INF 5300 - 22.04.2015 Feature-based alignment Anne Schistad Solberg

 Finding the alignment between features from different images

- Geometrical transforms short repetition
- RANSAC algorithm for robust transform computation

INF 5300

Curriculum

 Background in geometrical transforms: Read e.g. 2.1.1 and 2.1.2 in Szeliski

Section 6.1 i Szeliski

Recommended additional reading:

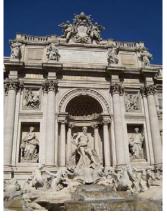
- Ransac is not described in detail in the book, you can find more detailes in:
- Ransac for Dummies: vision.ece.ucsb.edu/~zuliani/.../RANSAC/docs/RANSAC4Dummies.pdf
- Ransac Toolbox for Matlab: git://github.com/RANSAC/RANSAC-Toolbox.git

1

From last lecture: Image matching

- How do we compute the correspondence between these images?
 - Extract good features for matching (last lecture)
 - Estimation geometrical operation for match (this lecture)

•by Diva Sian



•by swashford

From last lecture: Scale-invariant features (SIFT)

- See Distinctive Image Features from Scale-Invariant Keypoints by D. Lowe, International Journal of Computer Vision, 20,2,pp.91-110, 2004.
- Invariant to scale and rotation, and robust to many affine transforms.
- Main components:
 - 1. Scale-space extrema detection search over all scales and locations.
 - 2. Keypoint localization including determining the best scale.
 - 3. Orientation assignment find dominant directions.
 - 4. Keypoint descriptor local image gradients at the selected scale, transformed relative to local orientation.

From last lecture: SIFT: feature matching

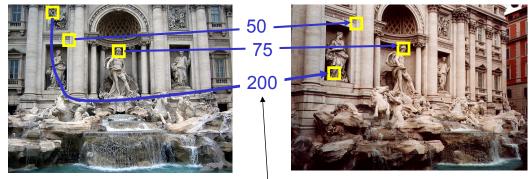
- Compute the distance from each keypoint in image A to the closest neighbor in image B.
- We need to discard matches if they are not good as not all keypoints will be found in both images.
- A good criteria is to compare the distance between the closest neighbor to the distance to the secondclosest neighbor.
- A good match will have the closest neighbor should be much closer than the second-closest neighbor.
- Reject a point if closest-neighbor/second-closestneighbor >0.8.

INF 5300

5

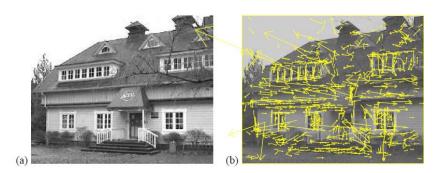
Results from last lecture – feature detecting and matching

A set of keypoints are detected and matched in two images



feature distance

Starting point for this lecture



- A set of corresponding feature points in two images.
- Goal: estimate the geometrical transform that we need to align the two images.
- Problem: movements are noisy and establishing ONE geometric transform for the image is difficult.

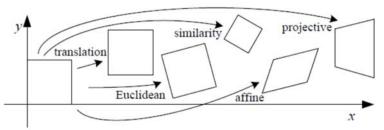
INF 5300

Goal of this lecture

- Consider two images containing partly the the same objects but at different times, from different sensors, or from different views.
- Assume that a set of features has been detected and the matching between corresponding features determined.
- Now we need to:
 - Verify that the mathing is geometrically consistent
 - This is the case if we can compute the motion between the features using a simple 2D or 3D geometric transform
 - How do we do this robustly?

7

2D and 3D feature-based alignment



• We restrict us to parametric transforms such as the ones illustrated above.

Simple operations:

- Translation
- Euclidean = translation + rotation
- Affine transforms
- Similarity = scaled rotation
- Projection

INF 5300

9

INF 2310 - Geometrical operations

• Transform the pixel coordinates (x,y) to (x',y'):

$$x' = T_x(x,y)$$

 $y' = T_y(x,y)$

- The transforms $\rm T_x$ og $\rm T_y$ are often given as transforms.

