if the manifold is embedded into the high-dimensional input space in a

curved fashion (i.e., it is not just a subspace), geodesic distances differ from those in

the input space. By ensuring more accurate density estimates and more appropriate

distances, the manifold assumption may be useful for classification as well as for

regression.

1.2.4 Transduction

As mentioned before, some algorithms naturally operate in a transductive setting.

According to the philosophy put forward by Vapnik, high-dimensional estimation

problems should attempt to follow the following principle:

Vapnik’s principle: When trying to solve some problem, one should not solve a more

difficult problem as an intermediate step.

Consider as an example supervised learning, where predictions of labels y cor-

responding to some objects x are desired. Generative models estimate the density

of x as an intermediate step, while discriminative methods directly estimate the

labels.

In a similar way, if label predictions are only required for a given test set,

transduction can be argued to be more direct than induction: while an inductive

method infers a function f : X → Y on the entire space X, and afterward returns

the evaluations f(xi) at the test points, transduction consists of directly estimating

the finite set of test labels, i.e., a function f : Xu → Y only defined on the test

set. Note that transduction (as defined in this book) is not the same as SSL: some

semi-supervised algorithms are transductive, but others are inductive.

Now suppose we are given a transductive algorithm which produces a solution

superior to an inductive algorithm trained on the same labeled data (but discarding

the unlabeled data). Then the performance difference might be due to one of the

following two points (or a combination thereof):

1. transduction follows Vapnik’s principle more closely than induction does, or

2. the transductive algorithm takes advantage of the unlabeled data in a way similar

to semi-supervised learning algorithms.

There is ample evidence for improvements being due to the second of these

points. We are presently not aware of empirical results that selectively support

the first point. In particular, the evaluation of the benchmark associated with this

book (chapter 21) does not seem to suggest a systematic advantage of transductive

methods. However, the properties of transduction are still the topic of debate, and

chapter 25 tries to present different opinions.
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1.3 Classes of Algorithms and Organization of This Book

Although many methods were not explicitly derived from one of the above assump-

tions, most algorithms can be seen to correspond to or implement one or more

of them. We try to organize the semi-supervised learning methods presented in

this book into four classes that roughly correspond to the underlying assumption.

Although the classification is not always unique, we hope that this organization

makes the book and its contents more accessible to the reader, by providing a

guiding scheme.

For the same reason, this book is organized in “parts.” There is one part for each

class of SSL algorithms and an extra part focusing on generative approaches. Two

further parts are devoted to applications and perspectives of SSL. In the following

we briefly introduce the ideas covered by each book part.

1.3.1 Generative Models

Part I presents history and state of the art of SSL with generative models. Chapter 2

starts with a thorough review of the field.

Inference using a generative model involves the estimation of the conditional

density p(x|y). In this setting, any additional information on p(x) is useful. As

a simple example, assume that p(x|y) is Gaussian. Then one can use the EM

algorithm to find the parameters of the Gaussian corresponding to each class. Themixture models

only difference to the standard EM algorithm as used for clustering is that the

“hidden variable” associated with any labeled example is actually not hidden, but

it is known and equals its class label. It implements the cluster assumption (cf.

section 2.2.1), since a given cluster belongs to only one class.

This small example already highlights different interpretations of semi-supervised

learning with a generative model:

It can be seen as classification with additional information on the marginal

density.

It can be seen as clustering with additional information. In the standard setting,

this information would be the labels of a subset of points, but it could also come

in the more general form of constraints. This is the topic of chapter 5.

A strength of the generative approach is that knowledge of the structure of the

problem or the data can naturally be incorporated by modeling it. In chapter 3,

this is demonstrated for the application of the EM algorithm to text data. It is

observed that, when modeling assumptions are not correct, unlabeled data can

decrease prediction accuracy. This effect is investigated in depth in chapter 4.

In statistical learning, before performing inference, one chooses a class of func-

tions, or a prior over functions. One has to choose it according to what is known

in advance about the problem. In the semi-supervised learning context, if one has

some ideas about what the structure of the data tells about the target function, the
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choice of this prior can be made more precise after seeing the unlabeled data: onedata-dependent

priors could typically put a higher prior probability on functions that satisfy the cluster

assumption. From a theoretical point, this is a natural way to obtain bounds for

semi-supervised learning as explained in chapter 22.

