INF 5300 - Basics of Support Vector Machine Classifiers (SVM)

- Two-class linear classifiers and the concept of margins
- From two to M classes
- The kernel trick - from linear to a high-dimensional
generalization
- Practical issues

Sections $3.1 .3 .3 .2,3.7$ (3.7.3.3 is a svM-variant that we will skip). 4.17 in "Patem Recogntition" by S .
Lew-Evel, pratical details on how to actually solve the stated optimization problems are not
required.

Linear classifiers I/II

Linear classifiers II/II

- Discriminant function: $\mathrm{g}(\mathbf{x})=\mathbf{w}^{\boldsymbol{\top}} \mathbf{x}+\mathrm{w}_{0}$

Weights/orientation Threshold/bias

- Two-class problem, $y_{i} \in\{-1,1\}$
Class indicator for patemi
- $y_{i}=\left\{\begin{array}{r}-1, g\left(\mathbf{x}_{i}\right)<0 \\ 1, g\left(\mathbf{x}_{i}\right)>0\end{array}\right.$

4

Multiple candidates

- Obviously we want the decision
boundary to separate the classes .
- .. however, there can be many such hyperplanes.
- Which of these two candidates would you prefer? Why?

- $\mathbf{w}^{\top} \mathbf{x} /|\mathbf{w}|=\mathrm{d}+\mathbf{z}$
- $\mathrm{g}(\mathrm{d} \mathbf{w} /|\mathbf{w}|)=0=>$ $d=-w_{0} /|\mathbf{w}|$
- $\mathrm{z}=\mathbf{w}^{\boldsymbol{\top}} \mathbf{x} /|\mathbf{w}|-\mathrm{d}$
$=\mathbf{w}^{\top} \mathbf{x} /|\mathbf{w}|+\mathrm{w}_{0} /|\mathbf{w}|$
$=g(\mathbf{x}) /|\mathbf{w}|$
Distance from \mathbf{x} to the
decision boundary

Hyperplanes and margins

- If both classes are equally probable, the distance from the hyperplane to the closest points in both classes should be equal. This is called the margin.
- The margin for «direction 1 » is $2 z_{1}$ and for «direction 2 » it is $2 z_{2}$.
- From previous slide; the distance from a point to the separating hyperplane is

$$
z=\frac{|g(x)|}{\|w\|}
$$

Hyperplanes and margins

- We can scale $g\left[\mathbf{w}\right.$ and w_{0}] such that $\mathrm{g}(\mathbf{x})$ will be equal to 1 at the closest points in the two classes. This is equivalent to:

1. Have a margin of $\frac{1}{\|\|\|\|}+\frac{1}{\|w\|}=\frac{2}{\| \| \|}$
2. Require that
$w^{T} x+w_{0} \geq 1, \quad \forall x \in \omega_{1}$
$w^{T} x+w_{0} \leq-1, \quad \forall x \in \omega_{2}$

- Goal: find w and w_{0} yielding

Does not change the margin
$\mathrm{x}_{2} \uparrow$
 the maximum margin
2015.03.25

Maximum-margin problem-formulation

More on the optimization problem

- The hyperplane with maximum margin can be found by solving the optimization problem (w.r.t. w and w_{0}):

- Checkpoint: Do you understand this formulation?
- How is this criterion related to maximizing the margin?

Generalized Lagrangian function:

$\mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)=\frac{1}{2} \boldsymbol{w}^{T} \boldsymbol{w}-\sum_{i=1}^{N} \lambda_{i}\left[y_{i}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}+w_{0}\right)-1\right]$

Support vectors

- The feature vectors \mathbf{x}_{i} with a correspondin $\lambda_{i}>0$ are called the support vectors for the problem.

- The classifier defined by this hyperplane is called a Support Vector Machine.
- Depending on $y_{i}(+1$ or -1$)$, the support vectors will thus lie on either of the two hyperplanes $\mathbf{w}^{\boldsymbol{\top}} \mathbf{x}+\mathrm{w}_{0}= \pm 1$
- The support vectors are the points in the training set that are closest to the decision training set therplane.
- The optimization has a unique solution, only one hyperplane satisfies the conditions.

