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Energy functions for segmentation/classification
Anne Schistad Solberg

 Bayesian spatial models for classification

 Markov random field models for spatial context

Other segmentation techniques:

 EM-clustering

 Mean shift segmentation

 Graph-based segmentation (briefly)
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Background – contextual classification
• An image normally contains areas of similar

class
– neighboring pixels tend to be similar.

• Classified images based on a non-contextual
model often contain isolated misclassified
pixels (or small regions). 

• How can we get rid of this?
– Majority filtering in a local neighborhood
– Remove small regions by region area
– Bayesian models for the joint distribution

of pixel labels in a neighborhood.

• How do we know if the small regions are
correct or not?
– Look at the data, integrate spatial models

in the classifier.
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A Bayesian model for ALL pixels in the image

Y = {y1,...,yN}    Image of feature vectors to classify
X = {x1,...xN}    Class labels of pixels

• Classification consists choosing the class that maximizes the posterior
probabilities for ALL pixels in the image

• Maximizing P(X|Y) with respect to x1,.....xN is equivalent to maximizing
P(Y|X)P(X) since the denominator does not depend on the classes x1,.....xN .

• Note: we are now maximizing the class labels of ALL the pixels in the image 
simultaneously. 

• This is a problem involving finding N class labels simuntaneously.
• P(X) is the prior model for the scene. It can be simple prior probabilities, or 

a model for the spatial relation between class labels in the scene.
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Spatial Context 5

Back to the initial model…
Y = {y1,...,yN}    Image of feature vectors to classify
X = {x1,...xN}    Class labels of pixels
Task: find the optimal estimate x’ of the true labels x* for all pixels 

in the image

• Classification consists choosing the class labels x’ that maximizes 
the posterior probabilities  
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• We assume that the observed random variables are 
conditionally independent:

• We use a Markov field to model the spatial interaction between 
the classes (the term P(X=x)).
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• Rewrite P(Yi=yi|Xi=xi) as

• Then,

• Maximizing this is equivalent to minimizing  
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Udata(X|C)
• Any kind of probability-based classifier can be used, for example a 

Gaussian classifier with a k classes, d-dimensional feature vector, 
mean k and covariance matrix k:
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Finding the labels of
ALL pixels in the image

• We still have to find an algorithm to find an estimate x’ for all 
pixels. 

• Alternative optimization algorithms are:
– Simulated annealing (SA) 

• Can find a global optimum
• Is very computationally heavy 

– Iterated Conditional Modes (ICM)
• A computationally attractive alternative
• Is only an approximation to the MAP estimate

– Maximizing the Posterior Marginals (MPM)

• We will only study the ICM algorithm, which converges only to a 
local minima and is theoretically suboptimal, but 
computationally feasible. 
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ICM in detail
Initilalize xt, t=1,...N as the non-contextual classification by finding the class which maximize 

P(Yt=yt|Xt=xt), assign it to classified_image(i,j)
For iteration k=1:maxit do

For i=i:N,j=1:N (all pixels) do
minimum_energy=High_number;
For class s=1:S do

Udata = -log (P(Yt=yt|Xt=xt))
Ucontxt=0; 
nof_similar_neighbors=0;
for neighb=1:nof_neighbors

if (classified_image(neighb)=s) //neighbor and s of same class
++nof_similar_neighbors;

Ucontxt = -beta*nof_similar_neighbors;
energy = Udata + Ucontxt;
if (energy < minimum_energy)

minimum_energy = energy;
bestclass = s;

new_classified_image(i,j) = bestclass;
if (new_classified_image(i,j)!=classified_image(i,j))

++nof_pixels_changed;
if nof_pixels_changed<min-limit

break;



Clustering by mixtures of Gaussians
• Euclidean distance can be replaced by Mahalanobis distance

from point xi to cluster center k:

• We could just modify the K-means algorithm to use this
measure after the first iteration.

• Mixtures of Gaussian considers that samples can be softly
assigned to several nearby cluster centers:

• k is the mixing coefficient for cluster with mean k and 
covariance k.
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The EM-algoritm for clustering
• The EM-algoritm iteratively estimate the mixture

parameters:
1. Expectation step (E-step): compute

2. Maximation stage (M-step): update
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Mean shift
clustering/segmentation algorithm

• K-means and mixtures of Gaussian are based on a 
parametric probability function. 

