
INF5300, spring 2015 - Lab on feature transforms

“Curse of dimensionality”:
Run and explore the script demonstrating the “curse of dimensionality” (see link on course page).  
Explain why we at some point start to get worse classification performance as we keep adding (in 
themselves) useful features.

Feature selection using the PRTools package
Run and explore the script demonstrating basic feature selection using the PRTools package (see 
link on course page).  Uncomment appropriately to explore stepwise forward-selection and 
“forward-floating” selection, and also to determine whether it is anything to gain by using a 
wrapper-based criterion for this particular dataset.  What can you say about computational 
requirements, based on your experience, for the filter vs. wrapper approach?

Principal component transform (PCA):
1. We will work on data from a six-band satellite image covering the Kjeller area. Load the file

tm.mat  from ~inf5300/www_docs/data. 
2. Put all the image data into one long nx6 matrix, X (one row per pixel having 6 feature 

values). 
3. Subtract the sample mean from each column of X. (Making the mean of each band zero.)
4. Compute the 6x6 sample covariance matrix (scatter matrix), R.
5. Use [V D] = eig(R) to find the eigenvectors and eigenvalues of the covariance matrix. Note: 

eig() sorts eigenvalues ascendingly. 
6. Form the A matrix, in y=A'x, by letting each column be an eigenvector of the covariance 

matrix. 
7. Get the 6 principal components from the just-designed linear transform (apply the y=A’x 

transform on each sample/pixel).
8. Compute the sample covariance matrix of the transformed variables.  Verify that it is 

diagonal. Compare the matrix with your list of eigenvalues of R.  Explain!
9. Reshape the data (the PCA-transformed data) into yet again six 2D images.
10. Display the principal component images one by one (the six new “bands” separately). 

Looking at them, how many have significant visual information? How many do you think 
are useful for per-pixel classification?

11. Plot the eigenvalues scaled by the sum of all eigenvalues, as well as the cumulative of that 
very function.  How many bands is necessary to retain at least 90% of the variance of the 
original 6-band image? 

12. Looking at the feature-weights that are used to form the (first) principle component; which 
of the six original images is the most influential? (Which has the highest weight?)

13. Is PCA scale invariant? Multiply one of the original images by, say, 1000, redo 4. and 5., 
then see if the eigenvectors change.  Scale each input-feature by 1 divided by its standard 
deviation – does the answer in 12. (the most influential band) change if we do this?

14. Create a “random” vector of length 6 by e.g. r = randn(6,1);.  Then repeat the following 
procedure, say N=100 times:  a) r = R*r; b) r = r/norm(r);   Compare this vector with your 
eigenvectors.  Explain!  [Hint: Look at the decomposition of R on slide 9 in our PCA 
lecture.  Hint II: Except for numerical issues, this is the same as doing a) R100r; b) 
r=r/norm(r);]

15. Let R* = R – c*r*r’, where c is the highest eigenvalue you found in 5.  Repeat 14 using R*. 
What do you get?  Explain!



Fisher’s reduced-rank linear discriminant: 
1. Load the training mask ‘tm_train_mask.mat’ and the feature vectors ‘tm.mat’. 
2. Compute the mean vectors and covariance matrices for each of the four classes.  
3. Compute the between-class scatter matrix Sb. 
4. Compute the within-class scatter matrix Sw. 
5. Get the Fisher's reduced-rank linear transform by getting the eigenvectors and eigenvalues 

of Sw
-1Sb. 

6. What is the rank of Sb? How many Fisher components can you get? 
7. Display the Fisher component images one by one (the three “bands” separately). Compare 

with those from the PCA transform. 

 
Classification 
Compare the classification performance of a Gaussian-based classifier with equal class-covariance 
matrices using the original bands, all PCA bands and all “Fisher bands”.  What if we use a quadratic
classifier (i.e., we do not assume equal class-covariance matrices) instead?

Which method yields the best classification accuracy (on the training set) using a single feature? 

You can either implement the classifiers yourselves or use ldc() and qdc() in the PRTools toolbox.  
See the script under “curse of dimensionality” for a simple example of how to use the toolbox for a 
similar classification (it uses the qdc).
 