The nonseparable case

- If the two classes are nonseparable, a hyperplane satisfying the conditions $\left|\mathbf{w}^{\boldsymbol{\top}} \mathbf{x}-\mathrm{w}_{0}\right| \geq 1$ cannot be found.
- The feature vectors in the training set are now either:

1. Vectors that fall outside the band and are correctly classified.
2. Vectors that are inside the band but are correctly classified. They satisfy $0 \leq y_{i}\left(\mathbf{w}^{\top} \mathbf{x}+w_{0}\right)<1$
3. Vectors that are misclassified; expressed as $y_{i}\left(\mathbf{w}^{\top} \mathbf{x}+w_{0}\right)<0 \bigcirc$

- The three cases can be treated under a single type of contraint if we introduce slack variables ξ_{i} :

$$
y_{i}\left[w^{T} x+w_{0}\right] \geq 1-\xi_{i}
$$

- The first category (outside, correctly classified) have $\xi_{\mathrm{i}}=0$
- The second category (inside, correctly classified) have $0 \leq \xi_{i} \leq 1$
- The third category (misclassified) have $\xi_{\mathrm{i}}>1$
- The optimization goal is now to keep the margin as large as possible and the number of points with $\xi_{i}>0$ as small as possible.
Erroneously classified

Cost function - nonseparable case

- A simple change in cost function to reflect this:

$$
\begin{aligned}
& \underset{\mathbf{w}, \xi_{b}}{\arg \min }\left\{\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}\right\} \\
& y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}-b\right) \geq 1-\xi_{i}, \quad \xi_{i} \geq 0
\end{aligned}
$$

- C is a parameter that controls how much misclassified, or margin-crossing, training samples are weighted.
- Following the Lagrange path we end up with the following dua formulation:

[^0]
An example - the effect of C

- C is the misclassification cost.

- Selecting C too high will give a classifier that fits the training data better, but likely fails on new data
- The value of C should be selected using a separate validation set. Separate the training data into a part used for training, train with different values of C and select the value that gives best results on the validation data set. Then apply this to new data or the test data set.

How to go from 2 to M classes

- All we have discussed up until now involves only separating 2 classes. How do we extend the methods to M classes?
- Two common approaches:
- One-against-all
- For each class m, find the hyperplane that best disciminates this class from all other classes. Then classify a sample to the class having the highest output. (To use this, we need the VALUE of the inner product and not just the sign.)
- Compare all sets of pairwise classifiers
- Find a hyperplane for each pair of classes. This gives $M(M-1) / 2$
pairwise classifiers. For a given sample, use a voting scheme for selecting the most-winning class.

Reduced convex hull

SVM - a different geometric view

- SVMs can be related to the convex hull of the different classes. Consider a class that contains training samples $X=\left\{\mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{N}}\right\}$.
- From INF 4300:
- A region R is convex if and only if for any two points x_{1}, x_{2} in R, the whole line segment between x_{1} and x_{2} is inside the R.
- The convex hull of a region is the smalles convex region H which satisfies the conditions $\mathrm{R} \subseteq \mathrm{H}$.
- To get a useable interpretation for nonseparable classes, we need the reduced convex hull.
- The convex hull can be expressed as:

$$
\begin{gathered}
\operatorname{conv}\{X\}=\left\{y: y=\sum_{i=1}^{N} \lambda_{i} x_{i}: x_{i} \in X,\right. \\
\left.\sum_{i=1}^{N} \lambda_{i}=1,0 \leq \lambda_{i} \leq 1\right\}
\end{gathered}
$$

- The convex hull for a class is the smallest convex set that contains all the points in the class (X).
- Searching for the hyperplane with the highest margin is equivalent to searching for the two nearest points in the two convex sets.
- This can be proven, but here we just use the result as an aid to get a better geometric interpretation of the SVM hyperplane.

duced convex hull is :

$R\{X, \mu\}=\left\{y: y=\sum_{i=1}^{N} \lambda_{i} x_{i}: x_{i} \in X\right.$,	Here we add a restriction
$\left.\sum_{i=1}^{N} \lambda_{i}=1,0 \leq \lambda_{i} \leq \mu\right\}$	smaller than μ

- μ is a scalar between 0 and 1. $\mu=1$ gives the regular convex hull.
2015.03.25

Reduced convex hull - example

$\mu=1$
Regular
convex
hulls

a_{2}

- Data set with overlapping classes.
- For small enough values of μ, we can make the two reduced convex hulls non-overlapping.
- A rough explanation of the non-separable SVM problem is that a value of μ that gives non-intersecting reduced convex hulls must be found.
- Given a value of μ that gives non-intersecting reduced convex hulls, the best hyperplane will bisect the line between the closest points in these two reduced convex hulls.

Checkpoint

$$
\begin{aligned}
& \underset{\mathbf{w}, \xi_{b}}{\arg \min }\left\{\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}\right\} \\
& y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}-b\right) \geq 1-\xi_{i}, \quad \xi_{i} \geq 0
\end{aligned}
$$

- Do you understand the different terms and criteria in the above minimization problem?
- Which points/samples turn out to be the support vectors?

SVMs: The nonlinear case intro.