• An alternative is to use a non-parametric smooth
function that fits the data. 

• The mean shift algoritms efficiently finds peaks in a 
distribution without estimating the entire distribution.

• It can be seen as the «inverse» of the watershed
algorithm, which clims downhill. 
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The mean shift - background
• To estimate a density function for 

the scatter plots, we could use a 
Parzen window estimator, which
smooths the data by convolving it 
with a kernel k() of width h:

• When we have computed f(x), we
could find peaks by gradient 
descent.

• Drawback: does not work well
with sparse data points. 

• Solution: finding the peaks
WITHOUT estimating the entire
distribution.
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Scatter plots in L*u*v* space

Cluster results after mean shift
clustering, peaks marked in red
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Mean shift segmentation
• Multiple restart gradient descent algorithm: start at many points

yk and take a step up-hill from these point. 
• The gradient of f is (g(r)=-k’(r)):

• This can be written as

• The current estimate of yk is replaced with its locally weighted
mean:
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Illustration of mean shift

• The kernel K is convolved with the image.
• The derivative of the kernel is computed by convolving the

image with the derivative of the kernel
• The mean shift change m(x) is found from the derivative f’(x)
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• Simple but slow algorithm: start a separate mean shift estimate
y at every input point x, and iteration until only small changes.

• Faster: start at random points. 
• Including location information:

– Add the coordiates xs= (x,y)in the kernel:

– xr is the spectral feature vector and hr and hs the bandwidth
in the spectral and spatial domain.

– The effect of this is that the algoritm step will take both
spectral and spatial information and e.g. use larger steps in 
space between pixels with similar color. 
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Detecting good features for tracking
Anne Schistad Solberg

 Finding the correspondence between two images

 What are good features to match?

 Points?

 Edges?

 Lines?



Feature detection
• Goal: search the image for locations that are likely to be easy to 

match in a different image. 

• What characterizes the regions? How unique is a location?
– Texture?
– Homogeneity?
– Contrast?
– Variance?
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Feature detection
• A simple matching criterion: 

summed squared difference:

• I0 and I1 are the two images, 
u=(u,v) the displacement vector, 
and w(x) a spatially varying weight 
function.

• Check how stable a given location 
is (with a position change u) in 
the first image by computing the 
auto-correlation function:
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• Consider shifting the window W by (u,v)
• how do the pixels in W change?

• Do a Taylor series expansion of the 
autocorrelation to allow fast computation:

• The autocorrelation matrix A is:

Feature detection:  the math
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•Compute the gradients 
robustly using a Derivative of 
Gaussian filter

Feature detection: the math
• The matrix A carries information 

about the uncertainty of the location 
of a patch.

• A is called a tensor matrix and is 
formed by outer products of the 
gradients, convolved with a 
weighting function w to get a pixel-
based uncertainty estimate.

• Eigenvector decomposition of A gives 
two eigenvalues, 0 and 1.

• The smallest eigenvalue carries 
information about the uncertainty.
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•High gradient in the direction of 
maximal change
• If there is one dominant direction, 
we are quite certain about the 
direction estimate, and min will be 
much smaller than max.
•A high value of min means that the 
gradient changes much in both 
directions, so this can be a good 
keypoint. 



Feature detection: Harris corner detector

• Harris and Stephens (1988) proposed an alternative criterion 
computed from A (=0.06 is often used):

• Other alternatives are e.g. the harmonic mean:

• The difference between these criteria is how the eigenvalues 
are blended together. 
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Feature detection algorithm 
1. Compute the gradients Ix and Iy , and Ixy using a robust 

Derivative-of-Gaussian kernel (hint: convolve a Sobel x and y 
with a Gaussian).

2. Convolve these gradient images with a larger Gaussian to 
further robustify.

3. Create the matrix A from the robustified  gradients from 2.
4. Compute either the smallest eigenvalue or the Harris corner 

detector measure from A.
5. Find local maxima above a certain threshold and report them 

as detected feature point locations. 
6. Adaptive non-maximal suppression (ANMS) is often used to 

improve the distribution of feature points across the image.
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How do we get rotation invariance?