2D coordinate transformations

- translation: x' = x + t x = (x, y)
- rotation: **x**' = **R x** + **t**
- similarity: x' = s R x + t
- affine: x' = A x + t

 perspective: <u>x'</u> ≅ H <u>x</u> <u>x</u> = (x, y, 1) (<u>x</u> is a *homogeneous* coordinate (expanded for convenient notation)

INF 2310: Affine transforms

• Affine transforms are described by:

$$x' = a_0 x + a_1 y + a_2$$

 $y' = b_0 x + b_1 y + b_2$

• Matrix form:

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} a_0 & a_1 & a_2\\b_0 & b_1 & b_2\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix} \text{ eller } \begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} a_0 & a_1\\b_0 & b_1 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} + \begin{bmatrix} a_2\\b_2 \end{bmatrix}$$

INF 2310 - Examples of simple transforms

Transform	a ₀	a ₁	a ₂	b ₀	b ₁	b ₂	Expression	
Identity	1	0	0	1	0	0	x'=x y'=y	y x
Scalie factor s	s	0	0	0	s	0	x'=sx y'=sy	
Rotation by θ	cosθ	- sinθ	0	sinθ	cosθ	0	$x'=\cos\theta x-\sin\theta y$ $y'=\sin\theta y+\cos\theta y$	

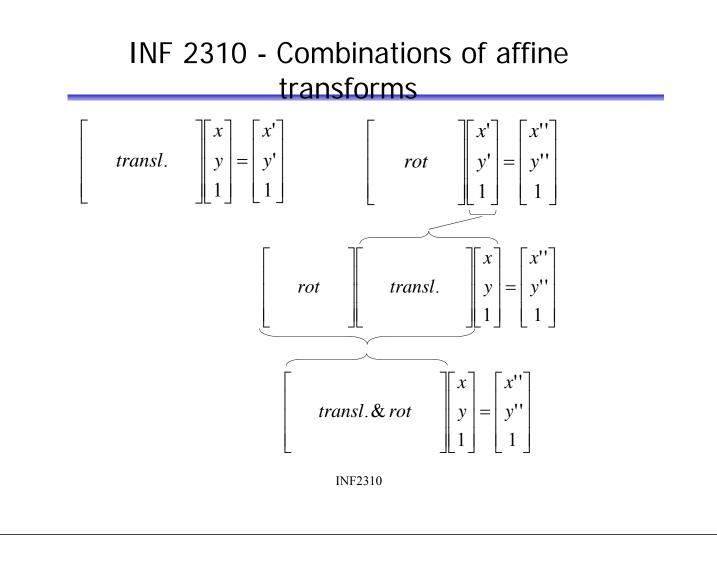
 $\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a_0 & a_1 & a_2 \\ b_0 & b_1 & b_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

INF2310

INF 2310 – More examples

Transform	a ₀	a ₁	a ₂	b ₀	b ₁	b ₂	Expression	
Translation by Δx og Δy	1	0	Δχ	0	1	Δу	$x' = x + \Delta x$ $y' = y + \Delta y$	
Horisontal "shear" factor s ₁	1	s1	0	0	1	0	x'=x+s1y y'=y	Vertikalt
Vertical "shear" factor s2	1	0	0	s2	1	0	x'=x y'=s2x+y	Horisontalt

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a_0 & a_1 & a_2 \\ b_0 & b_1 & b_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$



INF 2310 - Higher order transforms

• Bilinear transforms:

$$x' = a_0 x + a_1 y + a_2 + a_3 x y$$

 $y' = b_0 x + b_1 y + b_2 + b_3 x y$

• Quadratic transforms:

 $\begin{array}{lll} x' &=& a_0 x + a_1 y + a_2 + a_3 x y + a_4 x^2 + a_{5y} y^2 \\ y' &=& b_0 x + b_1 y + b_2 + b_3 x y + b_4 x^2 + b_{5y} y^2 \end{array}$

