Learning goals

INF 5300 — Basics of Support Vector
Machine Classifiers (SVM)

« Two-class linear classifiers and the concept of margins
« From two to M classes

« The kernel trick — from linear to a high-dimensional
generalization

« Practical issues

Sections 3.1-3.2, 3.7 (3.7.3 s a SVM-variant that we will skip), 4.17 in "Pattern Recognition” by S.
Theodoridis and K. Koutroumbas.

Low-level, practical details on how to actually solve the stated optimization problems are not
required.

(see links on the course's web-page for pdfs)
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Understand enough of SVM classifiers to be able to use it for a
classification application.

— Understand the basic linear separable problem and what the meaning of the
solution with the largest margin means.

— Understand how SVMs work in the non-separable case using a cost for
misclassification.

— Accept the kernel trick: that the original feature vectors can be implicitly
transformed into a higher dimensional space in which the SVM is applied.

— Know briefly how to extend from 2 to M classes.

— Know which parameters the user must specify and how to perform a grid
search for these.

— Be able to find a SVM library and use it correctly ©
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Linear classifiers I/II

Linear classifiers II/II

Linear decision
boundary

X1
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« Discriminant function:

e Two-class problem,

g(x) = wix + Wo_ Xy

N
Weightsforientation Thresholdibias

Yi € {_111}
N
Class indicator for pattern i
g =0
v = -11 g(xi) <0
=
11 g(xi) >0
X
Input pattern
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Multiple candidates

* Obviously we want the decision
boundary to separate the classes ..

.
* .. however, there can be many | R

such hyperplanes. /

* Which of these two candidates
would you prefer? Why?
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Distance to the decision line

— Project x onto w

o Wix/|w| = d+z

* g(dw/|w[)=0 =>
d = -wy/|w|

e z=wx/|w|-d
= wWTx/|w| + wy/|w]|

= g(x)f |w]

" Distance from x to the
decision boundary
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Hyperplanes and margins

¢ If both classes are equally probable,
the distance from the hyperplane
to the closest points in both
classes should be equal. This is called
the margin.

e The margin for «direction 1» is 2z,,
and for «direction 2» it is 2z,. Vi

* From previous slide; the distance
from a point to the separating
hyperplane is

, 2l
wi
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Hyperplanes and margins

P Does not change the margin
e We can scale g [w and w] )

such that g(x) will be equal to X, .
1 at the closest points in the ~ A%
two classes. This is equivalent e’ .
to: o ® )] &
. &
1. Have a margin of —s-=2 e ,’ &
) [ENTRT] R e
.7 7 o
2. Require that L . ©
WX+wW, 21, Vxeam, , @ ©9¢
Wx+w, <1, Vxew, ’ z

¢ Goal: find w and w, yielding
the maximum margin

2015.03.25 INF 5300




Maximum-margin problem-formulation

¢ The hyperplane with maximum margin can be found by solving
the optimization problem (w.r.t. w and wy):

+— The ¥z factor is for later convenience

Note: We assume
. . . here fully class-
subjectto y;(w' x;+w,) =1, i=12,..N separable data!

minimize J(W)= %HW

e Checkpoint: Do you understand this formulation?
e How is this criterion related to maximizing the margin?
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More on the optimization problem

We recommend,
again, to read the

Generalized Lagrangian function: note on Lagrangian

multipliers (see web).

[ op oo .
L(w, wy, ) = :JW" w— ZL[,\‘,(‘W"X{ +wp) — 1]

i=1
J
‘)_E(w' wp, A) =0
Jw =
a9
—L(w, wp,A) =0
dwg =0
@0, i=12...N
Alyiw xi +wo) ~11=0, i=1,2,... N
X - Karush-Kuhn-Tucker (KKT)
Either A= 0 or g(x)=1 "] conditions
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Support vectors

*  The feature vectors x; with a corresponding N
;>0 are called the support vectors for the: ~——— e zﬁ
problem. - S

i=l
*  The classifier defined by this hyperplane is
called a Support Vector Machine.

