

2015.05.13 INF5300 1

INF5300 – Basics of graph-based
semi-supervised learning (SSL)

Curriculum: Book “Semi-Supervised Learning”, O. Chapelle et. al. 2006;
Sections 1.1 and 1.2 in the introductory chapter, 11.1, 11.2 (not algorithm 11.3 and its explanatory
text), 11.3.1 (first page only), 11.3.2 (we skip the “alternative criterion”), 11.3.3, 11.3.4, 11.5.

See web page for links to pdfs. Note that we also link to some supplementary reading material.

● SSL and often-made assumptions
● Graph representation
● Label propagation and measure of label non-smoothness
● Example: User-guided image segmentation

2015.05.13 INF5300 2

SSL – Motivation

● Typically limited amount of labeled data
available

● Often a lot of unlabeled data

● Goal: Use both labeled and unlabeled data to
build better classifiers than possible when using
labeled data alone

2015.05.13 INF5300 3

Example: SSL vs. supervised

Class A

Class B

?
?

2015.05.13 INF5300 4

Example: SSL vs. supervised cont.

Class A

Class B

?

By labeling it red, you
are likely assuming
there is
class-relevant
information in the
distribution of the
unlabeled data.

2015.05.13 INF5300 5

Assumptions

● Smoothness assumption
– If two points in a high-density region are

close, then so should be the corresponding
outputs

● Cluster assumption
– If points are in the same cluster, they are

likely to be of the same class

● Low-density separation assumption
– Decision boundary should lie in a

low-density region

● Manifold assumption
– The (high-dimensional) data lie (roughly)

on a low-dimensional manifold

2015.05.13 INF5300 6

Assumptions cont.

Note: The assumptions do not always hold!

2015.05.13 INF5300 7

Transductive vs. inductive learning

● Transductive learning
– Perform predictions only for the given unlabeled data

– For new samples; relabel all data

● Inductive learning
– Construct a prediction function defined on the entire

feature space

● Transductive learning is our focus here

2015.05.13 INF5300 8

A sidenote: Self-learning

● Probably the very first attempt
at SSL

● Inductive learning

● Wrapper based; based on
given classifier

● Can be quite powerful

● Linked to EM-type of SSL

● Can deteriorate with increased
number of unlabeled data;
typically caused by model
misspecification

1. Use labeled samples to
build supervised classifier

2. Classify unlabeled data

3. Set our most confident
predictions to “labeled”

4. Repeat until convergence or
reached max number of
iterations

2015.05.13 INF5300 9

Graph representation

● Nodes are labeled and
unlabeled data points

● Edges reflect “similarity”

● We will assume: Similar
points have similar labels

● Labels “propagate” through
the graphFig. from Zhu et al., 2003.

2015.05.13 INF5300 10

Why graph-based SSL?

● Very versatile
– Some datasets are naturally represented by graphs

– .. others easily converted into them

– “Similarity” in nodes can cover broadly

– One framework to cover them all

● Scalable to large datasets (easily parallelizable)
● Often easily implemented, and often do well
● Why not; creating good graphs is not always easy!,

and they are more or less intrinsically transductive.

2015.05.13 INF5300 11

Our graphs and notation

● We assume two classes (extension to 3+ later)
– Each node

● Edges encoded in similarity matrix W

– E.g. , where xi are features of
sample i

– More on this later

Note: “E.g.”!

Symmetric

2015.05.13 INF5300 12

Graph smoothness

● Let y be a given set of labels

● Measure non-smoothness

● A useful, concrete example of
a such a measure:

1 -1

-1 1

1 1

-1 -1

OK

Not OK,
please penalizeOne can also think of this

as an “energy” term
(which we will later minimize)

If two nodes have unequal labels,
penalize by how “similar” they are
(given by the weight, w

i,j
)

½ for later
convenience

2015.05.13 INF5300 13

Example | Non-smoothness measure

●

● Let wi,j be either 0 or 1

● “Minimum cut” gives here an optimum

E(y)=4*4=16 E(y)=2*4=8 E(y)=1*4=4

 Labeled data /
fixed nodes

(Figs courtesy of Z. Ghahramani.)

Without, all nodes
either black or white
gives E(y)=0!

