
Computational Methods of
Feature Selection

CRC PRESS

Boca Raton London New York Washington, D.C.

Contents

I Some Part 9

1 Randomized Feature Selection 11

David J. Stracuzzi Arizona State University

1.1 Introduction . 11
1.2 Types of Randomization . 12
1.3 Randomized Complexity Classes 13
1.4 Applying Randomization to Feature Selection 15
1.5 The Role of Heuristics . 16
1.6 Examples of Randomized Selection Algorithms 17

1.6.1 A Simple Las Vegas Approach 17
1.6.2 Two Simple Monte Carlo Approaches 19
1.6.3 Random Mutation Hill Climbing 21
1.6.4 Simulated Annealing 22
1.6.5 Genetic Algorithms . 24
1.6.6 Randomized Variable Elimination 26

1.7 Issues in Randomization . 28
1.7.1 Pseudorandom Number Generators 28
1.7.2 Sampling from Specialized Data Structures 29

1.8 Summary . 29

References 31

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC 3

List of Tables

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC 5

List of Figures

1.1 Illustration of the randomized complexity classes. 14
1.2 The Las Vegas Filter algorithm. 18
1.3 The Monte Carlo 1 algorithm. 19
1.4 The Relief algorithm. 20
1.5 The random mutation hill climbing algorithm. 22
1.6 A basic simulated annealing algorithm. 23
1.7 A basic genetic algorithm. 25
1.8 The randomized variable elimination algorithm. 27

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC 7

Part I

Some Part

9

Chapter 1

Randomized Feature Selection

David J. Stracuzzi
Arizona State University

1.1 Introduction . 11
1.2 Types of Randomization . 12
1.3 Randomized Complexity Classes . 12
1.4 Applying Randomization to Feature Selection . 15
1.5 The Role of Heuristics . 16
1.6 Examples of Randomized Selection Algorithms . 17
1.7 Issues in Randomization . 28
1.8 Summary . 29

1.1 Introduction

Randomization is an algorithmic technique that has been used to produce
provably efficient algorithms for a wide variety of problems. For many applica-
tions, randomized algorithms are either the simplest or the fastest algorithms
available, and sometimes both [16]. This chapter provides an overview of ran-
domization techniques as applied to feature selection. The goal of this chapter
is to provide the reader with sufficient background on the topic to stimulate
both new applications of existing randomized feature selection methods, and
research into new algorithms. Motwani and Raghavan [16] provide a more
broad and widely applicable introduction to randomized algorithms.

Learning algorithms must often make choices during execution. Random-
ization is useful when there are many ways available in which to proceed, but
determining a guaranteed good way is difficult. Randomization can also lead
to efficient algorithms when the benefits of good choices outweigh the costs of
bad choices, or when good choices occur more frequently than bad choices. In
the context of feature selection, randomized methods tend to be useful when
the space of possible feature subsets is prohibitively large. Likewise, random-
ization is often called for when deterministic feature selection algorithms are
prone to becoming trapped in local optima. In these cases, the ability of
randomization to sample the feature subset space is of particular value.

In the next section, we discuss two types of randomization that may be
applied to a given problem. We then provide an overview of three complexity
classes used in the analysis of randomized algorithms. Following this brief
theoretical introduction, we discuss explicit methods for applying randomiza-

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC 11

12 Computational Methods of Feature Selection

tion to feature selection problems, and provide examples. Finally, the chapter
concludes with a discussion of several advanced issues in randomization, and
a summary of key points related to the topic.

1.2 Types of Randomization

Randomized algorithms can be divided into two broad classes. Las Vegas
algorithms always output a correct answer, but may require a long time to
execute with small probability. One example of a Las Vegas algorithm is
the randomized quicksort algorithm (see Cormen, Lieserson and Rivest [4],
for example). Randomized quicksort selects a pivot point at random, but
always produces a correctly sorted output. The goal of randomization is to
avoid degenerate inputs, such as a pre-sorted sequence, which produce the
worst-case O(n2) runtime of the deterministic (pivot point always the same)
quicksort algorithm. The effect is that randomized quicksort achieves the
expected runtime of O(n log n) with high probability, regardless of input.

Monte Carlo algorithms may output an incorrect answer with small prob-
ability, but always complete execution quickly. As an example of a Monte
Carlo algorithm, consider the following method for computing the value of π,
borrowed from Krauth [11]. Draw a circle inside a square such that the sides
of the square are tangent to the circle. Next, toss pebbles (or coins) randomly
in the direction of the square. The ratio of pebbles inside the circle to those
inside the entire square should be approximately π

4 . Pebbles that land outside
the square are ignored.

Notice that the longer the algorithm runs (more pebbles tossed) the more
accurate the solution. This is a common, but not required, property of ran-
domized algorithms. Algorithms that generate initial solutions quickly, and
then improve them over time are also known as anytime algorithms [22]. Any-
time algorithms provide a mechanism for trading solution quality against com-
putation time. This approach is particularly relevant to tasks, such as feature
selection, in which computing the optimal solution is infeasible.

Some randomized algorithms are neither guaranteed to execute efficiently,
nor to produce a correct output. Such algorithms are typically also labeled
as Monte Carlo. The type of randomization used for a given problem de-
pends on the nature and needs of the problem. However, note that a Las
Vegas algorithm may be converted into a Monte Carlo algorithm by having it
output a random (possibly incorrect) answer whenever the algorithm requires
more than a specified amount of time to complete. Similarly, a Monte Carlo
algorithm may be converted into a Las Vegas algorithm by executing the al-
gorithm repeatedly with independent random choices. This assumes that the
solutions produced by the Monte Carlo algorithm can be verified.

Randomized Feature Selection 13

1.3 Randomized Complexity Classes

The probabilistic behavior that gives randomized algorithms their power,
also makes them difficult to analyze. In this section, we provide a brief in-
troduction to three complexity classes of practical importance for randomized
algorithms. Papadimitriou [18] provides a rigorous and detailed discussion
of these and other randomized complexity classes. For simplicity, we focus
on decision algorithms, or those that output “yes” and “no” answers, for the
remainder of this section.

