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INF 5300 - 29.04.2015
Dense motion and flow

Anne Schistad Solberg

Motion perception

Motion visualization

Image similarity measures

Motion estimation

Optical flow algorithm

Curriculum

2

 Chapter 8 in Szeliski (except 8.3)

Additional reading:

 Good description of optical flow: 
http://www.cs.utoronto.ca/~jepson/csc420/notes/flowCh
apter05.pdf

 Simon Baker and Iain Matthews, Lucas-Kanade 20 Years 
On: A Unifying Framework, International Journal of 
Computer Vision 56(3), 221-255, 2004 
http://dx.doi.org/10.1023/B:VISI.0000011205.11775.fd

 Optical flow (wikipedia)

 Horn-Schunck method (wikipedia)



From last lecture: Image matching

• Last weeks: 
– Extract keypoint features in an image 
– Find the matching features in a different image
– Do a robust motion (e.g. using RANSAC) to get the

geometrical model describing a COMMON transform relating
only the keypoints in both images. 

• Characteristics:
– Keypoint locations are SPARSE
– A common motion model is assumed for the entire scene.

This lecture: dense motion

• Motion vectors are now estimated from every point an a image 
sequence. 

• Motion maps are created, and each pixel can have a different 
motion vector.

• Some regularization of the motion vectors is done to get smooth
estimates. 
– No restriction that all pixels move in the same average direction.

• Video normally has high frame rate:
– Small motion between one fram and the next frame
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Why estimate visual motion?

• Visual motion can be annoying
– Camera instabilities: measure it and remove it

• Visual motion indicates dynamics in the scene
– Moving objects, behaviour in surveillance cameras
– Track objects and analyse trajectories

• Visual motion reveals spatial layout
– Motion parallax
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Essential steps in motion estimation

• An error metric to compare the two images must be 
chosen.

• A search technique to compute the best match is 
needed.
– Pyramid search is often used to speed up the process.

• Accurate motion estimates might need subpixel
accuracy.

• Regularization is often applied since the motion 
vectors are not reliable in all regions. 
– For compex motion layered motion models might also be 

needed.
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Applications of motion estimation

• Video enhancements:
– Stabilization
– Denoising
– Super resolution

• 3D reconstruction: structure from motion
• Video segmentation
• Tracking/recognizing objects
• Learning dynamical models
• Advanced video editing
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Motion estimation techniques

• Direct methods
– Directly recover image motion at each pixel from spatio-

temporal image brightness variations
– Dense motion fields, but sensitive to appearance variations
– Suitable for video when image motion is small 
– Computationally expensive

• Feature-based methods
– Extract visual features (corners, textured areas) and track 

them over multiple frames
– Sparse motion fields, but more robust tracking
– Suitable when image motion is large (10s of pixels)
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Seeing motion from a static picture?
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Optical flow field

• Optical flow is the apparent motion of objects in a scene caused
by the relative motion between an observer (eye or camera) 
and the scene.

• Parametric motion  (e.g. using global geometric transforms) is 
limited and cannot describe the motion of arbitrary videos.

• Optical flow field: assign a flow vector (u(x,y),v(x,y)) to each
pixel (x,y). 

• Projection from 3D world to 2D
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Visualization of optical flow fields
• Vector fields can be used to visualize

sparse motion fields, but are too
mess to plot for every pixel.

• Map flow vector to color:
– Magnitude: saturation
– Orientation: hue
http://hci.iwr.uni-
heidelberg.de/Static/correspondenceVisualiza
tion/

Image example:
http://people.csail.mit.edu/celiu/OpticalFlow/
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Matching criteria

• What is invariant between the two images?
– Brightness? Gradients? Phase? Other features?

• Distance metric: (L2,L1, truncated L1, Lorentzian)

• Correlation, normalized cross correlation
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Computing similarity between image patches

INF 5300 14

• A simple matching criterion: summed squared difference (SSD):

• I0 and I1 are the two images, u=(u,v) the displacement vector.
• Movement can be at the sub-pixel level so interpolation might be 

needed. 
• A measure more robust to outliers is

– a is a constant called outlier threshold
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Computing similarity between image patches
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• Spatially varying weights can be needed (e.g. on image boundaries
where the weights are zero)

• Differences in bias  and gain  can be handled by a simple linear 
intensity model between the images:

• This criterion handles changes in bias and gain:

• To handle bias and gain properly it might be necessary to perform a linear 
regression, which is computationally more costly. 
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Computing similarity between image patches
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• Normalized cross-correlation can also be used

• Correlation works well if the changes in contrast are large, but not well
for homogeneous areas where a good match can be found for many
different locations. 
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Hierarchical search for matches – block matching

• In motion estimation, there are often small
motion between frames, so the search is 
restricted to a small region (e.g. 16 pixels) 
from a given position. 