2015.05.13 INF5300 14

.. and in matrix notation

D is a diagonal matrix
containing each node's
outbound weights summed:

Known as the graph's
Laplacian matrix

2015.05.13 INF5300 15

Relaxing labels

● Turning our crisp labels (-1 and 1) into real-valued ones
makes optimizing E(y) much simpler and faster

● So, let us use “soft” labels:
– We get the final labels later by thresholding

(e.g. by sign(y i))

● Manipulating and optimizing E(y) = yTLy can now be
performed as any other real-valued quadratic function

2015.05.13 INF5300 16

Finding a solution I/II

● We want to minimize E(y) = yTLy s.t. yl fixed

● For simplicity, re-order the samples such that
the labeled ones come first:

Note that

2015.05.13 INF5300 17

Finding a solution II/II

● We can now write E(y) like:

● Its derivative w.r.t. the unlabeled data:

● Setting gives:
Note that

2015.05.13 INF5300 18

Solving iteratively

● Why? Handle large data sets (matrix inversion slow, popular solution
easily parallelizable)

● Jocobi iterations (at least inspired by such):

● One can of course also solve using other numeric schemes:
– Gradient descent (repeat moving slightly along the gradient)

– Gauss-Seidel

– Conjugate gradient

● Jacob iterations are simple, and very much suited for parallelization

Each node's label is just
the weighted average of
its neighbors' current values!iterate

2015.05.13 INF5300 19

Interpretation as random walk

There is also an interpretation
as node voltage on an
electric network(Fig. courtesy of X. Zhu, 2005.)

The two classes are here
encoded as y

i
=0 and y

i
=1,

respectively

2015.05.13 INF5300 20

Multiple classes

● Replace y with (soft) indicator matrix Y
– Y is an n x #classes matrix; each row corresponds to a class

and has 1 for samples of that class, 0 otherwise

– Example: Y version of our two-class y;

● Process each column independently/simultaneously
– Final class label for sample i is

2015.05.13 INF5300 21

Class priors

● We will focus on class mass normalization
● After propagating the labels (finding yu), the average “mass”

of class k is

● Let pk be our chosen prior for class k

● We now scale each column of by pk/mk such that we have
 before applying the “max-column” classification rule
from the previous slide

The average of column k of
a “soft” indicator matrix Y

2015.05.13 INF5300 22

More on the weight matrix

● k-NN
– Might yield asymmetric graphs, and irregular graphs

– Naturally sparse graphs

● ε-NN
– Not scale invariant, and might get fully disconnected components

● Gaussian kernel
– Result heavily dependent on

parameters () (as for all the others)

– Too small σ → 1-NN

– Too large σ → ignoring unlabeled data
(ignoring “structure” in data)

See also the “graph from images”
slide (that we will get to); can have
multiple components in the weight
term.

2015.05.13 INF5300 23

Eigendecomposition of the Laplacian

(Fig. courtesy of A. Subramanya & P.P. Talukdar, 2012.)

= 1, as we can say ||g||=1
without loss of generality

2015.05.13 INF5300 24

Eigendecomposition of the Laplacian cont.

● Example of a graph and an
eigendecomposition of its
Laplacian matrix →

● Note how these
eigenvectors can be used
for grouping / segmenting
the nodes / samples (cf.
image segmentation)
– Very much related to

“minimum cut”-based
algorithms

(Fig. courtesy of X. Zhu, 2006.)

2015.05.13 INF5300 25

Ease trust in labeled data

● Noise in labeled data?
● Might reduce “overfitting”
● New criterion function (replacing E(y)):

Smoothness Extra: Regularization /
numerical stability

Keep original labeling

Let S be a diagonal
indicator matrix for
labeled data:

A popular variant termed
Modified Absorption (MAD),
replaces the last term by one
that penalizes distances from
a per-sample “prior”, instead
of distances to zero

Look: Unconstrained!

2015.05.13 INF5300 26

Example of graph from single image

● Pixels are nodes

● Edges (weights):
– 1) Encode both the influence of

spatial distance between a pair of
pixels (e.g. in extremity; set weights
to zero for pixels not bordering each
other)

– 2) .. and a measure of similarity of
pixels (intensity, color, or texture)

Green: Nonzero-weighted edge. All others
(including the red example red edge) no edge
(having zero edge weight).

Possibly multi-
featured pixels

.. when the goal is image segmentation

2015.05.13 INF5300 27

Example: User-guided segmentation

● Nodes / pixels
– Local-texture description

● Absolute values of discrete Fourier
transform coefficients

● Edges
– Non-zero for 8-neighbors

● Gaussian kernel, single σ2

● Here, no data-adaptivity

● Initial labels
– Provided by user

● Green and red classes
(yi=-1 or yi=1)

|DFT|

2015.05.13 INF5300 28

Example: User-guided segmentation cont.

Input Labels propagated Thresholded
(and border extracted)

2015.05.13 INF5300 29

Summary

● SSL and often-made assumptions

● Graph representation | Nodes and edges (datapoints and their similarity)

● Non-smoothness penalty term [E(y)=yTLy] | .. and finding its minimum (label
propagation)

● Building the graph / finding edge-weights | k-NN, ε-NN, Gaussian kernel etc.

● Eigendecomposition of the Laplacian matrix | Connectivity and partitioning

● Ease trust in labeled data | Replace E(y) with other quadratic criterion

● Image → graph | Cf. the example of user-guided image segmentation

.. which do not
always hold!

Parameters!

