INF 5300 - Feature selection in the context of supervised classification

- «Curse of dimensionality»
- Feature subset selection
- Objective functions

Search strategy
Sections 5.1, 5.2, 5.5 (5.5.1 and 5.5.2 not too detailed), 5.6 in "Pattern Recognition" by S . Theodoridis and K. Koutroumbas.

For the randomized methods: Computational methods of feature selection Liu, 2007, chapter Randomized Feature Selection, especially sections 6.4 and 6.5 .
(see links on the course's web-page for pdfs)
2015.01.28

Reminder - Density-based classifiers

Model/estimate $p(\mathbf{x} \mid c)$
Prior probability
for class c for class c

$$
f\left(\mathbf{x}_{\mathbf{i}}\right)=\operatorname{argmax}_{c} p\left(c \mid \mathbf{x}_{\mathbf{i}}\right)
$$

2015.01.28

High dimensionality / low sample count

- Even the simple unimodal normal distribution can be too complex

$$
g_{c}(\mathbf{x})=-\frac{1}{2} \log \left|\Sigma_{c}\right|-\frac{1}{2}\left(\mathbf{x}-\mu_{c}\right)^{\prime} \Sigma_{c}^{-1}\left(\mathbf{x}-\mu_{c}\right)+\log \pi_{c}
$$

- Overfits easily causing poor generalization

[^0]INF 5300
«Curse of dimensionality» I / II

- Peaking phenomenon
- Finite number of training samples
- Adding (even discriminative) features
- => Eventually worse classification rate
- High dimension -> mostly empty space

2015.01.28

INF 5300
${ }^{\text {Hishatataon tion }}$
\qquad

6
«Curse of dimensionality» II / II

- Handling the problem

Today's topic

- Careful feature design to start with!
- Dimension reduction
- Feature selection
- Feature extraction
- Reduce classifier complexity
- E.g. assuming diagonal Σ for Guassian-based classifiers
- Biasing/regularization
- E.g. diagonal loading for Guassian-based classifiers
- Sometimes adding unlabeled samples help (semi-supervised classification)

Regularized discriminant analysis

Feature (subset) selection intro

- Why?
- Enhanced generalization by reducing overfitting
- Improved model interpretability
- Computationally tractable dataset
- Three main approaches:
- «Wrappers»
- The optimization criterion is based on building and testing actual classifiers
- «Filters»
- Criterion is based on a (simplified) class-separability measure
- «Embedded methods»
- The classifier itself induces feature selection, e.g. decision threes

Feature selection

- Want the best m out of n feature subset
- Our search needs an objective function
- "Predict" classifier performance
- Decides how good a subset is
- Wrapper-based
- Often good, often slow
- Linked to specific classifier
- Filter-based
- A proxy measure
- «Simple» function
- Fast(er)
- Might be more general
2015.01.28

Remember separate
training/aviation set
(cf cross-validation)
trainingvaciations
(f. cross-validation)
INF 5300
10

Objective functions I/II

- Want a function that can predict good classifier performance
- E.g. for two classes:
, - Euclidean distance between class means $\left|\mu_{1}-\mu_{2}\right|$
- Mahalanobis distance between class means

$$
\Delta=\left(\mu_{1}-\mu_{2}\right)^{T} \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)
$$

- Assume Gaussianity and calculate divergence (eq. 5.14 in Theodoridis)
- Assume Gaussianity and calculate Bhattacharyya distance (linked to minimum attainable Bayes error rate)

$$
B=\frac{1}{8}\left(\mu_{r}-\mu_{s}\right)^{T}\left(\frac{\Sigma_{r}+\Sigma_{s}}{2}\right)^{-1}\left(\mu_{r}-\mu_{s}\right)+\frac{1}{2} \ln \frac{\left\lvert\, \frac{1}{2}\left(\Sigma_{r}+\Sigma_{s} \mid\right.\right.}{\sqrt{\left|\Sigma_{r}\right| \Sigma_{s} \mid}} \quad \begin{aligned}
& \text { «Divergence»: } \\
& \text { Here a distance } \\
& \text { measure between } \\
& \text { pdfs }
\end{aligned}
$$

- More general pdfs \rightarrow quickly more computationally challenging

Search strategies

- Want the best m out of n feature subset
- Exhaustive search implies $\binom{n}{m}$ evaluations if we fix m, and 2^{n} if we need to search all possible m as well - Choosing 10 out of 100 will result in $\sim 10^{13}$ queries
- Obviously we need to guide the search / use suboptimal search techniques