• Option 1: use rotation-invariant feature descriptors.
• Option 2: estimate the locally dominant orientation 

and create a rotated patch to compute features from.
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How do we get scale invariance?

• These operators look at a fine scale, but we might 
need to match features at a broader scale. 

• Solution 1:
– Create a image pyramid and compute features at each level 

in the pyramid.
- At which level in the pyramid should we do the matching on? 

Different scales might have different characteristic features. 

- Solution 2:
- Extract features that are stable both in location AND scale.
- SIFT features (Lowe 2004) is the most popular approach of 

such features.
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Scale-invariant features (SIFT)
• See Distinctive Image Features from Scale-Invariant Keypoints 

by D. Lowe, International Journal of Computer Vision, 
20,2,pp.91-110, 2004.

• Invariant to scale and rotation, and robust to many affine 
transforms.

• Main components:
1. Scale-space extrema detection – search over all scales and 

locations.
2. Keypoint localization – including determining the best 

scale.
3. Orientation assignment – find dominant directions.
4. Keypoint descriptor - local image gradients at the selected 

scale, transformed relative to local orientation. 
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SIFT: 1. Scale-space extrema
• The scale space is defined as the function L(x,y,)
• The input image is I(x,y)
• A Gaussian filter is applied at different scales L(x,y,) = 

G(x,y,)* I(x,y,).  is the scale.
• The Gaussian filter is: 

• Compute keypoints in scale space by difference-of-Gaussian, 
where the difference is between two nearby scales separated by 
a constant k:

• This is an efficient approximation of a Laplacian of Gaussian, 
normalized to scale . Lowe (2004) uses =1.6.
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SIFT: 1. Scale-space extrema illustration

• For each octave of scale:
– Convolve the image with Gaussians of different scale.
– Compute Difference of Gaussians for adjacent Gaussians on a given octave.

• The next octave is down-sampled by a factor of 2.
• Each octave is divided into an integer number of scales s, 

k=21/s. 

This gives s+3 images in each octave. 
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SIFT 2 : accurate extrema detection

• First step in minimum/maximum 
detection: compare the value of 
D(x,y,) to its 26 neighbors in this 
scale, and the scale above and 
below.c
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• The candidate locations after this procedure are then checked
for fit according to location, scale, and principal curvature.  

• This is explained on the next slide.



SIFT 2: extrema detection
• Consider a Taylor series expansion of the scale-space function 

D(x,y,) around sample point x

• The location of the extreme point is found by take the derivative 
of D(x) and setting it to zero:

• It is computed by differences of neighboring sample points, 
yielding a 3x3 linear system.

• The value of D at the extreme point is useful for suppressing 
extrema with low contrast, |D|<0.03 are suppressed.
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SIFT 2: eliminating edge response based on 
curvature 

• Since points on an edge are not very stable,  such points need 
to be eliminated.

• This is done using the curvature, computed from the Hessian 
matrix of D.

• The eigenvalues of H are proportation to principal curvatures of 
D. Consider the ratio between the eigenvalues  and . 
A good criteria is to only keep the points where 

• r=10 is often used.
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SIFT 3: computing orientation
• To normalize for the orientation of the keypoints, we need to estimate 

the orientation. The feature descriptors (next step) will then be 
computed relative to this orientation. 

• They used the gradient magnitude m(x,y) and direction (x,y) to do 
this (L is a Gaussian smoothed image at the scale where the keypoints 
were found).

• Then, they computed  histograms of the gradient direction, weighted 
by gradient magnitude. The histograms are formed from points in the 
neighborhood of a keypoint. 

• 36 bins covers the 360 degrees of possible orientations. 
• In this histogram, the highest peak, and other peaks with height 80% 

of max are found. If a localization has multiple peaks, it can have more 
than 1 orientation. 

• WHY are locations with more than one orientation important?
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Feature descriptors
• Which features should we extract from the key points?
• These features will later be used for matching to establish the 

motion between two images.
• How is a good match computed (more in chapter 8)?

– Sum of squared differences in a region?
– Correlation?

