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INF 5300 – Basics of Support Vector
Machine Classifiers (SVM)

• Two-class linear classifiers and the concept of margins

• From two to M classes

• The kernel trick – from linear to a high-dimensional
generalization

• Practical issues

Sections 3.1-3.2, 3.7 (3.7.3 is a SVM-variant that we will skip), 4.17 in ”Pattern Recognition” by S. 
Theodoridis and K. Koutroumbas.

Low-level, practical details on how to actually solve the stated optimization problems are not 
required.

(see links on the course’s web-page for pdfs)
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Learning goals
• Understand enough of SVM classifiers to be able to use it for a 

classification application.

– Understand the basic linear separable problem and what the meaning of the
solution with the largest margin means.

– Understand how SVMs work in the non-separable case using a cost for 
misclassification. 

– Accept the kernel trick: that the original feature vectors can be implicitly 
transformed into a higher dimensional space in which the SVM is applied.

– Know briefly how to extend from 2 to M classes.
– Know which parameters the user must specify and how to perform a grid 

search for these.
– Be able to find a SVM library and use it correctly 
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Linear classifiers I/II
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x1

x2

Linear decision 
boundary

Linear classifiers II/II
• Discriminant function: 

g(x) = wTx + w0

• Two-class problem, 
yi ϵ {-1,1}

• yi =
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x1

x2

-1

1

1, g(xi) > 0
-1, g(xi) < 0

g(x) = 0

Threshold/biasWeights/orientation

Class indicator for pattern i

Input pattern
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Multiple candidates
• Obviously we want the decision 

boundary to separate the classes ..

• .. however, there can be many
such hyperplanes.

• Which of these two candidates 
would you prefer?  Why?
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• wTx/|w| = d+z

• g(dw/|w|)=0 =>  
d = -w0/|w|

• z = wTx/|w| - d
= wTx/|w| + w0/|w|
= g(x)/|w|

Distance to the decision line
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g(x) = 0

Distance from x to the 
decision boundary

Project x onto w
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Hyperplanes and margins
• If both classes are equally probable, 

the distance from the hyperplane 
to the closest points in both
classes should be equal. This is called
the margin.

• The margin for «direction 1» is 2z1, 
and for «direction 2» it is 2z2.

• From previous slide; the distance
from a point to the separating 
hyperplane is  

w
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Hyperplanes and margins
• We can scale g [w and w0] 

such that g(x) will be equal to 
1 at the closest points in the
two classes. This is equivalent
to:

1. Have a margin of

2. Require that

• Goal: find w and w0 yielding 
the maximum margin
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Does not change the margin
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Maximum-margin problem-formulation

• The hyperplane with maximum margin can be found by solving
the optimization problem (w.r.t. w and w0): 

• Checkpoint: Do you understand this formulation?
• How is this criterion related to maximizing the margin?

Niwxwy

wwJ

i
T

i ,...2,1    ,1)(    subject to

2

1
)(    minimize

0

2



 Note: We assume 
here fully class-
separable data!

The ½ factor is for later convenience
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More on the optimization problem
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⇒

Generalized Lagrangian function:
We recommend, 
again, to read the 
note on Lagrangian 
multipliers (see web).

Either λi= 0 or g(x)=1

Karush-Kuhn-Tucker (KKT) 
conditions
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Support vectors
• The feature vectors xi with a corresponding

i>0 are called the support vectors for the
problem.

• The classifier defined by this hyperplane is 
called a Support Vector Machine.  

• Depending on yi (+1 or -1), the support vectors
will thus lie on either of the two hyperplanes 

wTx+w0=1

• The support vectors are the points in the
training set that are closest to the decision
hyperplane. 

• The optimization has a unique solution, only
one hyperplane satisfies the conditions. The support vectors for hyperplane 1

are the blue circles.
The support vectors for hyperplane 2
are the red circles.
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Dual representation
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• Plugging              back into L(w,w0,λ) gives us

Important (for later): 
The samples come into play 
as inner products only!
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The nonseparable case
• If the two classes are nonseparable, 

a hyperplane satisfying the
conditions |wTx-w0|≥1 cannot be 
found.