Randomized algorithms are related to nondeterministic algorithms. Nonde-
terministic algorithms choose, at each step, among zero or more possible next
steps, with no specification of which choice should be taken. Contrast this to
deterministic algorithms which have exactly one next step available at each
step of the algorithm. Note the difference between nondeterministic choices
and conditional control structures, such as if . . . then statements, which are
fully determined by the input to the algorithm. A nondeterministic algorithm
accepts its input if there exists some sequence of choices that result in a “yes”
answer. The well-known class NP therefore includes languages accepted by
nondeterministic algorithms in a polynomial number of steps, while class P
does the same for languages accepted by deterministic algorithms.

Randomized algorithms differ from nondeterministic algorithms in that they
accept inputs probabilistically rather than existentially. The randomized com-
plexity classes therefore define probabilistic guarantees that an algorithm must
meet. For example, consider the class RP , for randomized polynomial time.
RP encompasses algorithms that accept good inputs (members of the under-
lying language) with non-trivial probability, always reject bad inputs (non-
members of the underlying language), and always execute in polynomial time.
More formally, a language L ∈ RP if some randomized algorithm R accepts
string s ∈ L with probability 1

ε
for any ε that is polynomial in |s|, rejects

s′ /∈ L with probability 1, and requires a polynomial number of steps in |s|.
Notice that the definition of RP corresponds to the set of Monte Carlo

algorithms that can make mistakes only if the input string is a member of the
target language. The complement of the this class, co-RP, then corresponds
to the set of algorithms that can make mistakes only if the input string is
not a member of the target language. Furthermore, the intersection these
two classes, RP∩ co-RP, corresponds to the set of Las Vegas algorithms that
execute in worst-case polynomial time.

To see why, first note that each problem in the intersection has two Monte
Carlo algorithms. One algorithm never outputs a false positive, while the
other never outputs a false negative. By conducting many repeated and in-
dependent executions of both algorithms, we are guaranteed to eventually
arrive at the correct output. (Recall that Las Vegas algorithms always output
the correct answer, but may take a long time to do so.) This intersection is

14 Computational Methods of Feature Selection

ZPP

NP

P

RP

coRP

BPP

FIGURE 1.1: Illustration of the randomized complexity classes in relation
to each other and the deterministic classes P and NP .

also known as the class ZPP, for polynomial randomized algorithms with zero
probability of error.

In practice we can use algorithms in RP to construct Monte Carlo al-
gorithms that produce the correct output with high probability simply by
running them polynomially many times. If any execution accepts the input,
then we return “yes”. Since algorithms in RP never produce false positive
results, we can guarantee that the probability of an false negative becomes
small. Here, that probability is (1− 1

ε
)k for k executions of the algorithm.

The third and largest complexity class of practical importance is BPP, for
polynomial time algorithms with bounded probability of error. Unlike RP and
ZPP, BPP allows a randomized algorithm to commit both false positive and
false negative errors. This class encompasses algorithms that accept good
inputs a majority of the time, and reject bad inputs a majority of the time.
More formally, a language L ∈ BPP if some randomized algorithm R accepts
s ∈ L with probability 1

2 + 1
ε

and accepts s /∈ L with probability 1
2 −

1
ε

for
any ε polynomial in |s|. Like RP and ZPP, we can create an algorithm
that produces the correct result with high probability simply by executing
repeatedly an algorithm that meets the stated minimums.

Figure 1.1 illustrates the relationships among the randomized classes, and
shows how the randomized classes related to the deterministic classes P and
NP . Note that the figure assumes that P 6= NP , which is an open problem. If
this assumption turns out to be false, then the complexity classes will collapse
into one or just a few classes.

Finally, note that the randomized complexity classes are semantic as op-
posed to syntactic classes such as P and NP . Semantic class membership
depends on the meaning of a specific algorithm instead of the format of the

Randomized Feature Selection 15

algorithm. For example, we can determine whether an algorithm is a member
of class P by counting the number of times the input is processed. Conversely,
we must consider the probability that a given input is accepted to determine
membership in the class RP . Thus, there is no simple way to check whether
a given randomized algorithm fits into a given randomized complexity class.
There can be no complete problems for such classes [18].

1.4 Applying Randomization to Feature Selection

A critical step in constructing a randomized algorithm is to decide which
aspect of the target problem to randomize. In some cases there may be only
one clear option. For example, in the deterministic quicksort algorithm, the
pivot is typically chosen arbitrarily as the first element of the current array.
However, any fixed choice of pivot would work equally well, so randomizing
the selection in an effort to protect against degenerate inputs is successful.
Other problems may offer several candidates for randomization.

We formulate the specific feature selection problem considered here as fol-
lows. Given a set of supervised training examples described by a set of input
features or variables x and a target concept or function y, produce a subset
of the original input variables that predict best the target concept or function
when combined into a hypothesis by a learning algorithm. The term “predict
best” may be defined in a variety of ways, depending on the specific applica-
tion. In this context, there are at least two possible sources of randomization.

The first source is the set of input variables. A feature selection algorithm
may choose at random which variables to include in a subset. The resulting
algorithm searches for the best variable subset by sampling the space of possi-
ble subsets. This approach to randomization carries an important advantage.
As compared to the popular greedy stepwise search algorithms [1, 8], which
add or remove a single variable at a time, randomization protects against local
minima. A broad sampling of subsets is unlikely to concentrate effort on any
one portion of the search space. Conversely, if many subsets have equally high
quality, then a randomized approach will also tend to find a solution quickly.

Randomizing over the set of variables is less likely to be effective if one
or a few of the variable subsets is much better than all of the others. The
probability of selecting one particular subset at random out of all possible
subsets is simply too small. A second issue with this type of randomization
is that there is no clear choice of when to stop sampling. A parameter must
be set arbitrarily within the algorithm, or the algorithm can be run until the
available computation time expires (as an anytime algorithm).