• The local appearance of a feature will often change in 
orientation and scale (this should be utilized e.g. by extracting 
the local scale and orientation and then use this scale (or a 
coarser one) in the matching).
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SIFT 4: feature extraction stage

• Given 
– Keypoint locations
– Scale
– Orientation for each keypoint

• What type of features should be used for 
recognition/matching?
– Intensity features? Use correlation as match?
– Gradient features? 

• Similar to our visual system. SIFT uses gradient features.
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SIFT: feature extraction stage

• Select the level of the Gaussian 
pyramid where the keypoints 
were identified.

• Main idea: use histograms of 
gradient direction computed in a 
neighborhood as features. 

• Compute the gradient magnitude 
and direction at each point in a 
16x16 window around each 
keypoint. Gradients should be 
rotated relative to the assigned 
orientation. 

• Weight the gradient magnitude 
by a Gaussian function.
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Each vector represents the 
gradient magnitude and direction. 
The circle illustrates the Gaussian 
window.



SIFT 4: feature extraction stage

• Form a gradient orientation 
histogram for each 4x4 quadrant 
using 8 directional bins. The 
value in each bin is the sum of 
the gradient magnitudes in the 
4x4 window.

• Use trilinear interpolation of the 
gradient magnitude to distribute 
the gradient information into 
neighboring cells. 

• This results in 128 (4x4*8) non-
negative values which are the 
raw SIFT-features.

• Further normalize the vector for 
illumination changes and 
threshold extreme values. 
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This illustration shows a 
2x2 descriptor array and 
not 4x4

Feature matching

• Matching is divided into:
– Define a matching strategy to compute the correspondence 

between two images.
– Using efficient algorithms and data structures for fast 

matching (we will not go into details on this).

• Matching can be used in different settings:
– Compute the correspondende between two partly 

overlapping images (= stitching).
• Most key points are likely to find a match in the two images.

– Match an object from a training data set with an unknown 
scene (e.g. for object detection).

• Finding a match might be unlikely
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Computing the match
• Assume that the features are normalize so we can measure 

distances using Euclidean distance.
• We have a list of keypoints features from the two images.

Given a keypoint in image A, compute the similarity (=distance) 
between this point and all keypoints in image B.

• Set a threshold to the maximum allowed distance and compute 
matches according to this. 

• Quantify the accuracy of matching in terms of:
– TP: true positive: number of correct matches
– FN: false negative: matches that were not correctly detected.
– FP: false positive: proposed matches that are incorrect.
– TN: true negative: non-matches that were correctly rejected.
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Feature-based alignment
Anne Schistad Solberg

 Finding the alignment between features from different 
images 

Geometrical transforms – short repetition

RANSAC algorithm for robust transform computation



INF 2310 - coregistration III

• The root mean square error is used to evaluate how good a match is
• Given M point pairs (xi,yi),(xi

r,yi
r) ( r is the reference image)

• Assume that the transform gives estimated coordinates in the 
reference image as (x’i,y’i)

• (xi,yi) --> (x’i,y’i)
• The number of point pairs  is M >>3 for affine transforms og M>>6 for 

quadratic 
• The coefficients in the transform are computed as the values that 

minimize the square error between the true coordinates
• (xi

r,yi
r) and the transformed coordinates (xi’,yi’) 

• Simple linear algebra is used to find the solution to this problem.
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A data example
Estimated vs. true coordinates
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X’i Can we get a good fit to this data with
• A linear model?
• A quadratic model?



Introducing a robust matching algorithm

• The detected features are not perfect, there may be 
outliers where the match is NOT good. 

• If we want to fit a line:
– Count the number of points that agree with the line.

• Agree means that the distance between the location of the 
estimated and the true coordinates is very small.

• Points which fulfill this criterion are called inliers.
• Other points are called outliers.

– For all possible lines, select the one with the larges number 
of inliers. 
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RANSAC

• RANdom Sample Consensus 
(Fischler and Bolles, 1981)

• Algorithm:
1. Sample (randomly) exactly the

number of points needed to fit the
model.

