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INF 5300 - 4.3.2014
Energy functions for segmentation/classification

Anne Schistad Solberg

 Bayesian spatial models for classification

 Markov random field models for spatial context

Other segmentation techniques:

 EM-clustering

 Mean shift segmentation

Curriculum
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3.7.2 in Szeliski

5.3

Additional reading:

 Will use the notation from ”Random field models in image 
analysis” by Dubes and Jain, Journal of Applied Statistics, 
1989, pp. 131-154, except section 2.3 and 2.4. 

 For the extension to using other types of constraints, more 
details can be found in ”A Markov random field model for 
classification of multisource satellite imagery”, by Solberg, 
Taxt and Jain.  

Segmentation methods covered

• Watershed segmentation (INF 4300)
• Split-and-merge/region growing (INF 4300)
• K-means clustering (INF 4300)

– We extend this to mixtures of Gaussian now
• Mean shift segmentation
• Graph-cut algorithms ++(in a later lecture)
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K-means clustering (Repetition)
• Note: K-means algorithm normally means ISODATA, but different 

definitions are found in different books
• K is assumed to be known
1. Start with assigning K cluster centers

– k random data points, or the first K points, or K equally spaces points
– For k=1:K, Set k equal to the feature vector xk for these points.

2. Assign each object/pixel xi in the image to the closest cluster center
using Euclidean distance.
• Compute for each sample the distance r2 to each cluster center:

• Assign xi to the closest cluster (with minimum r value) 

3. Recompute the cluster centers based on the new labels.
4. Repeat from 2 until #changes<limit.

ISODATA K-means: splitting and merging of clusters are included in 
the algorithm
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Clustering by mixtures of Gaussians
• Euclidean distance can be replaced by Mahalanobis distance

from point xi to cluster center k:

• We could just modify the K-means algorithm to use this
measure after the first iteration.

• Mixtures of Gaussian considers that samples can be softly
assigned to several nearby cluster centers:

• k is the mixing coefficient for cluster with mean k and 
covariance k.
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The EM-algoritm for clustering
• The EM-algoritm iteratively estimate the mixture

parameters:
1. Expectation step (E-step): compute

2. Maximation stage (M-step): update
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An estimate of the probability that xi 
belongs to the kth Gaussian
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Mean shift
clustering/segmentation algorithm

• K-means and mixtures of Gaussian are based on a 
parametric probability function. 

• An alternative is to use a non-parametric smooth
function that fits the data. 

• The mean shift algoritms efficiently finds peaks in a 
distribution without estimating the entire distribution.

• It can be seen as the «inverse» of the watershed
algorithm, which clims downhill. 
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The mean shift – background
• Assume that we want a clustering

algorithm that does not assume any
particular distribution of the feature
vectors.

• We want to fit a non-parametric
probability density to the scatter plot

• To estimate a density function for the
scatter plots, we could use a Parzen
window estimator, which smooths the
data by convolving it with a kernel k() of
width h:

•
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Scatter plots in L*u*v* space
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Mean shift segmentation – main idea
• Want to avoid estimating f(x) at all locations.
• Main ideas: select random locations in the scatter plot as cluster

centers. Move the cluster centers in the direction of a peak in the
feature space/scatter plot. 

• If we move in the direction of the negative gradient, we will move
towards a local peak. 

• It uses the so-called multiple restart gradient descent algorithm: start 
at many points yk and take a step up-hill from these point. 

• Locally, we estimate f(x) using a kernel function K(x-xi). Typically a 
Gaussian kernel is used (h is the width of the kernel): 

• The estimate of f(x) is then:

• d is the number of features.
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What is a kernel?
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Gradient ascent
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Mean shift segmentation
• The gradient of f is (let g(r)=-k’(r)):

• This can be written as

• Start at location y0. The current estimate of yk is replaced with
its locally shifted weighted mean:

• Simple but slow algorithm: start a separate mean shift estimate
y at every input point x, and iteration until only small changes.

• Faster: start at random points. 
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Illustration of mean shift

• The kernel K is convolved with the image.
• The derivative of the kernel is computed by convolving the

image with the derivative of the kernel
• The mean shift change m(x) is found from the derivative f’(x)
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Adding spatial context
• Including location information :

– Add the coordiates xs= (x,y) in the kernel:

– xr is the spectral feature vector and hr and hs the bandwidth
in the spectral and spatial domain.