• The feature vectors in the training 
set are now either:

1. Vectors that fall outside the band 
and are correctly classified.

2. Vectors that are inside the band but
are correctly classified. They satisfy
0yi(wTx+w0)<1

3. Vectors that are misclassified;  
expressed as yi(wTx+w0)<0

Correctly classified

Erroneously classified
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• The three cases can be treated under a single type of contraint if
we introduce slack variables i:

– The first category (outside, correctly classified) have i=0
– The second category (inside, correctly classified) have 0 i 1
– The third category (misclassified) have i >1

• The optimization goal is now to keep the margin as large as 
possible and the number of points with i >0 as small as possible.

i
T

i wxwy  1][ 0
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• A simple change in cost function to reflect this:

• C is a parameter that controls how much misclassified, or 
margin-crossing, training samples are weighted. 

• Following the Lagrange path we end up with the following dual 
formulation:
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Cost function – nonseparable case
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Only difference between 
this and the solution on 
slide 12.

The non-zero λi (the support 
vectors) are now those on 
the margin, those within the 
margin, and those 
misclassified
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An example – the effect of C
• C is the misclassification cost.

• Selecting C too high will give a classifier that fits the training 
data better, but likely fails on new data.

• The value of C should be selected using a separate validation 
set. Separate the training data into a part used for training, 
train with different values of C and select the value that gives 
best results on the validation data set. Then apply this to new 
data or the test data set.

C=0.2 C=100

2015.03.25



5

INF 5300 17

How to go from 2 to M classes
• All we have discussed up until now involves only

separating 2 classes. How do we extend the methods
to M classes?

• Two common approaches:
– One-against-all

• For each class m, find the hyperplane that best disciminates
this class from all other classes. Then classify a sample to the 
class having the highest output. (To use this, we need the
VALUE of the inner product and not just the sign.)

– Compare all sets of pairwise classifiers
• Find a hyperplane for each pair of classes. This gives M(M-1)/2 

pairwise classifiers. For a given sample, use a voting scheme
for selecting the most-winning class.
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SVM – a different geometric view
• SVMs can be related to the convex hull of the

different classes. Consider a class that contains
training samples X={x1,...xN}. 

• From INF 4300:
– A region R is convex if and only if for any two points x1,x2

in R, the whole line segment between x1 and x2 is inside
the R.

– The convex hull of a region is the smalles convex region H 
which satisfies the conditions RH.

2015.03.25
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• The convex hull for a class is the smallest convex set that
contains all the points in the class (X).

• Searching for the hyperplane with the highest margin is 
equivalent to searching for the two nearest points in the two
convex sets.
– This can be proven, but here we just use the result as an aid to get

a better geometric interpretation of the SVM hyperplane. 
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Reduced convex hull
• To get a useable interpretation for nonseparable classes, we need

the reduced convex hull. 
• The convex hull can be expressed as:

• The reduced convex hull is : 

•  is a scalar between 0 and 1.  = 1 gives the regular convex
hull.
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Reduced convex hull - example

• Data set with overlapping classes.
• For small enough values of , we can make the two reduced convex

hulls non-overlapping.
• A rough explanation of the non-separable SVM problem is that a value

of  that gives non-intersecting reduced convex hulls must be found. 
• Given a value of  that gives non-intersecting reduced convex hulls, 

the best hyperplane will bisect the line between the closest points in 
these two reduced convex hulls. 

=1
Regular
convex
hulls

.....: =0.4
----: =0.1
Reduced
convex
hulls
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Relating  and C

• Given a value of  that gives non-intersecting reduced convex hulls, 
find the hyperplane by finding the closest two points in the two sets.

• Several values of  can give nonintersecting reduced hulls.
•  is related to C, the cost of misclassifying training regions (see page

101). 
• A high C will give regions that just barely give nonintersecting regions.
• The most robust considering a validation data set is probably a smaller

value of C (and ). 
2015.03.25
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Checkpoint

• Do you understand the different terms and criteria in the above 
minimization problem?