2. Solve for the model parameters based
on the samples.

3. Score by the fraction of inliers within a 
preset threshold.

• Repeat 1-3 until the best model is 
found with high confidence. 
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RANSAC algorithm

General version:
1. Randomly choose s samples

s=minimum sample size that let you fit a model

2. Fit a model (e.g. line) to those samples
3. Count the number of inliers that approximately fit

the model.
4. Repeat N times
5. Choose the model that has the largest set of inliers, 

and fit this model to all inliers using e.g. least
squares. 
– When we have the best set of points, refine the model

using all inliers. 
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RANSAC conclusions
• Good:

– Robust to outliers (can handle up to 50% outliers)
– Applicapable to a larger number of parameters than Hough

transform/parameters are easier to choose.
• Bad:

– Computational time grows quickly with fraction of outliers
and number of parameters.

– Not good for getting multiple fits.
• Common applications:

– Robust linear regression (and similar)
– Computing the transform behind image stitching (called

homography)
– Image registration/Estimating the fundamental matrix

relating two views. 
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Dense motion and flow
Anne Schistad Solberg

Motion perception

Motion visualization

Image similarity measures

Motion estimation

Optical flow algorithm

Essential steps in motion estimation

• An error metric to compare the two images must be 
chosen.

• A search technique to compute the best match is 
needed.
– Pyramid search is often used to speed up the process.

• Accurate motion estimates might need subpixel
accuracy.

• Regularization is often applied since the motion 
vectors are not reliable in all regions. 
– For compex motion layered motion models might also be 

needed.
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Matching criteria

• What is invariant between the two images?
– Brightness? Gradients? Phase? Other features?

• Distance metric: (L2,L1, truncated L1, Lorentzian)

• Correlation, normalized cross correlation
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Computing similarity between image patches
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• A simple matching criterion: summed squared difference (SSD):

• I0 and I1 are the two images, u=(u,v) the displacement vector.
• Movement can be at the sub-pixel level so interpolation might be 

needed. 
• A measure more robust to outliers is

– a is a constant called outlier threshold
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Hierarchical search for matches – block matching

• In motion estimation, there are often small
motion between frames, so the search is 
restricted to a small region (e.g. 16 pixels) 
from a given position. 

• This is called block matching. 
• Hiearchical motion estimation is often used to 

speed up the process. 
– An image pyramid is created by decimation and 

smoothing, consisting of images.

– At the coarsest level, we do a full search in a 
window for the displacement u(l) that minimizes

– This value of the motion vector is then used to 
predict the displacement at the finer level:
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Lucas and Kanade optical flow

• Good image stabilization requires subpixel accuracy. 
• Assume that matching is based on the SSD-criterion. 
• Lucas and Kanade did a gradient descent on the SSD function to refine

the shift in u based on a Taylor series expansion of I1(xi+u+u).
• Let 

• Define

• The modified SSD criterion is then: 
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Gradient Constraint (or the Optical Flow 
Constraint)
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Least-square problem, see Appendix A.2 for details
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Minimizing

A weight function can be used to weight constraints in the 
center of the neighborhood with a gaussian function g(x)
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Note: to compute the derivatives, take care so they center at 
the same location (e.g. I(x,y)-I(x+1,y) will not center at the same 
location in all directions.

Weighted version

Balance spatial 
gradients by temporal 
gradients and the shift
in u
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Local Patch Analysis

• How certain are the motion estimates?
• This is similar to finding good keypoints in SIFT.

The Aperture Problem

    TIIALet

• Algorithm:  At each pixel compute      by solving

• A is singular if all gradient vectors point in the same direction
• e.g., along an edge
• of course, trivially singular if the summation is over a single pixel
or there is no texture
• i.e., only normal flow is available (aperture problem)

• Corners and textured areas are OK
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Refining the search to sub-pixel accuracy

• Estimate velocity at each pixel using one iteration of Lucas and 
Kanade estimation.

• Many applications, like image stabilization and stitching, require
sub-pixel accuracy in matching. 

• Refine this estimate by repeating the process
• Remember that the Taylor series expansion ignored the higher

order terms
– The accuracy of the estimate is bounded by the magnitude of the

displacement and the second derivative of I.