– The effect of this is that the algoritm step will take both
spectral and spatial information and e.g. use larger steps in 
space between pixels with similar color. 
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Spectral feature kernel

Spatial  kernel involving the
difference in coordinates

between current pixel and 
the cluster center pixel

Mean shift in feature space
• The black lines illustrate the

shifts in cluster centers as 
the iterations propagate.

• The red dots are the cluster
centers we end up with.
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Applications of mean shift
• The mean shift principle can be used for different 

applications:
– Clustering/segmentation
– Noise filtering/image restoration
– Tracking objects
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Regularization by Bayesian modelling
• Bayesian modelling using prior models to constrain

the segmentation/classification results are commonly
used.

• They imply statistical models for data/measurements, 
and prior information about the likelihood of
observing similar class labels for neighboring pixels. 

• Statistical models allows also modelling of the
uncertainty associated with both estimates and 
measured class labels.
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Bayes rule
• Common notation:
• Measurements y
• Class labels x
• Posterior probability given data p(x|y)
• Prior model p(x)
• p(y) is a normalizing constant to scale to 1. 
• This can be written as the log-likelihood:

• The maximum aposteriori solution x given data y is the
minimum of this negative log-likelihood. This is called the
energy function
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• Ed(x,y) is the data term
• Ep(x) is the prior term
• x is the set of class labels for all pixels in the image 

x=[f(0,0),…..f(m-1,n-1)]
• y is the set of feature vectors for all pixels in the image 

y=[d(0,0),…,d(m-1,n-1)]
• We will use this to classify a feature vector based on the value

of feature vectors or class labels of neighboring pixels.
– Specifying interaction of features is easy on the local level.

• For Markov random fields the prior term must be expressed as a 
sum of local pairwise interactions

• N is a set of pixels in a neighborhood
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Binary MRFs - restoration
• Binary MRF are e.g. used for  denoising scanned

images.
• We have two classes, background and foreground.
• Energy function, data term:

• Energy functions, regularization term:
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Ordinal-valued MRFs - restoration
• Ordinal: labels have implicit ordering
• Used e.g. for denoising gray-level images
• Energy function, data term:

• Energy function, regularization term:

• Different forms of the penalty can be used, e.g. a 
hyper-Laplacian

• If  is a quadratic function,the MRF is called a 
Gaussian MRF.  can also depend on the data.
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Background – contextual classification
• An image normally contains areas of similar

class
– neighboring pixels tend to be similar.

• Classified images based on a non-contextual
model often contain isolated misclassified
pixels (or small regions). 

• How can we get rid of this?
– Majority filtering in a local neighborhood
– Remove small regions by region area
– Bayesian models for the joint distribution

of pixel labels in a neighborhood.

• How do we know if the small regions are
correct or not?
– Look at the data, integrate spatial models

in the classifier.
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Relation between classes
of neighboring pixels

• Consider a single pixel i. 
• Consider a local neighborhood Ni centered 

around pixel i. 
• The class label at position i depends on 

the class labels of neighboring pixels. 
• Model the probability of class k at pixel i 

given the classes of the neighboring 
pixels.

• More complex neighborhoods can also be 
used. 

4-neighborhood

8-neighborhood
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Reminder – pixelwise classification
• Prior probabilities P(r) for each class
• We have S classes. 
• Bayes classification rule: classify a feature vector yi (for pixel i)  

to the class with the highest posterior probability P(r| yi) 
P(r| yi) = max P(s| yi)s=1,...S

• P(s| yi ) is computed using Bayes formula

• p(yi| s) is the class-conditional probability density for a given 
class (e.g. Gaussian distribution)(corresponds to p(yi| xi=s) 
here)

• This involves only one pixel i. 
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A Bayesian model for ALL pixels in the image
Y = {y1,...,yN}    Image of feature vectors to classify
X = {x1,...xN}    Class labels of pixels
• We want to contrain X so the resulting classified image is smooth and 

neighboring pixels are likely to have the same class.

