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INF5300 – Basics of graph-based 
semi-supervised learning (SSL)

Curriculum: Book “Semi-Supervised Learning”, O. Chapelle et. al. 2006; 
Sections 1.1 and 1.2 in the introductory chapter, 11.1, 11.2 (not algorithm 11.3 and its explanatory 
text), 11.3.1 (first page only), 11.3.2 (we skip the “alternative criterion”), 11.3.3, 11.3.4, 11.5.

See web page for links to pdfs.  Note that we also link to some supplementary reading material.

● SSL and often-made assumptions
● Graph representation
● Label propagation and measure of label non-smoothness
● Example: User-guided image segmentation
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SSL – Motivation

● Typically limited amount of labeled data 
available

● Often a lot of unlabeled data

● Goal: Use both labeled and unlabeled data to 
build better classifiers than possible when using 
labeled data alone
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Example: SSL vs. supervised

Class A

Class B

?
?
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Example: SSL vs. supervised cont.

Class A

Class B

?

By labeling it red, you
are likely assuming 
there is 
class-relevant 
information in the 
distribution of the 
unlabeled data.
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Assumptions

● Smoothness assumption
– If two points in a high-density region are 

close, then so should be the corresponding 
outputs

● Cluster assumption
– If points are in the same cluster, they are 

likely to be of the same class

● Low-density separation assumption
– Decision boundary should lie in a 

low-density region

● Manifold assumption
– The (high-dimensional) data lie (roughly) 

on a low-dimensional manifold
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Assumptions cont.

Note: The assumptions do not always hold!
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Transductive vs. inductive learning

● Transductive learning
– Perform predictions only for the given unlabeled data

– For new samples; relabel all data

● Inductive learning
– Construct a prediction function defined on the entire 

feature space

● Transductive learning is our focus here
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A sidenote: Self-learning

● Probably the very first attempt 
at SSL

● Inductive learning

● Wrapper based; based on 
given classifier

● Can be quite powerful

● Linked to EM-type of SSL

● Can deteriorate with increased 
number of unlabeled data; 
typically caused by model 
misspecification

1. Use labeled samples to 
build supervised classifier

2. Classify unlabeled data

3. Set our most confident 
predictions to “labeled”

4. Repeat until convergence or 
reached max number of 
iterations
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Graph representation

● Nodes are labeled and 
unlabeled data points

● Edges reflect “similarity”

● We will assume: Similar 
points have similar labels

● Labels “propagate” through 
the graphFig. from Zhu et al., 2003.
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Why graph-based SSL?

● Very versatile
– Some datasets are naturally represented by graphs

– .. others easily converted into them

– “Similarity” in nodes can cover broadly

– One framework to cover them all

● Scalable to large datasets (easily parallelizable)
● Often easily implemented, and often do well
● Why not; creating good graphs is not always easy!, 

and they are more or less intrinsically transductive.
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Our graphs and notation

● We assume two classes (extension to 3+ later)
– Each node 

● Edges encoded in similarity matrix W

– E.g.                              , where xi are features of 
sample i

– More on this later

Note: “E.g.”!

Symmetric
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Graph smoothness

● Let y be a given set of labels

● Measure non-smoothness

● A useful, concrete example of 
a such a measure:

1 -1

-1 1

1 1

-1 -1

OK

Not OK,
please penalizeOne can also think of this 

as an “energy” term 
(which we will later minimize)

If two nodes have unequal labels,
penalize by how “similar” they are 
(given by the weight, w

i,j
)

½ for later
convenience
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Example | Non-smoothness measure

●

● Let wi,j be either 0 or 1

● “Minimum cut” gives here an optimum

E(y)=4*4=16 E(y)=2*4=8 E(y)=1*4=4

   Labeled data / 
fixed nodes

(Figs courtesy of Z. Ghahramani.)

Without, all nodes
either black or white
gives E(y)=0!