The second possible source of randomization is the set of training examples,
often known as the prototype selection problem. If the number of available

16 Computational Methods of Feature Selection

examples is very large, an algorithm can select at random which examples to
include in a given subset evaluation. The resulting algorithm may conduct
a traditional deterministic search through the space of feature subsets, but
evaluates those subsets based on a random sample of data. This option is
particularly useful when the number of examples available is intractably large,
or the available computation time is short.

Notice that as a side-effect, randomization reduces the confidence with
which the feature selection algorithm produces results. By sampling only
a small portion of the space of variable subsets, we lose confidence that the
algorithm’s final output is actually the best possible subset. Likewise, when
we sample the set of available training data, we lose confidence in the accu-
racy of our evaluation of a given feature subset. Such effects are of particular
concern for algorithms that randomize on both the set of input variables and
the set of examples. The approach offers the possibility of combining the
advantages of both randomization methods, but also reduces confidence in
two ways. Concerns about confidence must be balanced carefully against any
reductions in computation.

1.5 The Role of Heuristics

A fundamental goal of computer science is to find correct or optimal problem
solutions using a minimum of computation. For many problems, no known
algorithm can produce such a solution efficiently. Heuristics are therefore used
to relax one or both of these demands on optimality and efficiency.

Randomization itself is a problem solving heuristic. A randomized algo-
rithm may trade optimality for efficiency by searching only a sampled portion
of the state space, instead of the entire state space. In many cases there is no
guarantee that the best possible solution will be found, but often a relatively
good solution is found with an acceptable amount of computation.

Many algorithms employ multiple heuristics. One type of heuristic appro-
priate to a randomized algorithm is a sampling bias. In the context of feature
selection, an algorithm that always samples uniformly from the entire space
of feature subsets to obtain its next candidate solution uses randomization as
its only heuristic. However, algorithms that bias their samples, for example
by sampling only in the neighborhood of the current best solution, employ a
second heuristic in conjunction with randomization.

A variety of sampling biases are possible for feature and prototype selection
algorithms. We illustrate several examples in the following section. However,
not all sampling biases are appropriate to all selection problems. A sampling
bias that quickly focuses the search on a small set of features may not be
appropriate if there are several disjoints feature sets capable of producing good

Randomized Feature Selection 17

learner performance. Likewise, an approach that samples the space broadly
throughout the search may not be appropriate if the number of features is
large, but few are relevant. As noted above randomization may not be a good
choice of heuristic if there is some reason to believe that only a very small
number of feature subsets produce desirable results, while all other subsets
produce undesirable results. In this case, random sampling is unlikely to
uncover the solution efficiently.

Successful application of a randomized (or deterministic) selection algo-
rithm requires some understanding of the underlying feature space. The
heuristics and sampling biases used must be appropriate to the given task.
Viewed oppositely, successful application of a randomized algorithm implies
that the underlying feature space exhibits particular characteristics, and these
characteristics depend on the specific heuristics used to solve the problem.

1.6 Examples of Randomized Selection Algorithms

We now consider specific examples of randomized feature and prototype
selection algorithms. The goal is to illustrate ways in which randomization
can be applied to the feature selection problem. We consider both Las Vegas
and Monte Carlo methods, a variety of performance guarantees, along with
the strengths and weaknesses of each approach. The algorithms discussed
here also illustrate a variety of heuristics and sampling biases. As is often the
case, no one algorithm uniformly dominates another. The goal of this section
is to familiarize readers with existing methods for randomized selection, and
to provide the background necessary to make informed choices.

1.6.1 A Simple Las Vegas Approach

The key characteristic of a Las Vegas algorithm is that it must eventually
produce the correct solution. In the case of feature selection, this means
that the algorithm must produce a minimal subset of features that optimizes
some criteria, such as classification accuracy. The Las Vegas Filter (LVF)
algorithm discussed by Liu and Setino [12] achieves this goal, albeit under
specific conditions.

LVF searches for a minimal subset of features to describe a given set of su-
pervised training examples X =< x1, y1 >, . . . , < xM , yM >, where |xi| = N .
The subsets are selected uniformly at random with respect to the set of all
possible subsets. They are then evaluated according to an inconsistency cri-
terion, which tests the extent to which the reduced-dimension data can still
separate the class labels. If the newly selected subset is both smaller in size
and has an equal or lesser inconsistency rate, then the subset is retained. LVF

18 Computational Methods of Feature Selection

Given:

Examples X =< x1, y1 >, . . . , < xM , yM >
Maximum allowable inconsistancy γ
Number of attributes N
Number of iterations tmax

Algorithm:

Sbest ← all N attributes
cbest ← N
for i← 1 to tmax do

c← random number between 0 and cbest
S ← random selection of c features to include
if Inconsistancy(S,X) ≤ γ then

Sbest ← S
cbest ← c

return(Sbest)

FIGURE 1.2: The Las Vegas Filter algorithm [12].

performs this simple sampling procedure repeatedly, stopping after a prede-
termined number of iterations, tmax . Figure 1.2 shows the LVF algorithm.

There are two important caveats to the LVF algorithm. First, the algorithm
can only be labeled as a Las Vegas algorithm if it is allowed to run sufficiently
long to find the optimal solution. For training data described by N input
features, we expect to need approximately 2N iterations. In the case where
tmax � 2N , the algorithm should be considered Monte Carlo. Notice that the
Monte Carlo version of the algorithm may be used in an anytime format by
returning the current best feature subset at any point during execution.

The second caveat to LVF regards the allowable inconsistency rate, γ. This
parameter controls the trade-off between the size of the returned feature sub-
set, and the ability of that subset to distinguish among examples. If we set
γ equal to the inconsistency rate of the full data set X(), then LVF is guar-
anteed to find the optimal solution under the conditions described above for
tmax . However, a larger inconsistency rate allows LVF to reach smaller fea-
ture subsets more quickly. The algorithm then effectively becomes a greedy
local search, and is susceptible to local minima. LVF ignores any subset that
is selected with size larger than the current best. If a larger subset exists
that has a lower inconsistency rate, then the algorithm will not find it. Thus,
given an inconsistency rate larger than that of the full data set, LVF must be
considered as a Monte Carlo algorithm, regardless of the number of iterations
performed.