• If we undo the motion, and reapply the estimator to the warped
signal to find the residual motion left
– Do this iteratively until the residual motion is small
– Let ut now explain this
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Limits of the gradient method

Fails when intensity structure in window is poor
Fails when the displacement is large (typical operating 

range is motion of 1 pixel)
Linearization of brightness is suitable only for small displacements

• Also, brightness is not strictly constant in images
actually less problematic than it appears, since we can pre-filter 

images to make them look similar

Szeliski
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Coarse-to-Fine Estimation images J and I

u=10 pixels
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u=2.5 pixels

u=1.25 pixels

Parametric motion models (8.2)

• 2D Models:
• Affine
• Quadratic
• Planar projective transform (Homography)

• 3D Models (see the book):
• Instantaneous camera motion models 
• Homography+epipole
• Plane+Parallax
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Each pixel provides 1 linear constraint in 6 global unknowns
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Least Square Minimization  (over all pixels):

Example:  Affine Motion

Learning goals – motion estimation

• Understand representation and visualization of
motion vectors.

• Understand the brightness similarity criterion.
• Know different patch similarity measures.
• Understand the gradient constraint.
• Know the basic steps in the optical flow algorithm
• Know strenghts and limitations of optical flow
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Snakes
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The energy function

dssvEsvEsvEE conimagessnake ))(())(())((
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Internal deformation energy
of the snake itself.
How it can bend and stretch.

A term that relates to gray 
levels in the image, e.g. 
attracts the snake to points
with high gradient magnitude.

Constraints on the shape of the
snake. Enchourages the contour
to be smooth. (Often omitted)

The minimum values is found by derivation: 

0
dv

dEsnake
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The internal deformation term
2

2
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First derivative
Measures how stretched the contour is.
Keyword: point spacing.
Imposes tension.
The curve should be short if possible.
Physical analogy: v acts like a membrane. 

Second derivative
Measures the curvature or bending energy.
Keyword: point variation.
Imposes rigidity.
Changes in direction should be smooth.
Physical analogy: v acts like a thin plate. 

 and  are penalty parameters that control the weight of the two terms.
Low  values: the snake can stretch much.
Low  values: the snake can have high curvature. 
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A simple image term

• A common way of defining P(x,y) is:

• c is a constant,   is a gradient operator, G is a Gaussian filter, 
and I(x,y) the input image. Note the minus sign as the gradient is 
high for edges.

)),((),( yxIGcyxP  


1

0

))(( dssvPEimage



INF 5300 71

The energy function
• Simple snake with only two terms (no termination 

energy):

• We need to approximate both the first derivative and 
the second derivative of vs, and specify how Eedge will be 
computed.  

• How should the snake iterate from its initial position?

edge
ss
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How do we implement this?

• The energy function involves finding the new 
location of S new coordinates (xs,ys), 0s1 for one 
iteration.

• Which algorithm can we use to find the new 
coordinate locations?
1. Greedy algorithm

– Simple, suboptimal, easier to understand

2. Complete Kass algorithm
– Optimizes all points on the countour simultaneously by solving 

a set of differential equations. 

– These two algorithms will now be presented.
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Capture range problems
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Capture range problems

• The first term is Lagrange’s equation which appear in often in 
physics, e.g. in heat flow or fluid flow.

• Imaging the a set of heaters is initialized at certain boundary 
conditions. As time evolves, the heat will redistribute/diffuse 
until we reach an equilibrium. 

• In our setting, the gradient term act as the starting conditions.
• As the differential equation iterate, the gradient will diffuse 

gradually to other parts of the image in a smooth manner. 
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Capture range problems

• This equation has a similar solution to the original 
differential equation.

• We treat u and v as functions of time and solve the 
equations iteratively.
– Comparable to how we iteratively computed x<i+1>,y<i+1>

from x<i>,y<i>

• The solution is obviously a numerical one, we use 
two sets of iterations, one for u and one for v.

• After we have computed v(x,y), we replace Eext (the 
edge magnitude term) by v(x,y)

• So an interative algorithm is first used to compute 
v(x,y) 

Computing v(x,y) continued..

• Select a time step t and a pixel spacing x and y for the iterations.
• Approximate the partial derivatives as

• Then the iterative equations are:
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Capture range problems