1.3.2 Low-Density Separation

Part II of this book aims at describing algorithms which try to directly implement

the low-density separation assumption by pushing the decision boundary away from

the unlabeled points.

The most common approach to achieving this goal is to use a maximum margin

algorithm such as support vector machines. The method of maximizing the margin

for unlabeled as well as labeled points is called the transductive SVM (TSVM).

However, the corresponding problem is nonconvex and thus difficult to optimize.transductive

SVM (TSVM) One optimization algorithm for the TSVM is presented in chapter 6. Starting

from the SVM solution as trained on the labeled data only, the unlabeled points are

labeled by SVM predictions, and the SVM is retrained on all points. This is iterated

while the weight of the unlabeled points is slowly increased. Another possibility is

the semi-definite programming SDP relaxation suggested in chapter 7.

Two alternatives to the TSVM are then presented that are formulated in a

probabilistic and in an information theoretic framework, respectively. In chapter

8, binary Gaussian process classification is augmented by the introduction of a null

class that occupies the space between the two regular classes. As an advantage over

the TSVM, this allows for probabilistic outputs.

This advantage is shared by the entropy minimization presented in chapter 9. It

encourages the class-conditional probabilities P (y|x) to be close to either 1 or 0 at

labeled and unlabeled points. As a consequence of the smoothness assumption, the

probability will tend to be close to 0 or 1 throughout any high-density region, while

class boundaries correspond to intermediate probabilities.

A different way of using entropy or information is the data-dependent regulariza-

tion developed in chapter 10. As compared to the TSVM, this seems to implement

the low-density separation even more directly: the standard squared-norm regular-

izer is multiplied by a term reflecting the density close to the decision boundary.

1.3.3 Graph-Based Methods

During the last couple of years, the most active area of research in semi-supervised

learning has been in graph-based methods, which are the topic of part III of this

book. The common denominator of these methods is that the data are represented

by the nodes of a graph, the edges of which are labeled with the pairwise distances

of the incident nodes (and a missing edge corresponds to infinite distance). If the

distance of two points is computed by minimizing the aggregate path distance over

all paths connecting the two points, this can be seen as an approximation of the

geodesic distance of the two points with respect to the manifold of data points.
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Thus, graph methods can be argued to build on the manifold assumption.

Most graph methods refer to the graph by utilizing the graph Laplacian. Let

g = (V, E) be a graph with real edge weights given by w : E → R. Here, the weight

w(e) of an edge e indicates the similarity of the incident nodes (and a missing edge

corresponds to zero similarity). Now the weighted adjacency matrix (or weightweight matrix

matrix, for short) W of the graph g = (V, E) is defined by

Wij :=



w(e) if e = (i, j) ∈ E,

0 if e = (i, j) ∈ E.
(1.2)

The diagonal matrix D defined by Dii :=


j Wij is called the degree matrix of

g. Now there are different ways of defining the graph Laplacian, the two mostgraph Laplacian

prominent of which are the normalized graph Laplacian, L, and the unnormalized

graph Laplacian, L:

L := I−D−1/2WD−1/2,

L := D−W.
(1.3)

Many graph methods that penalize nonsmoothness along the edges of a weighted

graph can in retrospect be seen as different instances of a rather general family of

algorithms, as is outlined in chapter 11. Chapter 13 takes a more theoretical point

of view, and transfers notions of smoothness from the continuous case onto graphs

as the discrete case. From that, it proposes different regularizers based on a graph

representation of the data.

Usually the prediction consists of labels for the unlabeled nodes. For this reason,

this kind of algorithm is intrinsically transductive, i.e., it returns only the value of

the decision function on the unlabeled points and not the decision function itself.

However, there has been recent work in order to extend graph-based methods to

produce inductive solutions, as discussed in chapter 12.

Information propagation on graphs can also serve to improve a given (possibly

strictly supervised) classification, taking unlabeled data into account. Chapter 14

presents a probabilistic method for using directed graphs in this manner.