Randomized Feature Selection 19

Given:

Examples X =< x1, y1 >, < xM , yM >, . . .
Number of iterations tmax

Number of prototypes p

Algorithm:

Xbest ← random selection of p examples from X

for i← 1 to tmax do

X′ ← random selection of p examples from X

if kNN(X′,X) > kNN(Xbest,X) then

Xbest ← X′

return(Xbest)

FIGURE 1.3: The Monte Carlo 1 algorithm [19].

1.6.2 Two Simple Monte Carlo Approaches

Consider next two applications of Monte Carlo randomization to feature
selection. The goal of the first is to reduce the computational requirements
of the nearest neighbor learner by sampling over the set of available training
examples. The algorithm, called MC1 [19], repeatedly samples the data set
in an attempt to find a small subset of prototypes (training examples) which
allow nearest neighbor to generalize well to unseen examples.

The MC1 procedure begins by selecting p prototypes at random from the
available examples, where p is chosen in advance by the user. Classification
accuracy for nearest neighbor is then computed over the entire training set.
If the selected set of examples leads to higher accuracy than the previous
best subset, then the new subset is retained. This procedure is repeated tmax

times, where tmax is also specified in advance by the user. The example subset
which yields the highest accuracy is then returned at the end of the procedure
and used on test data. Figure 1.3 summarizes the MC1 algorithm.

Notice that if we set tmax sufficiently large, then we are virtually guaranteed
to find the best possible set of prototypes for a given value of p. Thus, like the
LVF algorithm, MC1 behaves like a Las Vegas algorithm in the limit. Unlike
LVF, which attempts to find the minimum number of features, MC1 does
not necessarily find the minimum number of prototypes, p. Notice also that
MC1 makes no assumptions particular to the nearest neighbor learner. The
selection algorithm can therefore be adapted as a general purpose wrapper,
and be used with any classification learning algorithm.

Skalak’s experiments [19] show that MC1 performs best when the training
and test data exhibit well defined class boundaries. Put another way, MC1
performs well when there is little overlap between examples from different
classes. This may be an artifact of the nearest neighbor algorithm and not of
Monte Carlo randomization in general. Nevertheless, the result reinforces the
notion that we cannot expect randomized techniques to find a single specific

20 Computational Methods of Feature Selection

Given:

Examples X =< x1, y1 >, . . . < xm, ym >
Relevancy cut-off τ
Number of iterations tmax

Algorithm:

Partition X by class into X+ and X−

Initialize w = (0, 0, . . . , 0)
for i← 1 to tmax do //compute relevance

xi ← random example x ∈ X

x+
i ← nearest x+ ∈ X+ to xi

x−

i ← nearest x− ∈ X− to xi

if xi ∈ X+ then

update(w,xi,x
+
i ,x−

i)
else

update(w,xi,x
−

i ,x+
i)

for i← 1 to N do //select most relevant
if wi

tmax
≥ τ then

feature i is relevant

Procedure update(w,x,x+,x−) //update relevance values
for i← 1 to N do

wi ← wi − diff(x,x+)2 + diff(x,x−)2

FIGURE 1.4: The Relief algorithm [9].

solution within a large search space.
The Relief algorithm [9] demonstrates a different use of Monte Carlo ran-

domization. Relief is a basic, two-class filtering algorithm which ranks vari-
ables according to a statistical measure of how well individual features sepa-
rate the two classes. In an effort to reduce the computational cost of calcu-
lating these statistics, Relief selects examples at random for the computation.

Briefly, the algorithm operates by calculating a weight value for each of the
N available features. These weights are calculated using a random sample of
examples from the full set of supervised examples X. Relief selects a training
example xi at random and then finds, according to Euclidean distance, the
nearest same-class example x+

i and the nearest different-class example x−

i .
These examples are then used to update the weight value for each feature
according to the difference between xi, x+

i , and x−

i . Here, the difference
for nominal feature k is defined as 1 if xi,k and xj,k have different nominal
values, and is defined as 0 if they are the same. For numerical features, the
difference is simply xi,k−xj,k normalized into the range [0, 1]. This procedure
is repeated tmax times for some preset value of tmax . Features with weight
greater than a specified value τ are considered relevant to the target output
variable. Figure 1.4 summarizes the relief algorithm.

Randomized Feature Selection 21

Notice the similarities and differences between MC1 and Relief. Both al-
gorithms use randomization to avoid evaluating all M available training ex-
amples. MC1 achieves this goal by evaluating many hypotheses on different
random example subsets, while Relief simply selects one random subset of
examples on which to perform evaluations. Relief’s approach is faster compu-
tationally, but cannot provide the user with any confidence that the selection
of examples is representative of the sample space. In particular, the fewer
examples selected, the less likely the random subset will provide a represen-
tative sample of the space. MC1 mitigates this problem by searching for the
most beneficial, and presumably representative, example subset.

1.6.3 Random Mutation Hill Climbing

Skalak [19] discusses a feature selection approach based on randomized local
search, called random mutation hill climbing (RMHC). As with the MC1
algorithm, the goal is to reduce the computational cost of the nearest neighbor
learner while maximizing classification accuracy. Unlike MC1, which samples
the space of possible prototype subsets, the RMHC algorithm conducts a more
localized search by changing only one included prototype per iteration.

RMHC uses a single bit vector to encode the index of each of the p se-
lected prototypes. This bit vector is initialized randomly, and the algorithm
proceeds by flipping one randomly selected bit on each iteration. This has
the effect of replacing exactly one prototype with another. The new set of
prototypes is then evaluated on the entire training set using nearest neighbor,
and is retained if it produces higher accuracy than the current set. Otherwise
the change is discarded. The algorithm terminates after a fixed number of
iterations, tmax . Figure 1.5 summarizes the RMHC algorithm. Note that,
like MC1, RMHC can be adapted for use with learning algorithms other than
nearest neighbor.