• This is called block matching. 
• Hiearchical motion estimation is often used to 

speed up the process. 
– An image pyramid is created by decimation and 

smoothing, consisting of images.

– At the coarsest level, we do a full search in a 
window for the displacement u(l) that minimizes

– This value of the motion vector is then used to 
predict the displacement at the finer level:
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Fourier-based matching
• Fast when the patch size is large.
• Based on the fact that the Fourier transform of a shifted signal has the

same magnitude but a linearly shifted phase:

• Remember that convolution in the spatial domain is equivalent to 
multilication in the Fourier domain, and correlation in the spatial 
domain is equivalent to multiplication with the complex conjugate in 
the Fourier domain. 

• Thus, correlation is computed efficiently in the Fourier domain. 
• Windowed correlation must be used to handle pixels outside image 

boundaries in one of the images. 
• Fourier-based matching can also be made invariant to rotation and 

scale by transforming the image to polar  coordinates (rotation) or log-
polar coordinates (rotation and scale). 
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Fourier-based matching: 
Phase correlation

• Phase correlation weights the signal by the magnitude of the Fourier
transforms:

• For a noiseless signal, this gives a single spike located at the correct
value of u. 

• Some argue that phase correlation is more accurate the regular cross-
correlation.

INF 5300 19

     
   (x)I(x)I

(x)I(x)I
uE PC

00

00)(
FF

*FF
F 

Lucas and Kanade optical flow

• Good image stabilization requires subpixel accuracy. 
• Assume that matching is based on the SSD-criterion. 
• Lucas and Kanade did a gradient descent on the SSD function to refine

the shift in u based on a Taylor series expansion of I1(xi+u+u).
• Let 

• Define

• The modified SSD criterion is then: 
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Incremental refinement/subpixel alignment

• The gradient at a subpixel location (xi+u) can for example be 
computed as the simple horizontal and vertical differences between
pixel xi and its horizontal or vertical neighbor. 

• We often write as the brightness constancy constraint
equation: 

• This is also called the optical flow constraint. Ix and Iy are the spatial 
derivatives and It the temporal derivative. 
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Gradient Constraint (or the Optical Flow 
Constraint)
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Minimizing

Assume a single velocity for all pixels within an image patch
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LHS: sum of the  2x2 outer product of the gradient vector 
(gradient tensor)

Patch Translation [Lucas-Kanade]

Balance spatial 
gradients by temporal 
gradients and the shift
in u
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Minimizing

A weight function can be used to weight constraints in the 
center of the neighborhood with a gaussian function g(x)
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Note: to compute the derivatives, take care so they center at 
the same location (e.g. I(x,y)-I(x+1,y) will not center at the same 
location in all directions.

Weighted version

Balance spatial 
gradients by temporal 
gradients and the shift
in u
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Local Patch Analysis

• How certain are the motion estimates?
• This is similar to finding good keypoints in SIFT.

The Aperture Problem
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• Algorithm:  At each pixel compute      by solving

• A is singular if all gradient vectors point in the same direction
• e.g., along an edge
• of course, trivially singular if the summation is over a single pixel
or there is no texture
• i.e., only normal flow is available (aperture problem)

• Corners and textured areas are OK
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SSD Surface – Textured area

Have you seen this before?
Remember lecture
on keypoint detection

SSD Surface -- Edge



SSD – homogeneous area

Alternative energy functions

• This can also be applied if we have bias/gain shifts:

• This will result in a 4x4 equation system.
• A
• There is also a version solving the weighted window

energy function (both images are weighted, to 
handle e.g. boundaries):
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Refining the search to sub-pixel accuracy

• Estimate velocity at each pixel using one iteration of Lucas and 
Kanade estimation.

• Many applications, like image stabilization and stitching, require
sub-pixel accuracy in matching. 

• Refine this estimate by repeating the process
• Remember that the Taylor series expansion ignored the higher

order terms
– The accuracy of the estimate is bounded by the magnitude of the

displacement and the second derivative of I.

