

Method 5: Floating search methods II/II		
	SFFS Algorithm Input: $Y = \{y_j \mid j = 1,, D\}$ //available measurements// Output: $Y = \{y_j \mid j = 1,, k, x_j \in Y\}$, $k = 0, 1,, D$ Initialisation: $X_0 := 0$; $k := 0$ (in practice one can begin with $k = 2$ by applying SFS twice) Termination: Stop when k equals the number of features required Step 1 (Inclusion) $x^+ := \arg\max_{k \in Y-X_k} J(X_k + x)$ (the most significant fea- $x^+ := \arg\max_{k \in Y-X_k} J(X_k + x)$ (there with respect to X_k)	
2015 01 28	$\begin{array}{l} X_{k+1} := X_k + \pi^*; \ k:= k+1\\ \text{Step 2} \left(Conditional Exclusion\right)\\ \pi^* := \arg\max_{e \in X_k} J(X_k - x) \begin{cases} \text{the least significant features in } X_k\\ \text{ture in } X_k - (\pi^*) \right) > J(X_{k-1}) \text{ then}\\ X_{k-1} := X_k - \pi^*; \ k:= k-1\\ \text{go to Step 2}\\ \text{else}\\ \text{go to Step 1} \end{cases}$	10
2015.01.28	INF 5300	19

- Named after annealing in metallurgy - Heat and then slowly cool to allow atoms to settle into more optimal crystalline structures
- Simulated annealing as optimization strategy
 - − High «temperature» \rightarrow move current solution more readily further away, and more readily accept a «worse» solution - Gradually reduce temperature while iterating

21

- Needs
 - Initial solution, temperature and cooling rate
 - A «getNeighbor(state, temp)» function
 - An (decent) objective function (of course!) INF 5300
- 2015.01.28

Method 7: Genetic algorithms

- Mimics the process of natural selection
- Strong similarites to simulated annealing (SA), although parallelized and with the ability to combine good solutions (parents) at each iteration
- · Must thus assume there is something to be gained by such a combining

INF 5300

- How exactly do we combine solutions?
- Computationally heavy

2015.01.28

23

Preprocessing Outlier detection • Missing data • Features may have different ranges - E.g. feature 1 has range $f1_{min}$ - $f1_{max}$ while feature n has range fn_{min}-fn_{max} - This does seldomly reflect their significance in classification performance! - Example: minimum distance classifier uses Euclidean distance · Features with large absolute values will dominate the classifier 2015.01.28 INF 5300 24