Skalak also describes a variant of the algorithm in which the bit vector
also encodes which of the features are selected for use. Here, when a bit is
selected for flipping, it may either change the set of included prototypes, or
the set of included features. No control over the relative probability of these
changes is considered. Experimental results, though limited, suggest that
RMHC does improve both the computational requirements and the classifi-
cation performance of k-nearest neighbor. Notice however, that because the
random selections are embedded in a greedy local search, RMHC does not
necessarily avoid falling into local extrema. Thus, RMHC is a Monte Carlo
algorithm that cannot be converted into a Las Vegas algorithm simply by
increasing the number of iterations, tmax . We can still convert RMHC to a
Las Vegas algorithm by running the algorithm many times, however.

22 Computational Methods of Feature Selection

Given:

Examples X =< x1, y1 >, . . . , < xm, ym >
Number of iterations tmax

Number of prototypes p

Algorithm:

Xbest ← random selection of p examples from X

b← random bit vector encoding p prototype indicies
for i← 1 to tmax do

j ← random number between 0 . . . |b|
flip bit bj

X′ ← set of prototypes from X included by b

if kNN(X′,X) > kNN(Xbest,X) then

Xbest ← X′

return(Xbest)

FIGURE 1.5: The random mutation hill climbing algorithm [19].

1.6.4 Simulated Annealing

Simulated annealing [10, 2] is a general purpose stochastic search algo-
rithm inspired by a process used in metallurgy. The heating and slow cooling
technique of annealing allows the initially excited and disorganized atoms of
a metal to find strong, stable configurations. Likewise, simulated annealing
seeks solutions to optimization problems by initially manipulating the solution
at random (high temperature), and then slowly increasing the ratio of greedy
improvements taken (cooling) until no further improvements are found.

To apply simulated annealing, we must specify three parameters. First is an
annealing schedule, which consists of an initial and final temperature, T0 and
Tfinal , along with an annealing (cooling) constant ∆T . Together these govern
how the search will proceed over time and when the search will stop. The
second parameter is a function used to evaluate potential solutions (feature
subsets). The goal of simulated annealing is to optimize this function. For this
discussion, we assume that higher evaluation scores are better. In the context
of feature selection, relevant evaluation functions include the accuracy of a
given learning algorithm using the current feature subset (creating a wrapper
algorithm), or a variety of statistical scores (producing a filter algorithm).

The final parameter for simulated annealing is a neighbor function, which
takes the current solution and temperature as input, and returns a new,
“nearby” solution. The role of the temperature is to govern the size of the
neighborhood. At high temperature the neighborhood should be large, allow-
ing the algorithm to explore broadly. At low temperature, the neighborhood
should be small, forcing the algorithm to explore locally. For example, sup-
pose we represent the set of available features as a bit vector, such that each
bit indicates the presence or absence of a particular feature. At high temper-

Randomized Feature Selection 23

Given:

Examples X =< x1, y1 >, . . . < xm, ym >
Annealing schedule, T0, Tfinal and ∆T with 0 < ∆T < 1
Feature subset evaluation function Eval (·, ·)
Feature subset neighbor function Neighbor (·, ·)

Algorithm:

Sbest ← random feature subset
while Ti > Tfinal do

Si ← Neighbor (Sbest , Ti)
∆E ← Eval(Sbest , X)− Eval (Si, X)
if ∆E < 0 then //if new subset better

Sbest ← Si

else //if new subset worse
Sbest ← Si with probability exp(−∆E

Ti

)

Ti+1 ← ∆T × Ti

return(Sbest)

FIGURE 1.6: A basic simulated annealing algorithm.

ature, the neighbor function may flip many bits to produce the next solution,
while at low temperature the neighbor function may flip just one bit.

The simulated annealing algorithm, shown in Figure 1.6, attempts to it-
eratively improve a randomly generated initial solution. On each iteration,
the algorithm generates a neighboring solution and computes the difference in
quality (energy, by analogy to metallurgy process) between the current and
candidate solutions. If the new solution is better, then it is retained. Oth-
erwise, the new solution is retained with a probability that is dependent on
the quality difference, ∆E, and the temperature. The temperature is then
reduced for the next iteration.

Success in simulated annealing depends heavily on the choice of the anneal-
ing schedule. If ∆T is too large (near one), the temperature decreases slowly,
resulting in slow convergence. If ∆T is too small (near zero), then the tem-
perature decreases quickly and convergence will likely reach a local extrema.
Moreover, the range of temperatures used for an application of simulated an-
nealing must be scaled to control the probability of accepting a low-quality
candidate solution. This probability, computed as exp(−∆E

Ti

), should be large
at high temperature and small at low temperature to facilitate exploration
early in the search, and greedy choices later in the search.

In spite of the strong dependence on the cooling schedule, simulated an-
nealing is guaranteed to converge provided that the schedule is sufficiently
long [6]. From a theoretical point of view, simulated annealing is therefore a
Las Vegas algorithm. However, in practice the convergence guarantee requires
intractably long cooling schedules, resulting in a Monte Carlo algorithm. Al-

24 Computational Methods of Feature Selection

though the literature contains relatively few examples of simulated annealing
applications to feature selection, the extent to which the algorithm can be cus-
tomized (annealing schedule, neighbor function, evaluation function) makes
it a good candidate for future work. As noted above, simulated annealing
supports both wrapper and filter approaches to feature selection.