· Higher order polynomials can also be used

2D Transform equations

Transform	Matrix	Parameters p	Jacobian J
translation	$\left[\begin{array}{rrrr} 1 & 0 & t_x \\ 0 & 1 & t_y \end{array}\right]$	(t_x,t_y)	$\left[\begin{array}{rrr}1&0\\0&1\end{array}\right]$
Euclidean	$\left[egin{array}{ccc} c_{ heta} & -s_{ heta} & t_x \ s_{ heta} & c_{ heta} & t_y \end{array} ight]$	(t_x, t_y, θ)	$\left[egin{array}{ccc} 1 & 0 & -s_{ heta}x - c_{ heta}y \ 0 & 1 & c_{ heta}x - s_{ heta}y \end{array} ight]$
similarity	$\left[\begin{array}{rrrr} 1+a & -b & t_x \\ b & 1+a & t_y \end{array}\right]$	(t_x, t_y, a, b)	$\left[\begin{array}{rrrr}1&0&x&-y\\0&1&y&x\end{array}\right]$
affine	$\left[\begin{array}{ccc} 1 + a_{00} & a_{01} & t_x \\ a_{10} & 1 + a_{11} & t_y \end{array}\right]$	$(t_x, t_y, a_{00}, a_{01}, a_{10}, a_{11})$	$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
projective	$\left[\begin{array}{cccc} 1+h_{00} & h_{01} & h_{02} \\ h_{10} & 1+h_{11} & h_{12} \\ h_{20} & h_{21} & 1 \end{array}\right]$	$(h_{00}, h_{01}, \dots, h_{21})$	(see Section 6.1.3)

Table 6.1 Jacobians of the 2D coordinate transformations x' = f(x; p) shown in Table 2.1, where we have re-parameterized the motions so that they are identity for p = 0.

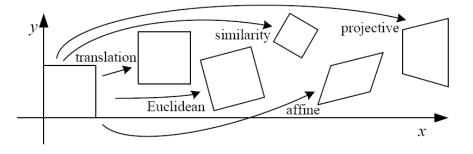
INF 5300

17

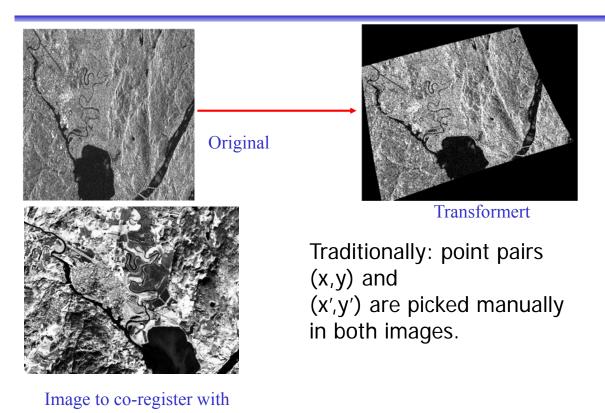
Projective Transformations

<i>x</i> '	a	b	С	x
y' =	d	е	f	y
$\lfloor w' \rfloor$	_8	h	i	w

- Projective transformations:
 - Affine transformations, and
 - Projective warps
- Parallel lines do not necessarily remain parallel