In some cases (monotonic cost
functions) one can compute the
optimal for larger n and $m \mathrm{~s}$ (cf.
branch-and-bound methods).
13

Method 2: Sequential forward selection

- Algorithm:
- Compute the criterion value for each feature. Select the feature with the best value, say X_{1}.
- Form all possible combinations of features x_{1} (the winner at the previous step) and a new feature, e.g. $\left[x_{1}, x_{2}\right],\left[x_{1}, x_{3}\right],\left[x_{1}, x_{4}\right]$, etc. previous step) and a new feature, e.g. $\left[x_{1}, x_{2}\right],\left[x_{1}, x_{3}\right],\left[x_{1}, x_{1}\right]$
Compute the criterion and select the best one, say $\left[x_{1}, x_{3}\right]$.
- Continue with adding a new feature until desired number reached.
- Number of combinations searched when selecting I out of m : $\mathrm{Im}-\mathrm{l}(\mathrm{I}-1) / 2$.
- Disadvantage: Unable to remove features that become obsolete after including more features

[^1]
Method 1 - Individual feature selection

- Each feature is treated separately (no correlation/dependence between features is considered)
- Select a criterion/objective function
- Calculate the objective function, $\mathrm{C}(\mathrm{k})$, for each feature k
- Select the set of features with the best individual criterion value
- Advantage with individual selection: Computation -- It's fast!
- Disadvantage: Ignores feature dependence/complementary information
fthis topic comes up during the exam, we will ask you to illustrate this by a toy example!
2015.01.28

INF 5300
14

Method 3 - Sequential backward selection

- Example: Want 2 out of 4 features $x_{1}, x_{2}, x_{3}, x_{4}$
- Choose a criterion/objective function C
- Eliminate one feature at a time by computing C for $\left[x_{1}, x_{2}, x_{3}\right]^{\top},\left[x_{1}, x_{2}, x_{4}\right]_{\mathrm{T}}$ $\left[x_{1}, x_{3}, x_{4}\right]^{\top}$ and $\left[x_{2}, x_{3}, x_{4}\right]^{\top}$
- Select the best (highest C) combination, say $\left[x_{1}, x_{2}, x_{3}\right]^{\top}$.
- From the selected 3 -dimensional feature vector eliminate one more feature, and evaluate the criterion for $\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]^{\top},\left[\mathrm{x}_{1}, x_{3}\right]_{\mathrm{T}},\left[\mathrm{x}_{2}, x_{3}\right]^{\top}$ and select the one with the best value.
- Number of combinations searched when selecting I out of m features $1+1 / 2((m+1) \mathrm{m}-\mathrm{l}(\mathrm{l}+1))$
- Backwards selection is faster if l is closer to m than to 1 .
- Disadvantage:
- Discarded features might have been deemed useful at a later stage
- High starting dimensionality might put restrictions on objective function

Method 4: Plus-L Minus-R Selection (LRS)

If $L>R$, LRS starts from the empty set and repeatedly adds L features and removes R features
If $L<R$, LRS starts from the full set and repeatedly removes R features followed by L feature additions

Algorithm

1. If $L>R$ then start with the empty set $Y=0$ else start with the full set $Y=X$ goto step 3
2. Repeat SFS step L times
3. Repeat SBS step R times
4. Goto step 2

LRS attempts to compensate for weaknesses in SFS and SBS by backtracking

Method 5: Floating search methods I/II

- Similar to plus-L minus-R selection, although with adaptive number of backtrackings
- The dimensionality (number of features) «floats»
- Both forward (SFFS) and backwards (SFBS) versions
- Basic idea for the forward version
- Repeat until desired number of features is found:
- Do a forward step by adding a feature
- Continue deleting features as long as the results improve (for sets of equal size)
- Provides good results at an «affordable» computational cost