Often the graph g is constructed by computing similarities of objects in some

other representation, e.g., using a kernel function on Euclidean data points. But

sometimes the original data already have the form of a graph. Examples include

the linkage pattern of webpages and the interactions of proteins (see chapter 20).

In such cases, the directionality of the edges may be important.

1.3.4 Change of Representation

The topic of part IV is algorithms that are not intrinsically semi-supervised, but

instead perform two-step learning:

1. Perform an unsupervised step on all data, labeled and unlabeled, but ignoring

the available labels. This can, for instance, be a change of representation, or the
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construction of a new metric or a new kernel.

2. Ignore the unlabeled data and perform plain supervised learning using the new

distance, representation, or kernel.

This can be seen as direct implementation of the semi-supervised smoothness

assumption, since the representation is changed in such a way that small distances

in high-density regions are conserved.

Note that the graph-based methods (part III) are closely related to the ones

presented in this part: the very construction of the graph from the data can be

seen as an unsupervised change of representation. Consequently, the first chapter

of part IV, chapter 15, discusses spectral transforms of such graphs in order to build

kernels. Spectral methods can also be used for nonlinear dimensionality reduction,

as extended in chapter 16. Furthermore, in chapter 17, metrics derived from graphs

are investigated, for example, those derived from shortest paths.

1.3.5 Semi-Supervised Learning in Practice

Semi-supervised learning will be most useful whenever there are far more unlabeled

data than labeled. This is likely to occur if obtaining data points is cheap, but

obtaining the labels costs a lot of time, effort, or money. This is the case in many

application areas of machine learning, for example:

In speech recognition, it costs almost nothing to record huge amounts of speech,

but labeling it requires some human to listen to it and type a transcript.

Billions of webpages are directly available for automated processing, but to

classify them reliably, humans have to read them.

Protein sequences are nowadays acquired at industrial speed (by genome sequenc-

ing, computational gene finding, and automatic translation), but to resolve a three-

dimensional (3D) structure or to determine the functions of a single protein may

require years of scientific work.

Webpage classification is introduced in chapter 3 in the context of generative

models.

Since unlabeled data carry less information than labeled data, they are required

in large amounts in order to increase prediction accuracy significantly. This implies

the need for fast and efficient SSL algorithms. Chapters 18 and 19 present two

approaches to dealing with huge numbers of points. In chapter 18 methods are

developed for speeding up the label propagation methods introduced in chapter 11.

In chapter 19 cluster kernels are shown to be an efficient SSL method.

Chapter 19 also presents the first of two approaches to an important bioinformat-

ics application of semi-supervised learning: the classification of protein sequences.

While here the predictions are based on the protein sequences themselves, Chap-

ter 20 moves on to a somewhat more complex setting: The information is here

assumed to be present in the form of graphs that characterize the interactions of

proteins. Several such graphs exist and have to be combined in an appropriate way.
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This book part concludes with a very practical chapter: the presentation and

evaluation of the benchmarks associated with this book (chapter 21). It is intended

to give hints to the practitioner on how to choose suitable methods based on the

properties of the problem.

1.3.6 Outlook

The last part of the book, part VI, is devoted to some of the most interesting

directions of ongoing research in SSL.

Until now this book has mostly resticted itself to classification. Chapter 23

introduces another approach to SSL that is suited for both classification and

regression, and derives algorithms from it. Interestingly it seems not to require

the assumptions proposed in chapter 1.

Further, this book mostly presented algorithms for SSL. While the assumptions

discussed above supply some intuition on when and why SSL works, and chapter 4

investigates when and why it can fail, it would clearly be more satisfactory to have

a thorough theoretical understanding of SSL in total. Chapter 22 offers a PAC-style

framework that yields error bounds for SSL problems.

In chapter 24 inductive semi-supervised learning and transduction are compared

in terms of Vapnik-Chervonenkis (VC) bounds and other theoretical and philosoph-

ical concepts.

The book closes with a hypothetical discussion (chapter 25) between three

machine learning researchers on the relationship of (and the differences between)

semi-supervised learning and transduction.