From INF 2310: Image co-registration

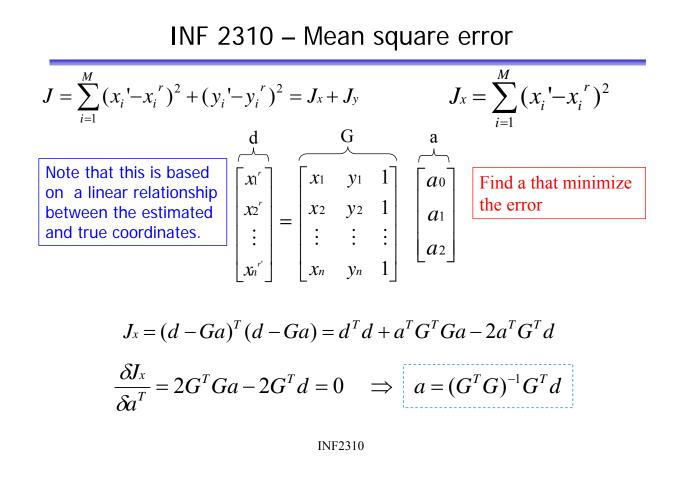


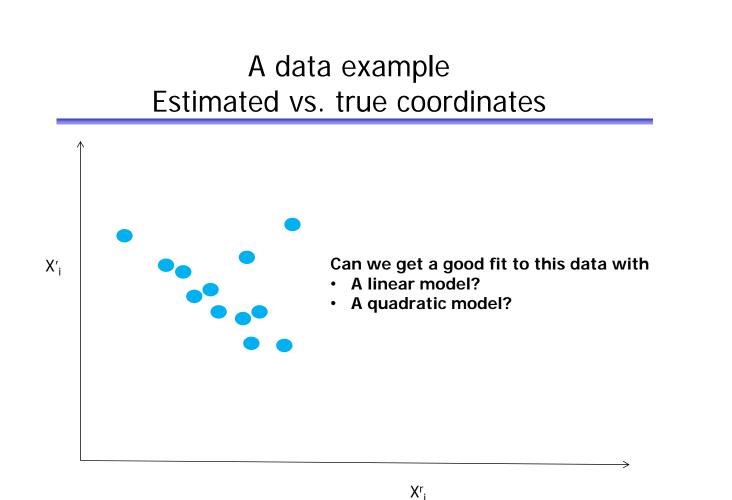
INF 2310 - coregistration III

- · The root mean square error is used to evaluate how good a match is
- Given M point pairs $(x_i, y_i), (x_i^r, y_i^r)$ (r is the reference image)
- Assume that the transform gives estimated coordinates in the reference image as (x'_i,y'_i)
- $(x_{i}, y_{i}) \rightarrow (x'_{i}, y'_{i})$
- The number of point pairs is M >>3 for affine transforms og M>>6 for quadratic
- The coefficients in the transform are computed as the values that minimize the square error between the true coordinates
- (x_i^r, y_i^r) and the transformed coordinates (x_i^r, y_i^r)

$$J = \sum_{i=1}^{M} (x_i' - x_i^r)^2 + (y_i' - y_i^r)^2$$

• Simple linear algebra is used to find the solution to this problem.





Limitations of least squares matching (LSM)

- LSM matching assumes that all feature points are matched with the same accuracy. This is normally not the case.
 - Possible solution: weighted least squares, where each points is weighted by an uncertainty measure:

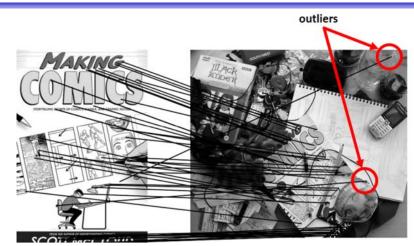
$$E_{WLS} = \sum_{i} \sigma_i^2 \left\| x_i - x_i^{'} \right\|^2$$

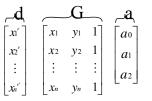
- LSM assumes a linear relationship between the measurements and the unknowns. This is also often not the case.
 - An alternative is non-linear least squares which uses iterative algorithms (6.1.3). We will not go through this.