*  Depending on y; (+1 or -1), the support vectors
will thus lie on either of the two hyperplanes
WIX+Wy=+1

. The support vectors are the points in the &
training set that are closest to the decision / < ¥

hyperplane.

e  The optimization has a unique solution, only

one hyperplane satisfies the conditions. The support vectors for hyperplane 1

are the blue circles.
The support vectors for hyperplane 2
are the red circles.
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Dual representation

¢ Plugging back into L(w,wg,A) gives us

! N

DALY anyyx)

i=1 2 i -

N "?\

st DAY =0
= i \ Important (for later):
A =0vi \ The samples come into play
as inner products only!
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The nonseparable case

» If the two classes are nonseparable,
a hyperplane satisfying the
conditions |w™x-wy|>1 cannot be
found. i

e The feature vectors in the training S
set are now either: o

1. Vectors that fall outside the band
and are correctly classified. [] correctly classified

2. Vectors that are inside the band but
are correctly classified. They satisfy (O Erroneously classified
0<y;(wTx+wg)<1

3. Vectors that are misclassified;
expressed as y;(wTx+w,)<0 O
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e The three cases can be treated under a single type of contraint if
we introduce slack variables &;:

T
Vilw x+w ]2 1-&
— The first category (outside, correctly classified) have &=0

— The second category (inside, correctly classified) have 0< g; <1
— The third category (misclassified) have & >1

¢ The optimization goal is now fo keep the margin as large as
possible and the number of points with & >0 as small as possible.
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Cost function — nonseparable case

¢ A simple change in cost function to reflect this:

argmin {—uwu vCZEE}

ww xi—b) 21-& &20

e Cis a parameter that controls how much misclassified, or
margin-crossing, training samples are weighted.

¢ Following the Lagrange path we end up with the following dual

formulation:
i 1
; T
m;dx[Z/H ’EZ}M.Y\V.X. x‘]
The non-zero A, (the support Ho 2N
vectors) are now those on st 02, {C)vi _
the margin, those within the N - Only difference between
margin, and those Ay, = ~—— this and the solution on
misclassified i slide 12
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An example — the effect of C

¢ Cis the misclassification cost.

s
af
1
[

S| st .| co100

I [ I 2 l " N

. Selectlng C too hi h wnII jive a cIassnf er that ﬂts the tranmng
data betfter, but likely fails on new data.

e The value of C should be selected using a separate validation
set. Separate the training data into a part used for training,
train with different values of C and select the value that gives
best results on the validation data set. Then apply this to new
data or the test data set.
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How to go from 2 to M classes

¢ All we have discussed up until now involves only
separating 2 classes. How do we extend the methods
to M classes?

¢ Two common approaches:
— One-against-all
* For each class m, find the hyperplane that best disciminates
this class from all other classes. Then classify a sample to the
class having the highest output. (To use this, we need the
VALUE of the inner product and not just the sign.)

— Compare all sets of pairwise classifiers

* Find a hyperplane for each pair of classes. This gives M(M-1)/2
pairwise classifiers. For a given sample, use a voting scheme
for selecting the most-winning class.
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SVM - a different geometric view

e SVMs can be related to the convex hull of the
different classes. Consider a class that contains
training samples X={x;,...Xy}.

e From INF 4300:

— Aregion Ris convex if and only if for any two points x,,x;
in R, the whole line segment between x; and x; is inside
the R.

— The convex hull of a region is the smalles convex region H
which satisfies the conditions RcH.
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¢ The convex hull for a class is the smallest convex set that
contains all the points in the class (X).

o Searching for the hyperplane with the highest margin is
equivalent to searching for the two nearest points in the two
convex sets.

— This can be proven, but here we just use the result as an aid to get
a better geometric interpretation of the SVM hyperplane.
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Reduced convex hull

¢ To get a useable interpretation for nonseparable classes, we need
the reduced convex hull.

¢ The convex hull can be expressed as:

N

conviX}=1y: y=2Ax:xeX,
. =
DA=1,0<4<1}

e The reduced convex hull is : o
Here we add a restriction

N N
ROGu ={y: y= 2 A% X € X, that 2; must also be
= smaller than p

"
2Ah=l 0<a<u}

e pis a scalar between 0 and 1. p = 1 gives the regular convex
hull.
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Reduced convex hull - example

| /N | e u=0.4
p=l of -1 u=0.1
Regular Reduced
convex . convex
hulls hulls

« Data set with overlapping classes.

* For small enough values of u, we can make the two reduced convex
hulls non-overlapping.

¢ A rough explanation of the non-separable SVM problem is that a value
of u that gives non-intersecting reduced convex hulls must be found.

* Given a value of p that gives non-intersecting reduced convex hulls,
the best hyperplane will bisect the line between the closest points in
these two reduced convex hulls.
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Relating pand C

* Given a value of u that gives non-intersecting reduced convex hulls,
find the hyperplane by finding the closest two points in the two sets.