2015.05.13 INF5300 14

.. and in matrix notation

D is a diagonal matrix
containing each node's 
outbound weights summed:

Known as the graph's
Laplacian matrix
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Relaxing labels

● Turning our crisp labels (-1 and 1) into real-valued ones 
makes optimizing E(y) much simpler and faster

● So, let us use “soft” labels: 
– We get the final labels later by thresholding 

(e.g. by sign(y i))

● Manipulating and optimizing E(y) = yTLy can now be 
performed as any other real-valued quadratic function
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Finding a solution I/II

● We want to minimize E(y) = yTLy s.t. yl fixed

● For simplicity, re-order the samples such that 
the labeled ones come first:

Note that
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Finding a solution II/II

● We can now write E(y) like:

● Its derivative w.r.t. the unlabeled data:

● Setting              gives:
Note that
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Solving iteratively

● Why? Handle large data sets (matrix inversion slow, popular solution 
easily parallelizable)

● Jocobi iterations (at least inspired by such):

● One can of course also solve using other numeric schemes:
– Gradient descent (repeat moving slightly along the gradient)

– Gauss-Seidel

– Conjugate gradient

● Jacob iterations are simple, and very much suited for parallelization

Each node's label is just 
the weighted average of 
its neighbors' current values!iterate
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Interpretation as random walk

There is also an interpretation
as node voltage on an 
electric network(Fig. courtesy of X. Zhu, 2005.)

The two classes are here
encoded as y

i
=0 and y

i
=1,

respectively
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Multiple classes

● Replace y with (soft) indicator matrix Y
– Y is an n x #classes matrix; each row corresponds to a class 

and has 1 for samples of that class, 0 otherwise

– Example: Y version of our two-class y; 

● Process each column independently/simultaneously
– Final class label for sample i is 
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Class priors

● We will focus on class mass normalization
● After propagating the labels (finding yu), the average “mass” 

of class k is 

● Let pk be our chosen prior for class k

● We now scale each column of     by pk/mk  such that we have 
                before applying the “max-column” classification rule 
from the previous slide

The average of column k of
a “soft” indicator matrix Y
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More on the weight matrix

● k-NN
– Might yield asymmetric graphs, and irregular graphs

– Naturally sparse graphs

● ε-NN
– Not scale invariant, and might get fully disconnected components

● Gaussian kernel
– Result heavily dependent on 

parameters (   )  (as for all the others)

– Too small σ → 1-NN

– Too large σ → ignoring unlabeled data 
(ignoring “structure” in data)

See also the “graph from images” 
slide (that we will get to); can have 
multiple components in the weight 
term.
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Eigendecomposition of the Laplacian

(Fig. courtesy of A. Subramanya & P.P. Talukdar, 2012.)

= 1, as we can say ||g||=1 
without loss of generality
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Eigendecomposition of the Laplacian cont.

● Example of a graph and an 
eigendecomposition of its 
Laplacian matrix →

● Note how these 
eigenvectors can be used 
for grouping / segmenting 
the nodes / samples (cf. 
image segmentation)
– Very much related to 

“minimum cut”-based 
algorithms

(Fig. courtesy of X. Zhu, 2006.)
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Ease trust in labeled data

● Noise in labeled data?
● Might reduce “overfitting”
● New criterion function (replacing E(y)):

 

Smoothness Extra: Regularization /
numerical stability

Keep original labeling

Let S be a diagonal
indicator matrix for
labeled data:

             

A popular variant termed 
Modified Absorption (MAD), 
replaces the last term by one 
that penalizes distances from 
a per-sample “prior”, instead
of distances to zero

Look: Unconstrained!
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Example of graph from single image

● Pixels are nodes

● Edges (weights):
– 1) Encode both the influence of 

spatial distance between a pair of 
pixels (e.g. in extremity; set weights 
to zero for pixels not bordering each 
other)

– 2) .. and a measure of similarity of 
pixels (intensity, color, or texture)

Green: Nonzero-weighted edge.  All others 
(including the red example red edge) no edge 
(having zero edge weight).

Possibly multi-
featured pixels

.. when the goal is image segmentation
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Example: User-guided segmentation

● Nodes / pixels
– Local-texture description

● Absolute values of discrete Fourier 
transform coefficients

● Edges
– Non-zero for 8-neighbors

● Gaussian kernel, single σ2

● Here, no data-adaptivity

● Initial labels
– Provided by user

● Green and red classes 
(yi=-1 or yi=1)

|DFT|
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Example: User-guided segmentation cont.

Input Labels propagated Thresholded
(and border extracted)
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Summary

● SSL and often-made assumptions

● Graph representation | Nodes and edges (datapoints and their similarity)

● Non-smoothness penalty term [E(y)=yTLy] | .. and finding its minimum (label 
propagation)

● Building the graph / finding edge-weights | k-NN, ε-NN, Gaussian kernel etc.

● Eigendecomposition of the Laplacian matrix | Connectivity and partitioning

● Ease trust in labeled data | Replace E(y) with other quadratic criterion

● Image → graph | Cf. the example of user-guided image segmentation

.. which do not 
always hold!

Parameters!