INF 5300

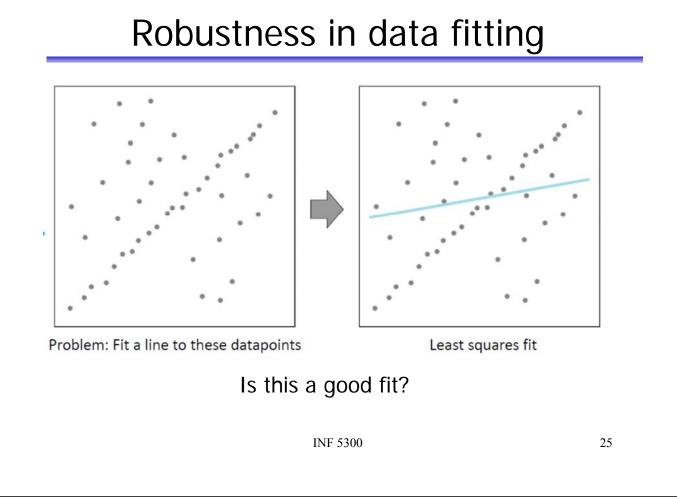
23

Robustness of matching



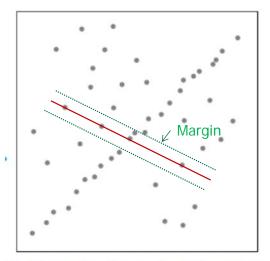


Assume that points are related by a linear model, but that some points do not fit this model.



Introducing a robust matching algorithm

- The detected features are not perfect, there may be outliers where the match is NOT good.
- If we want to fit a line:
 - Count the number of points that agree with the line.
 - Agree means that the distance between the location of the estimated and the true coordinates is very small.
 - Points which fulfill this criterion are called inliers.
 - Other points are called outliers.
 - For all possible lines, select the one with the larges number of inliers.



Problem: Fit a line to these datapoints

For a candidate line:

Count the number of point that fits the line according to the margin

How do we find the best line?

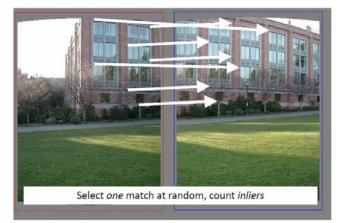
- Unlike least-squares, there is no simple closed-form solution.
- Trial-and-test:

- Try out many lines, keep the best one

INF 5300

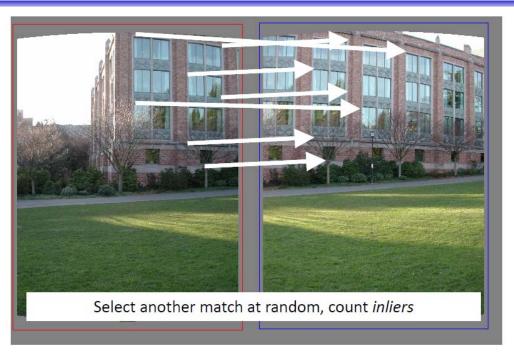
RANdom **S**ample **C**onsensus

- In this example: Linear model, two points needed to get a fit.
- Select two points at random, compute the transform coefficients.
- Try this model for all other samples and count the number of inliers among the other samples.