* Several values of p can give nonintersecting reduced hulls.

e pis related to C, the cost of misclassifying training regions (see page
101).

« A high C will give regions that just barely give nonintersecting regions.

* The most robust considering a validation data set is probably a smaller
value of C (and p).
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Checkpoint

SVMs: The nonlinear case intro.

argmin { %[IWHB + C‘; E.}

wlw-xi—b) 21-& &20

¢ Do you understand the different terms and criteria in the above
minimization problem?

* Which points/samples turn out to be the support vectors?
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e The training samples are I-dimensional vectors; we have until now
tried to find a linear separation in this I-dimensional feature space

¢ This seems quite limiting

* What if we increase the dimensionality (map our samples to a
higher dimensional space) before applying our SVM?

e Perhaps we can find a better linear decision boundary in that
space? Even if the feature vectors are not linearly separable in the
input space, they might be (close to) separable in a higher
dimensional space
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An examle: from 2D to 3D

¢ Let xbe a 2D vector x=[x;,X,].

« In the toy example on the right, the
two classes can not be linearly
separated in the original 2D space.

* Consider now the transformation

3
y=| V2%,
X

* Now, the transformed points in this
3D space can be separated by a
(hyper)plane.

e The separating plane in 3D maps
out an ellipse in the original 2D Cf. next slide, note that
space N ¥ = ()2

«Nonlinear»!
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SVMs and kernels

* Note that in both the optimization problem and the evaluation
function, g(x), the samples come into play as inner products only

/ Called ckemel»

« If we have a function evaluating inner products, K(x;x;), we can
ignore the samples themselves when solving the optimization

e Let's say we have K(x;x;) evaluating inner products in a higher
dimensional space:

-> no need to do the mapping of our samples explicitly!
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Useful kernels for classification

* Polynomial kernels
K(x,2)= (XTZ—I)Q, q>0

¢ Radial basis function kernels (very commonly used!)
»<(x,z>:m{*“—“‘xiZ :1 The «supports
“ ~

of each pointis

Note the we controlled by .

~ need to set the.
o parameter

* Hyperbolic tangent kernels (often with f=2 and y=1)

The inner T The kemels give inner-
productis K(x,2) = tanh (ﬁx Z+ 7) product evaluatons in
related to the the, possibly infinite-
similarity of the dimensional,

two samples. transformed space.
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The kernel formulation of
the optimization function

« Given the appropriate kernel (e.g. «radial» with width o) and the cost of
misclassification C, the optimization task is:

.1 5
me[Zm *SZM,Y.Y,K(X.’XJ]

i
subjectto 0< 4 <C, i=1...

D AYi=0

N

¢ The resulting classifier is:

N
assign x to class @, if g(x)= Zﬂﬁy, K(;,X)+Wo > 0 and to class @, otherwise

=
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Example of nonlinear decision boundary

How to use a SVM classifier

¢ This illustrates how the nonlinear SVM might look in
the original feature space

¢ RBF kernel used

. H Figure 4.23 in
o e - .* PR by Teodoridis et.al.
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« Find a library with all the necessary SVM-functions ©
— For example libSVM
— Or use the PRTools toolbox http://www.37steps.com/prtools/
e Read the introductory guides.
« Often a radial basis function kernel is a good starting point.
e Scale the data to the range [-1,1] (will not be dominated with
features with large values).
¢ Find the optimal values of C and ¢ by performing a grid search
on selected values and using a validation data set.
« Train the classifier using the best value from the grid search.
e Test using a separate test set.
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How to do a grid search

Summary / Learning goals

e Use n-fold cross valiation (e.g. 10-fold cross-
validation).

— 10-fold: divide the training data into 10 subsets of equal
size. Train on 9 subsets and test on the last subset. Repeat
this procedure 10 times.

¢ Grid search: try pairs of (C,c). Select the pair that
gets the best classification performance on average
over all the n validation test subsets.
¢ Use the following values of C and o:
o C=2523.,215
o5 =215213, .., 23
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¢ Understand enough of SVM classifiers to be able to
use it for a classification application.

— Understand the basic linear separable problem and what the
meaning of the solution with the largest margin is.

— Understand how SVMs work in the non-separable case using
a cost for misclassification.

— Accept the kernel trick: that the original feature vectors can
be transformed into a higher dimensional space, and that
linear SVM is applied in this space without explicitly doing
the feature transform

— Know briefly how to extend from 2 to M classes.

— Know which parameters (C, etc.) the user must specify and
how to perform a grid search for these.

— Be able to find a SVM library and use it correctly
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