• Which points/samples turn out to be the support vectors?
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SVMs: The nonlinear case intro.

• The training samples are l-dimensional vectors; we have until now 
tried to find a linear separation in this l-dimensional feature space

• This seems quite limiting

• What if we increase the dimensionality (map our samples to a 
higher dimensional space) before applying our SVM?

• Perhaps we can find a better linear decision boundary in that 
space? Even if the feature vectors are not linearly separable in the 
input space, they might be (close to) separable in a higher 
dimensional space

2015.03.25
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An examle: from 2D to 3D
• Let x be a 2D vector x=[x1,x2].

• In the toy example on the right, the 
two classes can not be linearly 
separated in the original 2D space.

• Consider now the transformation

• Now, the transformed points in this 
3D space can be separated by a 
(hyper)plane. 

• The separating plane in 3D maps 
out an ellipse in the original 2D 
space
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Cf. next slide, note that
yi

Tyj = (xi
Txj)2

.

«Nonlinear»!

• Note that in both the optimization problem and the evaluation 
function, g(x), the samples come into play as inner products only

• If we have a function evaluating inner products, K(xi,xj), we can 
ignore the samples themselves when solving the optimization

• Let’s say we have K(xi,xj) evaluating inner products in a higher 
dimensional space: 
->  no need to do the mapping of our samples explicitly!
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SVMs and kernels
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Called «kernel»
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Useful kernels for classification
• Polynomial kernels

• Radial basis function kernels (very commonly used!)

• Hyperbolic tangent kernels (often with =2 and =1)
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Note the we 
need to set the 
 parameter

The kernels give inner-
product evaluations in 
the, possibly infinite-
dimensional, 
transformed space.  

The «support» 
of each point is 
controlled by .

The inner 
product is 
related to the 
similarity of the 
two samples.
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The kernel formulation of 
the optimization function

• Given the appropriate kernel (e.g. «radial» with width ) and the cost of 
misclassification C, the optimization task is: 

• The resulting classifier is:
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Example of nonlinear decision boundary

• This illustrates how the nonlinear SVM might look in 
the original feature space

• RBF kernel used

2015.03.25

Figure 4.23 in 
PR by Teodoridis et.al.
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How to use a SVM classifier
• Find a library with all the necessary SVM-functions 

– For example libSVM  http://www.csie.ntu.edu.tw/~cjlin/libsvm/
– Or use the PRTools toolbox http://www.37steps.com/prtools/

• Read the introductory guides.
• Often a radial basis function kernel is a good starting point.
• Scale the data to the range [-1,1] (will not be dominated with 

features with large values).
• Find the optimal values of C and  by performing a grid search 

on selected values and using a validation data set. 
• Train the classifier using the best value from the grid search.
• Test using a separate test set.  

2015.03.25
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How to do a grid search
• Use n-fold cross valiation (e.g. 10-fold cross-

validation).
– 10-fold: divide the training data into 10 subsets of equal 

size. Train on 9 subsets and test on the last subset. Repeat 
this procedure 10 times. 

• Grid search: try pairs of (C,). Select the pair that 
gets the best classification performance on average 
over all the n validation test subsets.

• Use the following values of C and :
• C = 2-5, 2-3, ..., 215

•  = 2-15, 2-13, ...., 23
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Summary / Learning goals
• Understand enough of SVM classifiers to be able to 

use it for a classification application.
– Understand the basic linear separable problem and what the

meaning of the solution with the largest margin is.
– Understand how SVMs work in the non-separable case using

a cost for misclassification. 
– Accept the kernel trick: that the original feature vectors can

be transformed into a higher dimensional space, and that
linear SVM is applied in this space without explicitly doing
the feature transform

– Know briefly how to extend from 2 to M classes.
– Know which parameters (C, etc.) the user must specify and 

how to perform a grid search for these.
– Be able to find a SVM library and use it correctly
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