27

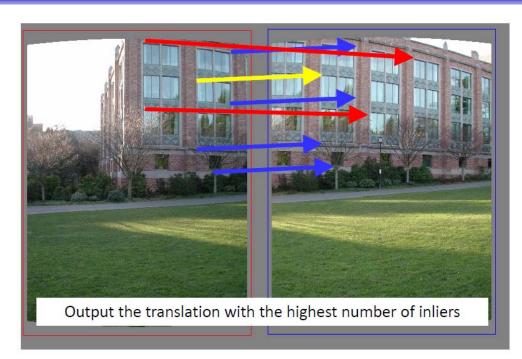
RANdom **S**ample **C**onsensus



INF 5300

29

RANdom **S**ample **C**onsensus



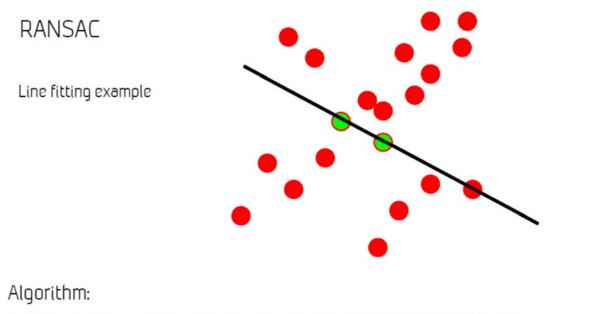
RANSAC

- RANdom Sample Consensus (Fischler and Bolles, 1981)
- Algorithm:
 - 1. Sample (randomly) exactly the number of points needed to fit the model.
 - 2. Solve for the model parameters based on the samples.
 - 3. Score by the fraction of inliers within a preset threshold.
- Repeat 1-3 until the best model is found with high confidence.

INF 5300 31 RANSAC Line fitting example Algorithm: 1. Sample (randomly) the number of points required to fit the model (#=2) 2. Solve for model parameters using samples

- 2. Source by the fraction of inlines within a proper threshold
- 3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

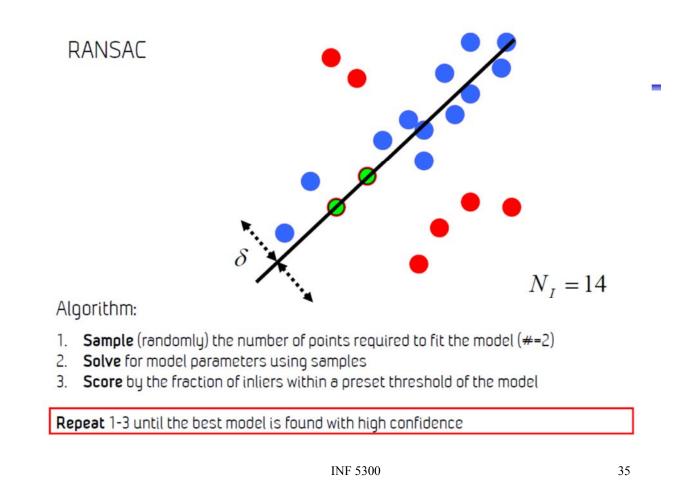
Repeat 1-3 until the best model is found with high confidence

INF 5300 33 RANSAC Line fitting example $N_{I} = 6$

Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

- The inlier threshold is related to the amount of noise we expect in the inliers.
- Assume Gaussian noise with a given standard deviation (usually set in pixels, e.g. 3 pixels)
- The algorithm should terminate when the probability of finding a better consensus set (higher number of inliers) is lower than a certain threshold.
 - More on this shortly

RANSAC algorithm

General version:

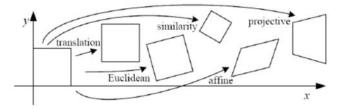
- Randomly choose s samples s=minimum sample size that let you fit a model
- 2. Fit a model (e.g. line) to those samples
- 3. Count the number of inliers that approximately fit the model.
- 4. Repeat N times
- 5. Choose the model that has the largest set of inliers, and fit this model to all inliers using e.g. least squares.
 - When we have the best set of points, refine the model using all inliers.

INF 5300

37

Different models and s

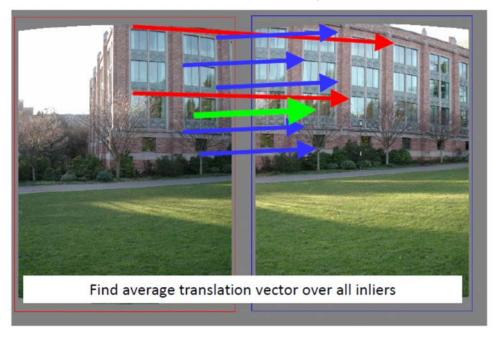
• For alignment, s, the number of points needed, depends on the motion model. Each corresponding point in the image pair is one sample.