- The training samples are I-dimensional vectors; we have until now tried to find a linear separation in this I-dimensional feature space
- This seems quite limiting
- What if we increase the dimensionality (map our samples to a higher dimensional space) before applying our SVM?
- Perhaps we can find a better linear decision boundary in that space? Even if the feature vectors are not linearly separable in the input space, they might be (close to) separable in a higher dimensional space

An examle: from 2D to 3D

- Let x be a 2D vector $x=\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]$.
- In the toy example on the right, the two classes can not be linearly separated in the original 2D space.
- Consider now the transformation
- Now, the transformed points in this 3D space can be separated by a (hyper)plane
- The separating plane in 3D maps out an ellipse in the original 2D
space space Cf. next side, not
$y_{1}^{1} y_{1}=\left(x_{1} x_{1} x_{1}\right)^{2}$.
\qquad

SVMs and kernels

- Note that in both the optimization problem and the evaluation function, $g(\mathbf{x})$, the samples come into play as inner products only

If we have a function evaluating inner products, $\mathrm{K}\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right)$, we can ignore the samples themselves when solving the optimization

- Let's say we have $K\left(\mathbf{x}_{i}, \mathbf{x}_{\mathrm{j}}\right)$ evaluating inner products in a higher dimensional space:
-> no need to do the mapping of our samples explicitly!

Useful kernels for classification

- Polynomial kernels

$$
K(x, z)=\left(x^{T} z-1\right)^{q}, \quad q>0
$$

- Radial basis function kernels (very commonly used!)

$$
K(x, z)=\exp \left(-\frac{\|x-z\|^{2}}{\sigma^{2}}\right) \quad \begin{aligned}
& \text { Note the we } \\
& \text { need set the } \\
& \text { n parameter }
\end{aligned}
$$

- Hyperbolic tangent kernels (often with $\beta=2$ and $\gamma=1$)

The kernel formulation of the optimization function

- Given the appropriate kernel (e.g. «radial» with width σ) and the cost of misclassification C , the optimization task is:

$$
\begin{gathered}
\max _{i}\left(\sum_{i} \lambda_{i}-\frac{1}{2} \sum_{i, j} \lambda_{i} \lambda_{j} y_{i} y_{j} K\left(x_{i}, x_{j}\right)\right) \\
\text { subject to } \quad 0 \leq \lambda_{i} \leq C, i=1, \ldots . N \\
\sum_{i} \lambda_{i} y_{i}=0
\end{gathered}
$$

- The resulting classifier is:
assign x to class ω_{1} if $g(x)=\sum_{i=1}^{N} \lambda_{i} y_{i} K\left(x_{i}, x\right)+w_{0}>0$ and to class ω_{2} otherwise

Example of nonlinear decision boundary

How to use a SVM classifier

- This illustrates how the nonlinear SVM might look in the original feature space
- RBF kernel used

- Find a library with all the necessary SVM-functions ©
- For example libSVM
- Or use the PRTools toolbox http://www.37steps.com/prtools/
- Read the introductory guides.
- Often a radial basis function kernel is a good starting point.
- Scale the data to the range $[-1,1]$ (will not be dominated with features with large values).
- Find the optimal values of C and σ by performing a grid search on selected values and using a validation data set.
- Train the classifier using the best value from the grid search.
- Test using a separate test set.

How to do a grid search

- Use n-fold cross valiation (e.g. 10 -fold crossvalidation).
- 10 -fold: divide the training data into 10 subsets of equal size. Train on 9 subsets and test on the last subset. Repeat this procedure 10 times.
- Grid search: try pairs of (C, σ). Select the pair that gets the best classification performance on average over all the n validation test subsets.
- Use the following values of C and σ :

$$
\begin{aligned}
& \text { - } C=2^{-5}, 2^{-3}, \ldots, 2^{15} \\
& \text { - } \sigma=2^{-15}, 2^{-13}, \ldots ., 2^{3}
\end{aligned}
$$

Summary / Learning goals

- Understand enough of SVM classifiers to be able to use it for a classification application.
- Understand the basic linear separable problem and what the meaning of the solution with the largest margin is.
- Understand how SVMs work in the non-separable case using a cost for misclassification.
- Accept the kernel trick: that the original feature vectors can be transformed into a higher dimensional space, and that linear SVM is applied in this space without explicitly doing the feature transform
- Know briefly how to extend from 2 to M classes.
- Know which parameters (C, etc.) the user must specify and how to perform a grid search for these.
- Be able to find a SVM library and use it correctly 2015.03.25

[^0]: The non-zero $\lambda_{\text {, (the support }}$
 vectors) are now those on
 the margin, those within
 margin, and those
 misclassified
 2015.03.25