1.6.5 Genetic Algorithms

Like simulated annealing, genetic algorithms are a general purpose mecha-
nism for randomized search. There are four key aspects to their use: encoding,
population, operators, and fitness. First, the individual states in the search
space must be encoded into some string-based format, typically bit-strings
similar to those used by RMHC. Second, an initial population of individuals
(search states, such as feature subsets) must be selected at random. Third,
one or more operators must be defined as a method for exchanging information
among individuals in the population. Operators define how the search pro-
ceeds through state space. Typical operators include crossover, which pairs
two individuals for the exchange of substrings, and mutation, which changes
a randomly selected bit in an individual string with low probability. Finally,
a fitness function must be defined to evaluate the quality of states in the pop-
ulation. The goal of genetic algorithms is to optimize the population with
respect to the fitness function.

The search conducted by a genetic algorithm proceeds iteratively. Individu-
als in the population are first selected probabilistically with replacement based
on their fitness scores. Selected individuals are then paired and crossover is
performed, producing two new individuals. These are next mutated with low
probability and finally injected into the next population. Figure 1.7 shows a
basic genetic algorithm.

Genetic algorithms have been applied to the feature selection problem in
several different ways. For example, Vafaie and De Jong [21] describe a
straightforward use of genetic algorithms in which individuals are represented
by bit-strings. Each bit marks the presence or absence of a specific feature.
The fitness function then evaluates individuals by training and then testing
a specified learning algorithm based on only the features that the individual
specifies for inclusion.

In a similar vein, SET-Gen [3] uses a fitness function that includes both the
accuracy of the induced model and the comprehensibility of the model. The
learning model used in their experiments was a decision tree, and comprehen-
sibility was defined as a combination of tree size and number of features used.
The FSS-EBNA algorithm [7] takes a more complex approach to crossover by
using a Bayesian network to mate individuals.

Two well-known issues with genetic algorithms relate to the computational
cost of the search and local minima in the evaluation function. Genetic algo-
rithms maintain a population (100 is a common size) of search space states
which are mated to produce offspring with properties of both parents. The ef-

Randomized Feature Selection 25

Given:

Examples X =< x1, y1 >, . . . < xm, ym >
Fitness function f(·, ·)
Fitness threshold τ
Population size p

Algorithm:

P0 ← population of p random individuals
for k ← 0 to ∞ do

sum ← 0
for each individual i ∈ Pk do //compute pop fitness

sum ← sum + f(i, X)
if f(i, X) ≥ τ then

return(i)
for each individual i ∈ Pk do //compute selection probs

Prk[i]← f(i, X)
sum

for j ← 1 to p
2 do //select and breed

select i1, i2 ∈ Pk according to Prk with replacement
i1, i2 ← crossover (i1, i2)
i1 ← mutate(i1)
i2 ← mutate(i2)
Pk+1 ← Pk+1 + {i1, i2}

FIGURE 1.7: A basic genetic algorithm.

fect is an initially broad search that targets more specific areas of the space as
search progresses. Thus, genetic algorithms tend to drift through the search
space based on properties of individuals in the population. A wide variety of
states, or feature subsets in this case, are explored. However, the cost of so
much exploration can easily exceed the cost of a traditional greedy search.

The second problem with genetic algorithms occurs when the evaluation
function is non-monotonic. The population may quickly focus on a local
maximum in the search space, and become trapped. The mutation operator,
a broad sampling of the state space in the initial population, and several other
tricks are known to mitigate this effect. Goldberg [5] and Mitchell [15] provide
detailed discussions of the subtleties and nuances involved in setting up a
genetic search. Nevertheless, there is no guarantee that genetic algorithms
will produce the best, or even a good result. This issue may arise with any
probabilistic algorithm, but some are more prone to becoming trapped in
suboptimal solutions than others.

26 Computational Methods of Feature Selection

1.6.6 Randomized Variable Elimination

Each of the algorithms considered so far use a simple form of randomization
to explore the space of feature or example subsets. MC1 and LVF both sample
the space of possible subsets globally, while RMHC samples the space in the
context of a greedy local search. Simulated annealing and genetic algorithms,
meanwhile, conduct initially broad searches that incrementally target more
specific areas over time. The next algorithm we consider samples the search
space in a more directed manner.

Randomized variable elimination (RVE) [20] is a wrapper method motivated
by the idea that, in the presence of many irrelevant variables, the probabil-
ity of selecting several irrelevant variables simultaneously at random is high.
RVE searches backward through the space of variable subsets, attempting to
eliminate one or more variables per step. Randomization allows for selection
of irrelevant variables with high probability, while selecting multiple variables
allows the algorithm to move through the space without incurring the cost of
evaluating the intervening points in the search space. RVE conducts its search
along a very narrow trajectory, sampling variable subsets sparsely, rather than
broadly and uniformly. This more structured approach allows RVE to reduce
substantially the total cost of identifying relevant variables.

A backward search serves two purposes for this algorithm. First, backward
elimination eases the problem of recognizing irrelevant or redundant variables.
As long as a core set of relevant variables remains intact, removing other
variables should not harm the performance of a learning algorithm. Indeed,
the learner’s performance may increase as irrelevant features are removed
from consideration. In contrast, variables whose relevance depends on the
presence of other variables may have no noticeable effect when selected in
a forward manner. Thus, mistakes should be recognized immediately via
backward elimination, while good selections may go unrecognized by a forward
selection algorithm.

The second purpose of backward elimination is to ease the process of se-
lecting variables for removal. If most variables in a problem are irrelevant,
then a random selection of variables is likely to uncover them. Conversely, a
random selection is unlikely to turn up relevant variables in a forward search.
Thus, forward search must work harder to find each relevant variable than
backward search does for irrelevant variables.