Name	Matrix	# D.O.F.	Preserves:	Icon	
translation	$ig[\left. I \right t ig]_{2 imes 3}$	2	orientation $+\cdots$		
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\Diamond	
similarity	$\left[\left. s R \right t \right]_{2 imes 3}$	4	angles + · · ·	\Diamond	
affine	$\begin{bmatrix} oldsymbol{A} \end{bmatrix}_{2 imes 3}$	6	$parallelism + \cdots$	\square	
projective	$\left[egin{array}{c} ilde{oldsymbol{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	\square	

Final step: refine the best model

• When the model with the highest number of inliers is found, this model is refitted to the set of all samples that are inliers.



39

Termination of the algorithm

• The criterion for terminating the algorithm is that the probability of finding a better consensus set is lower than a certain threshold.

Leg p_i be the probability for picking an inlier point.

- Let *q* be the probability for picking a set that <u>does not contain</u> <u>any outliers</u>.
- This depends on the number of points picked as $q = p_i^s$
- The probability of picking as least one outlier will then be 1-q.
- If this is repeated *h* times, the probability to pick outliers in <u>every random pick</u> is (1-q)^h.
- Since we are selecting a small number s out of all corresponding points we will sooner or later make a good pick and this quantity goes to zero as *h* goes to infinity.

Termination of the algorithm

Goal: pick h large enough so that (1-q)^h is smaller than a probability threshold ε.

$$(1 - q)^{h} \leq \varepsilon$$

$$h \log(1 - q) \leq \log \varepsilon$$

$$h \geq \left[\frac{\log \varepsilon}{\log(1 - q)}\right]$$

• The threshold for the iterations will be to stop at iteration

$$\hat{T}_{iter} = \left[\frac{\log \varepsilon}{\log(1-q)}\right] \leftarrow Notation means smallest integer larger than$$

INF 5300

41

The number of iterations

- e, the outlier ratio, is unknown. We often pick worst case, e.g. 50% first, then adapt as we find more inliners.
- N=log(1-ε)/log(1-(1-e)^s))
- While N>sample_count repeat
 - Choose a sample and count the number of inliers
 - Set e=(1-(number of inliners))/(total number of points) Recompute N from e
 - Increment sample_count

		proportion of outliers <i>e</i>							
s	5%	10%	20%	25%	30%	40%	50%		
2	2	3	5	6	7	11	17		
3	3	4	7	9	11	19	35		
4	3	5	9	13	17	34	72		
5	4	6	12	17	26	57	146		
6	4	7	16	24	37	97	293		
7	4	8	20	33	54	163	588		
8	5	9	26	44	78	272	1177		

INF 5300

43

RANSAC parameters

- Model
 - Choose the simplest model that describes the type of motion involved
 - Possible simple motion models (for equations see RANSAC4Dummies section 4.2)
 - Linear
 - Plane
 - Rotation, scaling and translation
 - Homographic(linear transform to relate two views from the same camera, used for panography)
- Distance threshold t:
 - Choose t such that the probability for inlier is p (e.g. 0.95).
 - Assume zero mean Gaussian noise with std. dev. $\sigma\text{:}\ t^2\text{=}3.84\ \sigma^2$
- Number of iterations: Choose according to the table

RANSAC conclusions

- Good:
 - Robust to outliers (can handle up to 50% outliers)
 - Applicapable to a larger number of parameters than Hough transform/parameters are easier to choose.
- Bad:
 - Computational time grows quickly with fraction of outliers and number of parameters.
 - Not good for getting multiple fits.
- Common applications:
 - Robust linear regression (and similar)
 - Computing the transform behind image stitching (called homography)
 - Image registration/Estimating the fundamental matrix relating two views.