Method 5: Floating search methods II/II

```
FFS Algorithm
    \mput:
        Output:
        |nitialisation:
        (in practice one can begin with k=2 by applying SFS twice)
        Termination:
        Stop when k equals the number of features required
Step 1 (Inclusion)
    \mp@subsup{x}{}{+}}:==\operatorname{arg}\mp@subsup{\operatorname{max}}{x\inY-\mp@subsup{X}{t}{*}}{m}J(\mp@subsup{X}{k}{*}+x){\begin{array}{l}{\mathrm{ the most significant fea-}}\\{\mathrm{ ture with respet to 和}}
X,
\mp@subsup{x}{}{-}:= =arg max J(Xk-x) {the least significant fea
    \mp@subsup{x}{}{-}}:=\operatorname{arg}\mp@subsup{\operatorname{max}}{~\in\mp@subsup{X}{k}{\prime}}{}J(\mp@subsup{X}{k}{}-x)\quad{\begin{array}{l}{\mathrm{ the least si}}\\{\mathrm{ ture in X}}
    if J(Xk-{\mp@subsup{x}{}{-}})}>>>\mp@subsup{J}{k-1}{(X)
        go to Step 2
        else go to Step 1
```

 2015.01.28
 INF 5300
 $\left.X_{k}-x_{z}-X_{k} \geq X_{k-1}\right)$ then
go to Step 2
go to Step 1
2015.01.28

INF 5300

Randomized methods

- Why? Try to avoid local optima.
- Apply previously-mentioned techniques and randomize over; input samples, input features, starting point.
- Popular general-purpose strategies:
- Simulated annealing
- Genetic algorithms

Method 6: Simulated annealing I/II

- Named after annealing in metallurgy
- Heat and then slowly cool to allow atoms to settle into more optimal crystalline structures
- Simulated annealing as optimization strategy
- High «temperature» \rightarrow move current solution more readily further away, and more readily accept a «worse» solution
- Gradually reduce temperature while iterating
- Needs
- Initial solution, temperature and cooling rate
- A «getNeighbor(state, temp)» function
- An (decent) objective function (of course!)

Given:
Examples $\mathrm{X}=<\mathrm{x}_{1}, y_{n}>\ldots<\mathrm{x}_{\ldots}, y_{m}>$
Annealing schedulule, $T_{0}, T_{\text {finad }}$ and ΔT with $0<\Delta T<1$
Feature subect evaluation fuxction Evol(, , $)$
Feature sulmet mightut furction Scrighber(
Algorithm:
$S_{\text {bout - }}$ randem feature sultect
while $T_{i}>T_{k-\ldots}$ do
$\Delta E-\operatorname{Ecal}\left(S_{\text {let }}, \mathbf{X}\right)-E \operatorname{coal}\left(S_{i}, \mathbf{X}\right)$
if $\Delta E<0$ then $\quad / / / /$ new subree belter

$T_{i+1} \stackrel{S_{\text {bent }}-\Delta T \times S_{i}}{ }$
return $\left(S_{\text {cent }}\right)$
FIGURE 1.6: A lxwie simulated anneding alyorithm.
2015.01.28

Method 7: Genetic algorithms

- Mimics the process of natural selection
- Strong similarites to simulated annealing (SA), although parallelized and with the ability to combine good solutions (parents) at each iteration
- Must thus assume there is something to be gained by such a combining
- How exactly do we combine solutions?
- Computationally heavy
2015.01.28

INF 5300

Preprocessing

- Outlier detection
- Missing data
- Features may have different ranges
- E.g. feature 1 has range $f 1_{\text {min }}-\mathrm{f} 1_{\text {max }}$ while feature n has range $\mathrm{fn}_{\text {min }}-\mathrm{fn} \mathrm{n}_{\text {max }}$
- This does seldomly reflect their significance in classification performance!
- Example: minimum distance classifier uses Euclidean distance
- Features with large absolute values will dominate the classifier

Feature normalization

Summary

- Make all features have similar ranges:
- Data set with N objects and K features
- Features $\mathrm{x}_{\mathrm{k}, \mathrm{i}} \mathrm{i}=1 \ldots \mathrm{~N}, \mathrm{k}=1, \ldots \mathrm{~K}$

Softmax (non-linear)

$$
\begin{aligned}
& y=\frac{x_{i k}-\bar{x}_{k}}{r \sigma_{k}} \\
& \hat{x}_{i k}=\frac{1}{1+\exp (-y)}
\end{aligned}
$$

Note: Normalization may change your selected feature subset or the performance of your classifier in general
2015.01.28

- «Curse of dimensionality»
- Objective function
- Wrapper-based
- Filter-based
- Distance measures between pdfs (class-wise densities) / divergence
- Search strategy
- Exhaustive often not possible
- Scalar/individual feature selection
- SFS, SBS, Floating search methods
- Randomized methods; input shuffling, simulated annealing and genetic algs.

[^0]: 8012501.28

[^1]: 2015.01.28