• If we undo the motion, and reapply the estimator to the warped
signal to find the residual motion left
– Do this iteratively until the residual motion is small
– Let ut now explain this
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Iterative refinement explained in 1D

• Let f1(x) and f2(x) be the 1D signals at two time instances.
• We assumed linear motion locally in a Taylor series expansion

where we ignored second-order terms:

• The accuracy of this estimates depends on magnitude of d and 
the second derivative of f1:

• If we apply iterations in a Gauss-Newton style we use the
current estimate to undo the motion, and reapply the estimator 
to the warped signal iteratively. 
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Optical Flow: Iterative Estimation

xx0

Initial guess: 

Estimate:

estimate 
update

(using d for displacement here instead of u)

Optical Flow: Iterative Estimation

xx0

estimate 
update

Initial guess: 

Estimate:



Optical Flow: Iterative Estimation

xx0

Initial guess: 

Estimate:

Initial guess: 

Estimate:

estimate 
update

Szeliski

Optical Flow: Iterative Estimation

xx0

Szelisk



Optical Flow: Iterative Estimation
• Some Implementation Issues:

– Warping is not easy (ensure that errors in warping are 
smaller than the estimate refinement)

– Warp one image, take derivatives of the other so you don’t 
need to re-compute the gradient after each iteration.

– Often useful to low-pass filter the images before motion 
estimation (for better derivative estimation, and linear 
approximations to image intensity)

Szeliski

Optical Flow: Aliasing
Temporal aliasing causes ambiguities in optical flow because 
images can have many pixels with the same intensity.

I.e., how do we know which ‘correspondence’ is correct? 

nearest match is correct 
(no aliasing) nearest match is incorrect 

(aliasing)

To overcome aliasing: coarse-to-fine estimation.
At a coarse scale, the image is blurred and the motion velocity small.

The coarse-scale estimate is used to stabilize the finer scale motion. 

actual shift

estimated shift



Limits of the gradient method

Fails when intensity structure in window is poor
Fails when the displacement is large (typical operating 

range is motion of 1 pixel)
Linearization of brightness is suitable only for small displacements

• Also, brightness is not strictly constant in images
actually less problematic than it appears, since we can pre-filter 

images to make them look similar

Szelis
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Coarse-to-Fine Estimation images J and I
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u=1.25 pixels
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Parametric motion models (8.2)

• 2D Models:
• Affine
• Quadratic
• Planar projective transform (Homography)

• 3D Models (see the book):
• Instantaneous camera motion models 
• Homography+epipole
• Plane+Parallax



Motion models

Translation

2 unknowns

Affine

6 unknowns

Perspective

8 unknowns

3D rotation

3 unknowns
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Relation to last lecture: “Alignment”: Assuming we know 
the correspondences, how do we get the transformation?
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e.g., affine model in abs. coords…

Flow: Two views presumed in temporal sequence…
track or analyze spatio-temporal gradient
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• Sparse or dense in first 
frame
• Search in second frame
• Motion models expressed 
in terms of position change



Parametric motion: Two views presumed in temporal 
sequence…track or analyze spatio-temporal gradient
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• Sparse or dense in first 
frame
• Search in second frame
• Motion models expressed 
in terms of position change
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• Motion models expressed 
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• Sparse or dense in first 
frame
• Search in second frame
• Motion models expressed 
in terms of position change
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• Consider image I translated by

• The discrete search method simply searches for the best 
estimate, e.g. by correlation/block matching (no sub-
pixel).

• The gradient method linearizes the intensity function and 
solves for the estimate.
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Discrete Search vs. Gradient Based

Correlation and SSD

• For larger displacements, do template matching
– Define a small area around a pixel as the template
– Match the template against each pixel within a search area 

in next image.
– Use a match measure such as correlation, normalized 

correlation, or sum-of-squares difference
– Choose the maximum (or minimum) as the match
– Sub-pixel estimate (Lucas-Kanade)



Shi-Tomasi feature tracker

1. Find good features (min eigenvalue of 22 Hessian)
2. Use Lucas-Kanade to track with pure translation
3. Use affine registration with first feature patch
4. Terminate tracks whose dissimilarity gets too large
5. Start new tracks when needed

Learning goals – motion estimation

• Understand representation and visualization of
motion vectors.

• Understand the brightness similarity criterion.
• Know different patch similarity measures.
• Understand the gradient constraint.
• Know the basic steps in the optical flow algorithm
• Know strenghts and limitations of optical flow
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