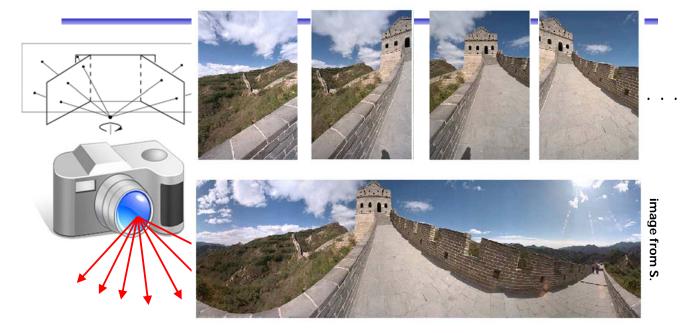
INF 5300

45

More on geometry

- There is much more details on geometry in 2D/3D in the book, particularly sections
 - 2.1 2D and 3D and projections
 - 6.2 Pose estimation
 - 6.3 Geometric intrinsic calibration
 - 9. Image stitching
- These sections are not lectured, but useful to read if you work with multiple cameras/3D etc.
- An example of creating panoramas is given on the following slides.

Panoramas



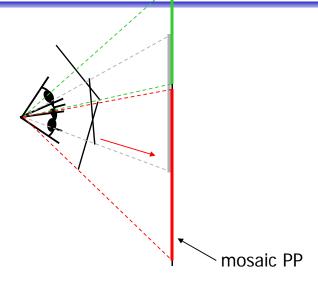
Obtain a wider angle view by combining multiple images.

Grauman

How to stitch together a panorama?

- Basic Procedure
 - Take a sequence of images from the same position
 - · Rotate the camera about its optical center
 - Compute transformation between second image and first
 - Transform the second image to overlap with the first
 - Blend the two together to create a mosaic
 - (If there are more images, repeat)

Image reprojection



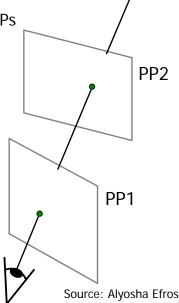
- The mosaic has a natural interpretation in 3D
 - The images are reprojected onto a common plane
 - The mosaic is formed on this plane
 - Mosaic is a synthetic wide-angle camera

Source: Steve Seitz

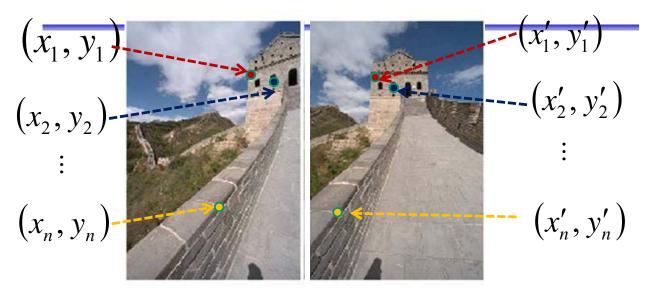
Homography

- How to relate two images from the same camera center?
 - how to map a pixel from PP1 to PP2?
- Think of it as a 2D image warp from one image to another.
- A projective transform is a mapping between any two PPs with the same center of projection
 - rectangle should map to arbitrary quadrilateral
 - parallel lines aren't
 - but must preserve straight lines
- called Homography

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ l \end{bmatrix}$$
$$\mathbf{p'} \qquad \mathbf{H} \qquad \mathbf{p}$$



Homography



To **compute** the homography given pairs of corresponding points in the images, we need to set up an equation where the parameters of **H** are the unknowns...

Grauman

Solving for homographies

$$\mathbf{p'} = \mathbf{H}\mathbf{p} \quad \begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

•Can set scale factor *i*=1. So, there are 8 unknowns.

•Set up a system of linear equations:

$\cdot Ah = b$

•where vector of unknowns $h = [a,b,c,d,e,f,g,h]^T$

•Need at least 8 eqs, but the more the better...

•Solve for h. If overconstrained, solve using least-squares:

$$\min \|Ah - b\|^2$$

Summary: How to stitch together a panorama?

- Basic Procedure
 - Take a sequence of images from the same position
 - Rotate the camera about its optical center
 - Compute transformation between second image and first
 - Transform the second image to overlap with the first
 - Blend the two together to create a mosaic
 - (If there are more images, repeat)

Source: Steve Seitz