RVE begins by executing the learning algorithm L on data which includes
all N variables. This generates an initial hypothesis h. Next, the algorithm
selects k input variables at random for removal. To determine the value
of k, RVE computes a cost (with respect to a given learning algorithm) of
attempting to remove k input variables out of n remaining variables given
that r are relevant. Note that knowledge of r is required here, although the
assumption is later removed. A table kopt (n, r) of values for k given n and
r is then computed via dynamic programming by minimizing the aggregate
cost of removing all N − r irrelevant variables. Note that n represents the

Randomized Feature Selection 27

Given:

Examples X =< x1, y1 >, . . . < xm, ym >
Learning algorithm L
Number of input features N
Number of relevant features r

Algorithm:

n← N
h← hypothesis produced by L on all N inputs
compute schedule kopt (i, r) for r < i ≤ N by dynamic programming
while n > r do

select kopt (n, r) variables at random and remove them
h′ ← hypothesis produced by L on n− kopt (n, r) inputs
if error(h′,X) < error(h,X) then

n← n− kopt (n, r)
h← h′

else

replace the kopt (n, r) selected variables
return(h)

FIGURE 1.8: The randomized variable elimination algorithm [20].

number of remaining variables, while N denotes the total number of variables
in the original problem.

On each iteration, RVE selects kopt (n, r) variables at random for removal.
The learning algorithm is then trained on the remaining n−kopt(n, r) inputs,
and a hypothesis h′ is produced. If the error e(h′) is less then the error of
the previous best hypothesis e(h), then the selected inputs are marked as
irrelevant and are all simultaneously removed from future consideration. If
the learner was unsuccessful, meaning the new hypothesis had larger error,
then at least one of the selected inputs must have been relevant. The removed
variables are replaced, a new set of kopt (n, r) inputs is selected, and the process
repeats. The algorithm terminates when all N−r irrelevant inputs have been
removed. Figure 1.8 shows the RVE algorithm.

Analysis of RVE [20] shows that the algorithm expects to evaluate only
O(r log(N)) variable subsets to remove all irrelevant variables. This is a
striking result, as it implies that a randomized backward selection wrapper
algorithm evaluates fewer subsets, and requires less total computation than
forward selection wrapper algorithms. Stracuzzi and Utgoff provide a detailed
formal analysis of randomized variable elimination [20].

The assumption that the number of relevant variables r is known in ad-
vance plays a critical role in the RVE algorithm. In practice, this is a strong
assumption that is not typically met. Stracuzzi and Utgoff [20] therefore pro-
vide a version of the algorithm, called RVErS (pronounced “reverse”), that

28 Computational Methods of Feature Selection

conducts a binary search for r during RVE’s search for relevant variables.

Experimental studies suggest RVErS evaluates a sublinear number of vari-
able subsets for problems with sufficiently many variables. This conforms to
the performance predicted by the analysis of RVE. Experiments also show
that for problems with hundreds or thousands of variables, RVErS typically
requires less computation than a greedy forward selection algorithm while pro-
ducing competitive accuracy results. In practice, randomized variable elimi-
nation is likely to be effective for any problem which contains many irrelevant
variables.

1.7 Issues in Randomization

The preceding sections in this chapter covered the basic use of randomiza-
tion as an algorithmic technique, specifically as applied to feature selection.
We now consider more advanced issues in applying randomization. Of partic-
ular interest and importance are sampling techniques, and the source of the
random numbers used in the algorithms.

1.7.1 Pseudorandom Number Generators

Randomized algorithms necessarily depend on the ability to produce a se-
quence of random numbers. However, deterministic machines such as modern
computers are not capable of producing sequences of truly random numbers.
John von Neumann once stated that, “Anyone who considers arithmetical
methods of producing random digits is, of course, in a state of sin” [17].
In practice, we must rely on pseudorandom number generators to provide
sequences of numbers that exhibit statistical properties similar to those of
genuinely random numbers.

The main property of pseudorandom numbers that differs from true random
numbers is periodicity. No matter how sophisticated a pseudorandom number
generating algorithm may be, it will eventually revisit a past state and begin
repeating the number sequence. Other possible problems with pseudorandom
number generators include non-uniform distribution of the output sequence,
correlation of successive values (predictability), and short periods for certain
starting points. The presence of any of these properties can cause poor or
unexpected performance in a randomized algorithm.

The primary defense against such undesirable results is to select a good
pseudorandom number generator prior to running any experiments. For ex-
ample, the Mersenne twister algorithm [14] has proved useful for statistical
simulations and generative modeling purposes. The algorithm has a very
long period of 219937, provides a provably good distribution of values, and is

Randomized Feature Selection 29

computationally inexpensive. A variety of other suitable, but less complex
algorithms are also available, particularly if the user knows in advance that
the length of the required sequence of pseudorandom numbers is short.

1.7.2 Sampling from Specialized Data Structures

A second possible pitfall in the use of randomized algorithms stems from
sampling techniques. For small databases, such as those that can be stored in a
simple table or matrix, examples and features (rows and columns respectively)
may be selected by simply by picking an index at random. However, many
large databases are stored in more sophisticated, non-linear data structures.
Uniformly distributed, random samples of examples cannot be extracted from
such databases via simple, linear sampling methods.

An improperly extracted sample is unlikely to be representative of the larger
database. The results of a feature selection or other learning algorithm run on
such a sample may not extrapolate well to the rest of the database. In other
words, the error achieved by feature selection and/or learning algorithm on
a sampled test database will be overly optimistic. In general, different data
structures will require different specialized sampling methods.

One example of a specialized sampling algorithm is discussed by Makawita,
Tan and Liu [13]. Here, the problem is to sample uniformly from a search tree
that has a variable number of children at internal nodes. The naive approach
of simply starting at the root and then selecting random children at each step
until reaching a leaf (known as a random walk) will tend to oversample from
paths that have few children at each internal node. This is an artifact of the
data structure and not the data itself, and so is unacceptable. The presented
solution is to bias the acceptance of the leaf node into the sample by keeping
track of the fanout at each internal node along the path. Leaves from paths
with low fanout are accepted with lower probability than those from paths
with high fanout. The sampling bias of the naive algorithm is thus removed.

1.8 Summary

The feature selection problem possesses characteristics that are critical to
successful applications of randomization. First, the space of all possible fea-
ture subsets is often prohibitively large. This means that there are many
possible choices available at each step in the search, such as which feature
to include or exclude next. Second, those choices are often difficult to eval-
uate, because learning algorithms are expensive to execute and there may
be complex interdependencies among features. Third, deterministic selection
algorithms are often prone to becoming trapped in local optimal, also due

30 Computational Methods of Feature Selection

to interdependencies among features. Finally, there are often too many ex-
amples available for an algorithm to consider each one deterministically. A
randomized approach of sampling feature subset space helps to mitigate all of
these circumstances.