• Classification consists choosing the class that maximizes the posterior
probabilities for ALL pixels in the image

• Maximizing P(X|Y) with respect to x1,.....xN is equivalent to maximizing
P(Y|X)P(X) since the denominator does not depend on the classes x1,.....xN .

• Note: we are now maximizing the class labels of ALL the pixels in the image 
simultaneously. 

• This is a problem involving finding N class labels simuntaneously.
• P(X) is the prior model for the scene. It can be simple prior probabilities, or 

a model for the spatial relation between class labels in the scene.
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Two kinds of pixel dependency
• Interpixel feature

dependency:
– Dependency between

the feature vectors.

• Interpixel class
dependency:
– Dependency between

class labels of
neighboring pixels.

– Results in smoothness
in the classified image.

These two types will now be 
explained more formally.

Model the joint 
distribution of the

gray level of
neighboring pixels

p(y1,y2|x1,x2)
y1,and y2 are the
feature vectors

x1 and x2 are the
class labels
Model the

probability for 
the class labels

p(x1|x2)
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Background: A little statistics
• Consider two events A and B.
• P(A) and P(B) is the probability of events A and B.
• P(B|A) is the conditional probability of B assuming A, and is 

defined as:

• P(A,B) is the joint probability of the two events A and B. 
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Interpixel feature vector dependency
• P(y1,y2,....yN | x1, x2,...., xN) is generally the joint probability of

observing feature vectors y1,....yN at pixel positions 1,...N given the
underlying true class labels of the pixels. 

• The observed feature vector for pixel i might depend on the
observed feature vector for pixel j (neighboring pixels)

• We will not consider such models (If you are interested, see Dubes
and Jain 1989).
– The resulting energy function will be computationally complex.

• If the feature vector for pixel i is independent of all the other pixels, 
this can be simplified as:
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Interpixel class dependency
• The class labels for pixel i depends on the class labels of

neighboring pixels, but not on the neighbors’ observed feature
vectors.
– Such models are normally used for classification.
– Reasonable if the features are not computed from 

overlapping windows. Even if this is the case, this
simplification does not influence the result too much.

– Reasonable if the sensor does not make correlated
measurement errors

• What this means is that when we estimate the class label of
pixel i, we think that it will be valuable to know the class labels
of the neighboring pixels (the image consists of regions with
partly continuous class type). 
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Introduction to Markov random 
field modelling

• Two elements are central in Markov modelling:
– Gibbs random fields
– Markov random fields

• There is an analogy between Gibbs and Markov
random fields as we soon will see.
– This will transform a problem of finding the

highest posterior probability to a problem of
finding the minimum of a simple energy function.

• This will result in an energy function minimization
problem. 
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Discrete Gibbs random fields (GRF) -
Global model

• A discrete Gibbs random field gives a global model for the pixel
labels in an image:

• X is a random variable, x is a realization of X.
• U(x) is a function called energy function
• Z is a normalizing constant
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Neighborhood definitions (for MRFs)
• Pixel site j is a neighbor of site i≠j if the probability

depends on xj, the value of Xj. 
• The energy function U(x) can be expressed as a sum of

potential functions Vc(x) involving pixels in a neighborhood Q

• 8-neighborhoods are commonly used, but more complex
neighborhoods can also be defined.
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The Ising potential function

• Ising’s model: 

�  controls the degree of spatial smoothing
– I(ci,ck) = -1 if ci = ck and 0 otherwise
– This corresponds to counting the number of pixels in the

neighborhood assigned to the same class as pixel i.
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Discrete Markov random field definitions –
local interaction models

• A Markov random field (MRF) is defined in terms of local properties.
• A random field is a discrete Markov random field with respect to a 

given neighborhood if the following properties are satisfied:
1. Positivity: P(X=x)>0 for all x
2. Markov property:

P(Xt=xt|XS|t=xS|t)=P(Xt=xt|Xt =xt)
S|t refers to all M pixel sites, except site t
t refers to all sites in the neighborhood of site t

• This means that the probability for observing class c in pixel t 
depends only on the class labels of neighboring pixels, not on
pixels further apart. 

3. Homogeneity: P(Xt=xt|Xt =xt) is the same for all sites t.
• The probability for observing class c should be the same for all 

pixels in the image. 
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Relationship between MRF and GRF
• A unique GRF exists for every MRF field and vice-

versa if the Gibbs field is defines in terms of pixels in 
a neighborhood system.