In practice, there are several important issues to consider when constructing
a randomized algorithm for feature selection. First is the decision of which
aspect of the problem will be randomized. One option is to randomize over the
set of input variables, causing the resulting algorithm to search for the best
variable subset by sampling from the space of all subsets. A second approach
is to randomize over the set of training examples, creating an algorithm that
considers only a portion of the available training data. Finally, one may also
randomize over both the input variables and the training data. In any case,
the achieved reduction in computational cost must be balanced against a loss
of confidence in the solution.

The second issue to consider in randomization relates to the performance
of the resulting algorithm. Some tasks may demand discovery of the best
possible feature subset, necessitating use of a Las Vegas algorithm. Other
tasks may sacrifice solution quality for speed, making a Monte Carlo algorithm
more appropriate. A third option is to generate an initial solution, and then
improve the solution over time, as in anytime algorithms [22]. Many more
specific guarantees on performance are also possible.

Other issues in the application of randomization include the quality of the
pseudorandom number generator used, and the sampling technique that is
used. Both of these can impact the performance of the randomized algorithm.
The feature selection literature contains examples of the different randomiza-
tions methods (randomization over features versus examples), a variety of
performance guarantees, and special purpose sampling methods, as discussed
throughout the chapter. Although far from a complete exposition, this chapter
should provide sufficient information to launch further study of randomized
algorithms in the context of feature selection.

References

[1] R. Caruana and D. Freitag. Greedy attribute selection. In Machine
Learning: Proceedings of the Eleventh International Conference, pages
121–129, New Brunswick, NJ, 1994. Morgan Kaufmann.

[2] V. Černý. A thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm. Journal of Optimization Theory
and Applications, 45:41–51, 1985.

[3] K. Cherkauer and J. Shavlik. Growing simpler decision trees to facilitate
knowledge discovery. In E. Simoudis, J. Han, and U. M. Fayyad, edi-
tors, Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, Portland, OR, 1996. AAAI Press.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Press, Cambridge, MA, 1990.

[5] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, MA, 1989.

[6] H. M. Hastings. Convergence of simulated annealing. ACM SIGACT
News, 17(2):52–63, 1985.

[7] I. Inza, P. Larranaga, E. R., and B. Sierra. Feature subset selection
by Bayesian network-based optimization. Artificial Intelligence, 123(1–
2):157–184, 2000.

[8] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset
selection problem. In Machine Learning: Proceedings of the Eleventh In-
ternational Conference, pages 121–129, New Brunswick, NJ, 1994. Mor-
gan Kaufmann.

[9] K. Kira and L. Rendell. A practical approach to feature selection. In
S. D. H. and P. Edwards, editors, Machine Learning: Proceedings of the
Ninth International Conference, Aberdeen, Scotland, UK, 1992. Morgan
Kaufmann.

[10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simu-
lated annealing. Science, 220(4598):671–680, 1983.

[11] W. Krauth. Introduction to monte carlo algorithms. In J. Kertesz and
I. Kondor, editors, Advances in Computer Simulation, Lecture Notes in
Physics. SpringerVerlag, New York, 1998.

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC 31

32 References

[12] H. Liu and R. Setino. A probabilistic approach to feature selection.
In L. Saitta, editor, Machine Learning: Proceedings of the Thirteenth
International Conference on Machine Learning, pages 319–327, Bari,
Italy, 1996. Morgan Kaufmann.

[13] D. P. Makawita, K.-L. Tan, and H. Liu. Sampling from databases us-
ing B+-trees. In Proceedings of the 2000 ACM CIKM International
Conference on Information and Knowledge Management, pages 158–164,
McLean, VA, 2000. ACM.

[14] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-
dimensionally equidistributed uniform pseudorandom number generator.
ACM Transactions on Modeling and Computer Simulation, 8(1):3 – 30,
1998.

[15] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cam-
bridge, MA, 1996.

[16] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, Cambridge, UK, 1995.

[17] J. von Neumann. Various techniques used in connection with random
digits. In Applied Mathematics Series, no. 12. 1951.

[18] C. H. Papadimitriou. Computational Complexity. Addison-Wesley,
Reading, MA, 1994.

[19] D. B. Skalak. Prototype and feature selection by sampling and random
mutation hill climbing. In W. W. Cohen and H. Hirsh, editors, Machine
Learning: Proceedings of the Eleventh International Conference, pages
293–301, New Brunswick, NJ, 1994. Morgan Kaufmann.

[20] D. J. Stracuzzi and P. E. Utgoff. Randomized variable elimination.
Journal of Machine Learning Research, 5:1331–1364, 2004.

[21] H. Vafaie and K. DeJong. Genetic algorithms as a tool for restructuring
feature space representations. In Proceedings of the Seventh Interna-
tional Conference on Tools with AI, Herndon, VA, 1995. IEEE Computer
Society Press.

[22] S. Zilberstein. Using anytime algorithms in intelligent systems. AI Mag-
azine, 17(3), 1996.

Index

BPP, 14
RP , 13
ZPP, 13–14

anytime algorithm
definition of, 12

FSS-EBNA, 24

genetic algorithm, 24–25

heuristics, 16–17

Las Vegas algorithm
definition of, 12
example of, 17–18, 23

LVF, 17–18

MC1, 19–20
Monte Carlo algorithm

definition of, 12
example of, 17–28

pseudorandom numbers, 28–29

random numbers, see pseudorandom
numbers

randomization
and confidence, 16
and heuristics, 16–17
and sampling bias, 16–17, 29
Las Vegas, 12
Monte Carlo, 12

Relief, 20
RMHC, 21
RVE, 26–27
RVErS, 27–28

SET-Gen, 24
simulated annealing, 22–24

33