• Advantage: a global model can be specified using
local interactions only.

Spatial Context 36

Back to the initial model…
Y = {y1,...,yN}    Image of feature vectors to classify
X = {x1,...xN}    Class labels of pixels
Task: find the optimal estimate x’ of the true labels x* for all pixels

in the image

• Classification consists choosing the class labels x’ that maximizes
the posterior probabilities
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• We assume that the observed random variables are 
conditionally independent:

• We use a Markov field to model the spatial interaction between 
the classes (the term P(X=x)).
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A sum over class labels
in the neighborhood,

Counting the number of
neighboring pixels with
class label equal to xi.
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• Rewrite P(Yi=yi|Xi=xi) (the data term) as

• Then,

• Maximizing this is equivalent to minimizing
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Udata(X|C)
• Any kind of probability-based classifier can be used, for example a 

Gaussian classifier with a k classes, d-dimensional feature vector, 
mean k and covariance matrix k:

 

 kkk
T
kik

T
kik

T
i

kk
T
kik

T
kik

T
ikii

xxx

xxxdcxUdata









log
2
1

2
1

2
1

2
1

2
1log

2
1)2log(

2
)|(

111

111





Spatial Context 40

Finding the labels of
ALL pixels in the image

• We still have to find an algorithm to find an estimate x’ for all
pixels. 

• Alternative optimization algorithms are:
– Simulated annealing (SA) 

• Can find a global optimum
• Is very computationally heavy

– Iterated Conditional Modes (ICM)
• A computationally attractive alternative
• Is only an approximation to the MAP estimate

– Maximizing the Posterior Marginals (MPM)

• We will only study the ICM algorithm, which converges only to a 
local minima and is theoretically suboptimal, but
computationally feasible. 

• In practise, the error rate is often not much lower using more 
compext algorithms. 
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ICM algorithm

1. Initilalize xt, t=1,...N as the non-contextual classification by 
finding the class which maximize P(Yt=yt|Xt=xt).

2. For all pixels t in the image, update      with the class that 
maximizes

3. Repeat 2 n times

Usually <10 iterations are sufficient 
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ICM in detail
Initilalize xt, t=1,...N as the non-contextual classification by finding the class which maximize 

P(Yt=yt|Xt=xt), assign it to classified_image(i,j)
For iteration k=1:maxit do

For i=i:N,j=1:N (all pixels) do
minimum_energy=High_number;
For class s=1:S do

Udata = -log (P(Yt=yt|Xt=xt))
Ucontxt=0; 
nof_similar_neighbors=0;
for neighb=1:nof_neighbors

if (classified_image(neighb)=s) //neighbor and s of same class
++nof_similar_neighbors;

Ucontxt = -beta*nof_similar_neighbors;
energy = Udata + Ucontxt;
if (energy < minimum_energy)

minimum_energy = energy;
bestclass = s;

new_classified_image(i,j) = bestclass;
if (new_classified_image(i,j)!=classified_image(i,j))

++nof_pixels_changed;
if nof_pixels_changed<min-limit

break;
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ICM comments
• P(Yt=yt|Xt=xt) can be computed based on various 

software packages, stored, and used in the ICM 
algorithm. 

• For an image with S classes, this can be stored in a 
S-band image.

• For each iteration, only the labels xi change. 

– Why should you use a temporal array to store the 
updated labels at iteration k, and a separate array 
for the labels at the next iteration k+1?
• Hint: try this on a checkerboard image.
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How to choose the smoothing parameter 
•  controls the degree of spatial smoothing
•  normally lies in the range 1≤  ≤2.5
• The value of  can be estimated based on formal parameter 

estimation procedures (heavy statistics, but the best way!)
• Another approach is to try different values of , and choose the 

one that produces the best classification rate on the training 
data set. 
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Test image 1

• A Landsat TM image
• Five classes:

– Water
– Urban areas
– Forest
– Agricultural fields
– Vegetation-free 

areas
• The image is expected 

to be fairly well 
approximated by a 
Gaussian model
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Classification results, Landsat TM 
image

Method Training data,
Noncontextual

Test data,
Noncontextua
l

Test data,
contextual

Gaussian 90.1 90.5 96.3

Multilayer
perceptron
neural 
network

89.7 90.0 95.5
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Data set 2
• ERS SAR image
• 5 texture features from 

a lognormal texture
model used

• 5 classes:
– Water
– Urban areas
– Forest
– Agricultural fields
– Vegetation-free areas

• This data might deviate
from Gaussian.
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Classification results,  SAR 
image

Method Training data,
Noncontextual

Test data,
Noncontextua
l

Test data,
contextual

Gaussian 63.7 63.4 67.1

Multilayer 
perceptron

66.6 66.9 70.8

Tree classifier 70.3 65.0 76.1



Extensions of this model
• The follwing slides shows example of extensions to 

include other types of prior constraints in the
regularization. 
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An energy function for preserving edges
• When  is large, the Ising model tends to smooth the image 

across edges.
• We can add another energy term to penalize smoothing edges

by introducing line processes (Geman and Geman 1984).
• Consider a model where edges can occur between neigbhboring

pixels and let l(i,j)  represent if there is an edge between pixel i 
and pixel j : 

Spatial Context 51

Line processes
• l(i,j)=0 if there is no edge between pixel i and j, and 1 of 

there is an edge 
• There is an edge if pixels i and j belong to diffent classes, 

if ci≠cj
• We can define an energy function penalizing the number 

of edges in a neihborhood

• and let 

• This will smooth the image, but preserve edges much 
better.
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More on different energy functions
• MRF local energy terms can be used to model other

types of context to (see Solberg 1996)
– Multitemporal classification
– Consistency with an existing map or previous

classification
– Consistency with other types of geographical GIS 

data
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An energy function for 
fusion with a thematic map

• Assume that a map or previous classification of the scene 
exists. 

• This map can be partly inaccurate and needs to be 
updated. 

• Let Cg={cg
1,...,cg

N) be an old map of the area. 
• Consider a set of S different classes. The probability for a 

change from class s1 to s2 can be specified as a table of 
transitions (next page) Pr(xi|cg

i).
• An additional energy term can be


odneighborho

g
iigG cxU )|Pr(
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Example of allowed transitions 
Urban Forest Agricultural Bare soil Water

Urban 1.0 0.0 0.0 0.0 0.0

Forest 0.1 0.7 0.1 0.1 0.0

Agricultral 0.1 0.1 0.7 0.1 0.0

Bare soil 0.1 0.1 0.1 0.7 0.0

Water 0.0 0.0 0.0 0.0 0.1
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An energy term for crop ownership data
• På norsk: jordskiftekart eller bestandskart av grenser regioner som 

er en naturlig enhet og som ofte drives likt. Let a line process l(i,j) 
define if pixels i and j are assigned to the same class (l(i,j)=0) or 
not (l(i,j)=1) in the class label image.

• Let the crop ownership map be represented by a line process.
• An edge site in this map indicates if the two pixels (i,j) it involves 

are on the same region (lg(i,j)=0) or not (l(i,j)=1).
• An energy term seeking consistency with the crop ownership map 

is:
•

otherwise  1  and  ),(),(  if 0)),(,(  where

)),(,(
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imapmap



 

Spatial Context 56

Example agricultural classification
• Optical (Landsat) and SAR 

image of agricultural site. 
• Classes: wheat, sugar beet, 

potatoes, carrots, grass, 
stubble, bare soil.

• Field border map also 
available.

SAR on top, Landsat bottom
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Example agricultural classification

SAR Optical Combined –
noncontextual

Combined – MRF Combined – MRF 
with field border 
map

59.9 70.3 71.3 73.0 79.6

Result based
on only optical

Result based
on optical+SAR

No context

Result based
on optical+SAR

MRF

Result based
on optical+SAR

MRF with field borders
Field borders overlaid 

in white

Learning goals
• Understand the EM clustering algorithm for mixtures

of Gaussians
• Understand the mean shift clustering algorithm and 

how it uses spatial information
• Understand Bayes rule for contextual classification

and how this is connected to local energy functions.
• Understand the ICM algorithm.
• Know that this can be extended to other types of

constraints and other data types. 
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Next week
• Lab on energy functions and segmentation
• Location: DSB Lab, Room 4270
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